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Costa’s Minimal Surface

L Producing Minimal Surfaces

The Weierstrass Representation

Theorem (The Weierstrass Representation Theorem)

Let f and g be functions on a simply connected domain U C C,
where g is meromorphic and f is holomorphic, such that wherever g
has a pole of order m, f has a zero of order at least 2m (or
equivalently, such that the product fg* is holomorphic). Fix zy € U,
and let ¢y, ca, c3 be constants. Then the surface with coordinates
(21,22, x3) is minimal, where the x;, are defined as follows:

zx(z) = Re {/ or(w) dw} +ocp k=1,2,3.

20

1-— if (1 + ¢
@1:ua 502:]((;_9)>

5 ©3 = fg.



Costa’s Minimal Surface

[ Producing Minimal Surfaces

A Basic Example

From the functions

fz2) =

Z

—e % and g(2) = —e
we obtain (up to constants)

z1 (u, v) = cosh ucos v,

x2(u, v) = cosh usin v,
x3(u, v) = u,

which describes the catenoid.

Figure: A catenoid



Costa’s Minimal Surface

LThe Two Weierstrass Functions

The Weierstrass @ and ¢

We choose the lattice Z[i] = {m + in: m,n € Z} so that the
Weierstrass p and ¢ functions are defined by

1 1 1
p(z) = 5 + m 2/
weZ[i]\{0}

1 1 1
((2) = -+ (—+—+ zz).
P Z-w W w
weZ[i]\{0}
Clearly, ¢'(z) = —gp(z). Let us denote

a=pG), e=v@E), e=e(F).

Please don’t confuse ( with the Riemann zeta function



Costa’s Minimal Surface

I—The Two Weierstrass Functions

|dentities of p and ¢

o s~ N

p(z+ m+in) = p(2) for all m,n € Z.

(
(1) — o (2 2
plar+ ) = § (2 — p(a1) = pl).

1
2
= 3) = (s 4) — 20 = 245,

©'(2)° = [4p(2)* — g2] p(2).

' (2)? = 4p(2) [p(2)* — €]
p(z+i)=e+ péiel

p(z+3)=e+ p(z)eQ 5 =—a+ (Q)iel.
o ( '
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Costa’s Minimal Surface

|—The Two Weierstrass Functions

|dentities of p and ¢

8. ((z+ m+in) = ((2) +2ml (3) +2n( () for all m,n € Z.
9. i((iz) = C(z)

10. ¢(3)=i¢C(3) =5
11. ¢ (&) = Lhm
12, ¢(z+w) — ((2) — ((w) = 22



Costa’s Minimal Surface

LThe Two Weierstrass Functions

1. Clear from the definition of .

2. A well-known addition formula that can be found in most
textbooks on elliptic functions. So is 12.

3. Corollary 2.3 in Chapter 9 of Complex Analysis by Stein and
Shakarchi gives the identity

(9)? = 4¢® — gop — g5,

where

g2 =60 > % and g3 =140 > iﬁ

wezi\{oy wezi\{oy
In our case, g3 = 0 since

(m—in)® 4+ (m+in)® + (n—im)® + (n+im)® = 0.



Costa’s Minimal Surface
LThe Two Weierstrass Functions

4. It is known that 1/2, i/2 and (1 4 i)/2 are the roots of the
cubic polynomial [4p(2)? — g2] p(2), and p (1) = e3 = 0.
Hence 4 = go, and the identity follows from 3.

5. Apply 2 and then 4.

6. Apply 2 and then 4. Note that ez = —e;.

7.Bylp(z—3)—p(z—3)=p(¢+3) —p(2+3). Then
combine 5 and 6 to get the identity.

8. Since ('(2) = —p(2) and p(z+ 1) = p(z), the two functions
C(z+1) and () differ by a constant, say ((z+1) = (( )+ c.
Take 2= —3 and use the fact that ¢ is odd to get ¢ = 2¢ (3).
The same argument gives ((z+1) = ((2) + 2¢ ( ).

9. Clear from the definition of ¢ and the fact that iZ[i] = Z[i].
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LThe Two Weierstrass Functions

10. The residue theorem gives Jm
D 3 o
/ ((z)dz = 27i.
ABCDA 1 1 NRe
-3 B

On the other hand, by 8 we have

A
/g dz_/g )dz—2¢ (4 /g é 2) dz42i¢ (3) .

Combining these equations gives ¢ (%) +i¢ (%) =m. Then use 9
— and m = n=1in 8 and use the fact that C is

11. Take z= —=
odd to get ¢ (1) = ¢ (3) + ¢ (4). Then 10 applies.
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LParametrizaticm of Costa’s Minimal Surface

The Weierstrass Data

Costa’s minimal surface is defined as a
Weierstrass patch using the functions

A
o'(2)

flz) = p(2) and  g¢(z) =

In order that Costa’s minimal surface has
no self-intersections, we need to take?

A =2V2me; ~ 34.46707.

?D. Hoffman and W. Meeks, A complete
minimal surface in R® with genus one and three
ends, J. Differential Geometry 21 (1985),
109-127.

i 1+1i
A
02
1
I
~0 1
Figure: Zeros and poles of f
i 1+1i
A
1 1
oo —
I
03 !
0 oot 1

Figure: Zeros and poles of ¢

We shall use ( to express the coordinates without integrals.
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L Parametrization of Costa’s Minimal Surface

Using 7 we obtain

fw) [1 = g(w)?] = p(w) - ifu(,)?
= o) = {i [ (=)~ p(w=}) ~2a)
= p(0) = o [ (=) = p (w— §) 2]
= () + 7= 5o (w=3) — 9 (w= )]
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LParametrization of Costa’s Minimal Surface

Take 2z = % Integrating both sides and using 10 and 11, we get

:—C(z)—i-ﬂz-l-QLel [C(z_%)—C(Z—é)}
1 7T(1+1) m i
o) -0 T ey ey
@+ g [ (= ) = ¢ (o= )] —im e T

Dividing by 2 and taking the real part, we get ;.
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Costa’s Minimal Surface
LParametrization of Costa’s Minimal Surface
Similarly,

fw) [1+ g(w)?]

p(w) —m
and then

/ ) [1+ g(w)?] duw

™

.

261

™

o1}
(¢ (= 4) - ¢

From this we can find 5.

()

14/42
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LParametrization of Costa’s Minimal Surface

Using 4 we obtain

forosterso=a [ Gesan=3 [ Spe g
A

Taking the real part gives x3.
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LParametrization of Costa’s Minimal Surface

Parametric Equations

Costa's minimal surface is given by (z1, 22, 23) where

( 2

1
x1 (u, v) :59‘{2 {—C(u—}— iv) + Tu+ Z?l

1
z2(u, v) :59% {—i{(u—i— iv) + o+ 271

i

z3(u, v) =

V2w 1 p(u+iv) — e
0
1 % p(u+iv) + e

- = [g(u+w—§)—c(u+iv—%)}}7
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L Parametrization of Costa’s Minimal Surface

What the Surface Looks Like

RES

Figure: Zoom in on the Costa's surface (left to right)
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LParametrization of Costa’s Minimal Surface

Parameter Domain

By 8 and 10 we have ((z+ 1) = ((2) + 7, hence

2

1
z1(u+1,v) =§9‘ie{—g(u+iv) —m+7Tu 471+ :—el

b (6w iv= ) br = ¢ ukio—4) -]}
=11 (u, v).

Similarly, one can show that z;(u, v+ 1) = z;(u, v) and

IQ(U-l-]_,’l)) :$2(ua U)a IQ(U’7U+1) :$2(ua U)a
:Eg(u—f-]_,?)) :.’173(U, U): 333(U,1}+1) :*773(“7 U)'

Therefore, we may restrict « and v to the unit square [0,1) x [0, 1).
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|—Asymptotics of the Three Ends

Two Catenoidal Ends and One Planar End

ay log |x1] +

/

73

2
I

azlog|zy| + -+

~—

aslog ||+ - -+
Figure: Front view of the Costa’s surface

D¢
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Costa’s Minimal Surface

|—Asymptotics of the Three Ends

Key Observations (i)

» o(z) € R whenever z € R.

p(z)

» ((z) € R whenever z € R.

1 1 1
=14 (25+5+3) -
weZ[i]\{0}

1 1 1
S+ D <—_2 - _—2> = p(2).
T ety \@—@) @

D¢
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Costa’s Minimal Surface
LAsymptotics of the Three Ends

Key Observations (ii)

72 i

72(u,0) = %%e{—i{( w+-———1[C(u—3)—¢(u—1

461 261
1 ( 72
— {5 - o=}
By 12 we have

1o/ (u) — ¢ (3)

Since p (3) = e2 = —e1 € R and ¢’ (1) = 0, we obtain

Im{C(u—3)} =m{C(-3)} =Im{5} =3

Hence 22(u,0) = 0.

2 p(u) —p(3)

™



Costa’s Minimal Surface
LAsymptotics of the Three Ends

Key Observations (iii)

22 (u,3)
:%%e{—lg(u+ )+ 5 +E__ [C(u-l—%—%) —Q(u)]}

2 {omicr DI+ 5+ e (s - DY)

As in the case with (ii), we have

Im{¢(u+3)} =Tm{¢( —%)—m}zg—w=—ga
(- ) = I (< (- Y+ D= -]

Therefore, 25 (u, 3) = 0.



Costa’s Minimal Surface
|—Asymptotics of the Three Ends

Key Observations (iv)

vVvyyYyVvVvVYyy
8

2 Figure: The curve v =10

=] = = = E DA™ 23/42



Costa’s Minimal Surface
LAsymptotics of the Three Ends

Proof of (iv)

When u 0,



Costa’s Minimal Surface
LAsymptotics of the Three Ends

Proof of (iv)

When u/‘%
z1(u,0)

1 72 T ;
e~ tmut T+ - D) ¢ o)
1 2 )
:5{—C(u)-l—wu-l—;r—el-1-2%1 [C(u—13)—Re{C (u—%)}]}

1 2 .
I R U B CO)
NEC (u—13)

T 1
NEU,— 1 — —0Q



Costa’s Minimal Surface
LAsymptotics of the Three Ends

Proof of (iv)

When u\%
z1(u, 0)

1 2 .
—imef @ttt ) (o )]}
1 2 .
:5{—C(u)-l—wu-l—;r—el-1-2%1 [C(u—13)—Re{C (u—%)}]}

1 2 .
I R U B CO)
T
NEC (u—13)
m 1
NEU—% — 400



Costa’s Minimal Surface
LAsymptotics of the Three Ends

Proof of (iv)
When v 71,
z1(u, 0)
™™ o7 i
:%me{—g(u)+7ru+a+2—el [¢(u—13) —C(u—%)}}
1 w2 m 1 i
=3 G g e ) (s (- Y
w2 ™ i
N%{—uil —7r+7T+4—61+2—61 [<(3) —%e{C(l—%)}]}
_m — 400.

u}
o)
I
"
it
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|—Asymptotics of the Three Ends

Proof of (iv)

2 —
23(1,0) = \/47? log ‘ p(u) — el

p(u) + el

> Since p(u) ~ 5 as u— 0, we have x3(u,0) — 0 as u — 0.
> Since p () = e1, we have z3(u, 0) — —o0 as u — 3.

DA™ 28/42



Costa’s Minimal Surface
LAsymptotics of the Three Ends

The Coefficients ay and ag

It is obvious from observation (iv) that az = 0.
To find ag, first note that

) p(utl/2)—er
J?g(u O) _ \or lim log p(u+1/2)+e;
4 ” :

az = lim —
u\l IOg CCl(u 0) \‘O log deju
Using 5 we have
p(u—i—%)—el_l 2e1 _q 2e;
p(uts)+e p(uts)+e 2e1 + oo
61 2

= ~eu asu— 0.
p(u)
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|—Asymptotics of the Three Ends

The Coefficients ay and ag

Now

1 2
7 lim 8 (elﬂ_u )
uN\O log Teru
:@ m 210gu+loge;
u\0 —log u+log 75—
= —/5 ~ 125331,

DA™ 30/42
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|—Asymptot:ics of the Three Ends

Key Observations (v)

Figure: The curve v= %

u}
o)
1
n
it
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Costa’s Minimal Surface

|—Asymptotics of the Three Ends

Proof of (v)

21 (u, 3)

1 .
59%2 {—( (u+3)

R
7'(' —_— R
461 261
When u ™\, 0,
1 2 T
a(wd) ~gRed-c () + 1

— —00
deju

+261C
1 7r2+ T
2 461
T
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LAsymptotics of the Three Ends

Proof of (v)

21 (u, 3)

When u 71,

a (ud) ~ goef e (1)

1 T
Ni{_ﬂ+ﬂ+_+

" e (1 - u)

1 .
59% {—C (u+3)

2
461

— +00.

™
+rTu+ —+

2 T )
461 2_61 [C (u-l-

™
261

2

s T
+r+— 4 —

461 261

€34 - ot

5]
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Costa’s Minimal Surface

LAsymptotics of the Three Ends

The Coefficient a;

As before, we write a; as

p(uti/2)—e
o x3 (U, ) _ \am log ‘ p(u+i/2)+ei
a) = lim ™ = "4 lim

u,/1 log x1 (u, 5) u
Using 6 we have

log o= (71r—u) '

go(u-l—%)—elz _ 2e1 o 2e;
O R R R
_ oy 1
el

e1(1 — u)?

as u — 1.

34/42



Costa’s Minimal Surface

|—Asymptotics of the Three Ends

The Coefficient a;

Now
Vor log e (ll—u)2
a) = % lim i L
u,/1 log 4de1(1—w)
—2log(1 —u) —1
T og(l —u) —log ey

u/1 —log(1 — u) +log 7

DA 35/42
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|—Symmetry of the Surface

Straight Lines on the Surface

Figure: Vertical view of the Costa's surface
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Costa’s Minimal Surface
LSymmetry of the Surface

The Weierstrass g on the Unit Square

i 141 i 141
+ - +
- + +
0 1 0 1
Figure: Sign of Jm(p). Arrows in Figure: Sign of Re(p). Arrows in

direction of increasing Re(p). direction of increasing Jm(p).



Costa’s Minimal Surface
LSymmetry of the Surface

Since g is imaginary on the diagonals of the unit square,

V2r o lp(u+iu) —e|

=0.
4 g|go(u+iu)+el|

Moreover, with 9 and ((z) = ((2) we see that
7 (u, u) =19%Re {—ig(u+ ) + Ut
~F [Curiu=§) = (u+iu-3)]}
:%%e{—g(u—iu) ot
o [C(u—iut ) = ¢ (u—iu—$)]}

=11 (u, u).
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LSymmetry of the Surface

As before, we can show that as u ™\, 0

21 (u, u) = z(u, w)
~ 1%8{ u+1u + 481 + 26]_ [C (_%) - C (_

1
~ — e — —00,

)}

ol
N[ =+

and as u 1
z1 (u, u) = z2(u, u) ~ m — +00.

Therefore the straight line (z, z,0) with z € R lies on the surface.
By reflection in the xs-z3 plane, we find the other straight line on

the surface.
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LSymmetry of the Surface

Straight Lines Imply Symmetry

Theorem (Schwarz Reflection Principle for Minimal Surfaces)
A minimal surface which contains a straight line on its boundary
can be analytically extended by reflection across the line.
Corollary

If a minimal surface contains a straight line, then it is invariant
under rotation by w about that line.

The symmetry group of Costa's surface is the dihedral group
generated by

» Reflection in the z;-23 plane; and

> Rotation about the z3-axis by 5 followed by reflection in the
-T2 plane.
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LSymmetry of the Surface

Figure: Eight fundamental triangles corresponding to congruent pieces of
the surface.



The End



	Producing Minimal Surfaces
	The Two Weierstrass Functions
	Parametrization of Costa's Minimal Surface
	Asymptotics of the Three Ends
	Symmetry of the Surface

