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PSet 1, Part 1

Problem 1 (Fixed point theorems) Let f : [a,b] — R be continuous.
(1) Prove: if f([a,b]) C [a,b], then there exists p € [a, b] such that f(p) = p.
(2) Prove: if f([a,b]) D [a,b], then there exists p € [a,b] such that f(p) = p.
(3) Whatif f : D* — R is continuous with f(D?) > D?*?

Proof (1) Letg(z) = f(z) —x € €([a,b]), then g(a) > 0 and g(b) < 0. By the intermediate value
theorem, there exists p € [a, b] such that g(p) =0, i.e., f(p) = p.

(2) Let h(z) = f(z) — = € €([a, b]). Suppose to the contrary that h(z) # 0 for all x € [a, b].

o If h(a) > 0, then f(a) > a and there exists ¢ € (a,b] such that f(z¢) = a. Hence h(zy) =
a — xo < 0 and h has a zero in (a, z¢) by the intermediate value theorem, a contradiction.

o If h(b) < 0, then f(b) < b and there exists 1 € [a,b) such that f(z1) = b. Hence h(z1) =
b— x1 > 0 and h has a zero in (21, b) by the intermediate value theorem, a contradiction.

Therefore we have h(a) < 0 and h(b) > 0. Again the intermediate value theorem leads to a contra-
diction, so there exists p € [a, b] such that f(p) = p.

(3) In this case we don’t have a fixed point theorem. A map without a fixed point is given in Figure 1.

AR, LD
N A/,Cl

Figure 1: Attaching arc BA to arc DC

Here the upper third of the disk is mapped to the lower half, the lower third is mapped to the upper
half, and the middle third is mapped to a band outside the disk that connects the two halves. [

Problem 2 (Escape) Look at Figure 2. Explain how.

¢ # DYDOY
{sp®

Figure 2: Two rings Figure 3: Undoing handcuffs

Solution Shown in Figure 3. O



Problem 3 (Inscribed square problem: a simple case) Let f : [0,1] — R be a continuous function
with f(0) = f(1) = 0. Consider the simple closed curve C' that consists of the graph of f and the line
segment of the z-axis from z = 0 to « = 1. Prove: one can find four points on C' that are the vertices of

a square.

Proof We may assume f(x) > 0 for « € (0, 1), since otherwise (as long as f is not identically zero)
we can find two consecutive zeros of f such that f or —f is positive in between, and then scale up this
subgraph. By the extreme value theorem, there exist ;1 € (0, 1) such that f(z) < f(z1) for z € [0,1].
Now let g(x) = 2 + f(x), then g(0) = 0 and ¢g(1) = 1. Since z; € (0, 1), there exists some x5 € (0, 1) such
that g(z2) = x1 by the intermediate value theorem. Next we consider another function » defined by

For this function to be well-defined, we set f(z) = 0 for all z ¢ [0, 1]. Then

h(z1) = f(x1) — f(g(x1)) >0,
h(x2) = f(x2) — f(g(x2)) = f(x2) — f(21) < 0.

By the intermediate value theorem, there is some z( between z; and x5 such that i(x¢) = 0, namely
f(wo) = f(xo + f(0)).

Therefore, the points 2y and =g + f(x¢) on the z-axis are the base corners of the inscribed square, as

illustrated in Figure 4.

Zo o + f(20)

Figure 4: Inscribed square

Problem 4 (Weierstrass’s counterexample to Dirichlet principle) For any u in
A={uec([-1,1]) s u(-1) = 0,u(l) = 1},

define



(1) Prove: for each n € N, the function

. onmTxr\2
Up () = (sm T) X[0,1/n](T) + X (1/n,1)(2)

is an element in A.
(2) Prove: lim F(u,)=0.
n— oo

(3) Prove: there is no function u € A that attains the minimum of F.

Proof (1) First rewrite u,(z) as

07 -1 < T < 0,
2
un(@) =4 (sin™77), 0<w <o,
2 1
1, — <<l
n
Since ,
sin 2ZZ% _
lim Y@ =un(0) o (sintge)” 0= lim (@) = un(0)
z—0t x—0 z—0 T 20— r—0
and similarly
L 1
Up () — up (= U (1) — up (E
(%) r—q ek e (2)* z-1
we see the derivative of u,, is
nm . 1
, —sin(nmx), 0< 2z < —,
() = { 2 n (1)
0, else.

From this we conclude that u,, € (31([—17 1]), hence u,, € A.

(2) By (4-1) we have

1 2.2 s 2

" 2 —3 n—oo

F(uy,) = / |z, (z)) do = LT / r?sin?(nrx) da = T 720
1 4 Jo 48n

(3) Ifu € Asatisfies F/(u) = 0, then from zu’(z) € €([—1,1]) we get zu'(z) = 0 forall z € [—1, 1]. Since
u'(z) € €([-1,1]), we find v/(z) = 0 for all z € [—1, 1], which is impossible for u is not constant. [J



PSet 1, Part 2

Problem 5 (Examples of metrics) Check that the following are metrics.

(1) Let G be a group and S be a generating set, then the word metric
dS(ghg?) = mm{n : 381, e, 8y € SuU Sil s.t. gi81 - "8Sp = gg}

is a metric on G. Moreover, if G is finitely generated and S, S2 are two finite generating sets of G,
then there exists L1, Lo > 0 so that

Lids, (g1,92) < ds,(g91,92) < Lads, (91, 92)-

(2) The Hausdorff metric on X = {all bounded closed subsets in R"} given by
du(A,B) =inf{fe 20: AC B.and B C A.}

is a metric on X, where A, = U B(z, ). Moreover, describe the open ball centered at “A = the
T€A
closed unit disk” and with radius 3.

Proof (1) First, the map ds : G x G — Ry is well-defined, since S is a generating set for G.

o Clearly ds(g1,92) > 0and ds(g1, g2) = 0 if and only if g1 = go.

o Let g,h € G and ds(g,h) = n. Furthermore, let s1,--- ,s, € SU S~ ! be such that g~ *h =
sy - - sy,. By taking inverses, we have h ™ 'g = s, ! ---s7', s0 ds(h,g) < n = ds(g, h). Switch-
ing the roles of g and h in the above, we obtain the converse inequality, and hence equality.

oIfgth=s1---sp,and h 'k =ry-- -7, then
gilk = (gilh) (hilk) =81 8pT1 " Tm-

It follows that ds(g, k) < ds(g, h) + ds(h, k).

If G is finitely generated and Sy, S, are two finite generating sets of G, then any s, € So U Sy ' can
be written as

2 = 51,151,2 " S1,my, s

where each s1; € 51 U ST 1. Since S, is finite, we can define

Ms; = max my.
SQESQUS.;I

Similarly, for each s; € S; U ST 1 we can write
851 = 82,1822 S2,n,,»
where each s3; € S; U Sy . Since 9 is finite, we can define

M, = max ny.
s1€S1US; !



Thus, each generator in S; can be expressed as a product of at most L; generators in Sy, and each
generator in S, can be expressed as a product of at most L generators in S;. The desired inequality
follows by setting Ly :== 1%[2 and Ly := M.

(2) The map dy : X x X — Ry is well-defined by the definition of X.

@ Clearly dy(A, B) > 0anddp(A,B) =0 <> AC Band BC A <= A = B. (The assumption

that A, B are bounded closed subsets in R" is used in “<=".)
® dy(A, B) = du(B, A) is immediate from the definition of dy.

® Suppose A, B,C € X satisfy
AcCcB,, BCA.,, Bc(C,, (CCB.,.

If x € B,, then there exists b € B such thatd(z,b) < €;. Sinceb € B C C.,, there exists c € C
such that d(b, ¢) < e5. Then

d(z,c) < d(z,b) +d(b,c) < &1 + e
and then A C B, C C¢, 4¢,. The same argument shows that C C A.,.,. Hence
di(A,C) < e +ea.
Taking the infimum over all such ¢; and ¢5 gives
du(A,C) < du(A, B) +du(B, C).

Using the assumption that A, B are bounded and closed, one can show that

1
ACB,Ve>, = Ac () B- = 1,
E>%
and similarly
1 - P
BCA.,Ve> 5 = BCA, =B(0,3).

Hence, the open ball centered at “A = the closed unit disk” and with radius 1 can be expressed as

Bay(4,3) = {BeX:AC T andBCB(0,3)}. 0

Problem 6 (Metric-preserving functions) Let f : [0,+0c0) — [0, +00) be a function (which need not be
continuous). We say f is a metric-preserving function if for any metric space (X, d), themap d : X x X — R

defined by d(z,y) == f(d(z,y)) is a metric on X.
(1) Prove: f(t) = 1% is a metric-preserving function.

1+t

(2) Prove: if f is a metric-preserving function, then f~*({0}) = {0} and f is sub-additive:

fla+pP) < fla)+ f(B), Va,B € [0,+00).



(3) Prove: a function f : [0, +o0) — [0, +0c) satisfying f~'({0}) = {0} is metric-preserving if any one
of the following conditions holds:
@ f is non-decreasing and sub-additive.
@ fis concave.

® There exists a constant ¢ > 0 so that for any « > 0, f(x) € [c, 2c].

Proof (1) @ Clearly f(d(z,y)) > 0and f(d(z,y)) =0 <= d(z,y) =0 <= z=y.
@ d(x,y) = d(y,x) implies f(d(z,y)) = f(d(y,z)).

® Since the function f(t) = l%rt is increasing on [0, +00), we have

Fld(z,2)) < fld(z,y) +d(y, 2)) = i(géi/ );)_jl—(Z&yZ)Z)

__ dey) dy.2)
S l+d(z,y) +dly,z)  1+d(z,y) +d(y, 2)
d(z,y) d(y, z)

(2) Consider R endowed with the standard metric d(z,y) = |z — y|. Clearly f(0) = 0, and if there
exists ¢ > 0 such that f(z) = 0, then f(d(z,0)) = f(z) = 0, which is impossible since z # 0. Thus
f~1({0}) = {0}. For any «, 3 € [0, +0), we have

fla+pB) = fld(a,=p)) < fd(a,0)) + f(d(0,=B)) = fla) + f(B).

(3) In each case we only need to show that f o d satisfies the triangle inequality. Let z,y, z € X.

@ f(d(z,2)) < fld(z,y) +d(y,2)) < fld(z,y)) + f(d(y, 2))-

@ We first show that f is sub-additive. Suppose 0 < r < sand t = r + s. Let p > 0 be such that
S:pt+ (1 *p)?",

then
r=(1-p)s.

By the concavity of f, we have

f(s) Zpf(t) + (1 =p)f(r),
f@) = (1 =p)f(s).

Adding the above inequalities gives
Fr)+ f(s) = pf(t) + (1 =p)[f(r) + f(s)],

or equivalently

flr+s)=f{) < flr)+ f(s).

Next we shall show that f is non-decreasing. Suppose to the contrary that there exist r < s



such that f(r) > f(s) (it follows that r > 0). Let

_ ()
7)

€(0,1), u=22"" 50 y=r>0,

then

Since f is concave, we have

f(s) 2 A =q)f(w) +qf (v) = (1= q)f(u) + f(s),

which implies f(u) < 0 and then f(u) = 0, a contradiction. Thus f is non-decreasing and
sub-additive, and by @ it is metric-preserving.

® Without loss of generality, we may assume z, y, z are distinct. Then

fld(z,2)) <2c=c+c< fd(z,y) + fd(y, 2)). O

Problem 7 (Urysohn’s lemma) Let (X, d) be a metric space. For any subset A C X, define
dg: X = 1[0,400), x—da(x)= aigid(z,a).
Prove:
(1) da is a continuous function on X.

(2) Aisclosed if and only if d4(z) = 0 implies z € A.

(3) (Urysohn’s lemma for metric spaces) If A and B are closed subsets in (X, d) and ANB = @. Then
there exists a continuous function f : X — [0, 1] such that

f=0onA and f=1lonB.

Proof (1) Forany z1,z2 € X and a € A, we have
da(z1) < d(x1,a) < d(x1,22) + d(x2,a).
Taking the infimum over a € A gives
da(zy) < d(z1,22) + da(xs).
Switching the roles of z; and x2 in the above gives
da(ze) < d(x1,22) +da(z1).

Hence
|da(x1) — da(ze)| < d(z1,22),

which shows that d 4 is Lipschitz continuous.



(2) («=) Suppose {z,};~; is a sequence in A that converges to z € X. Then lim d(z,,z) = 0, thus

n—roo

da(x) = 0. By assumption, x € A, hence A is closed.

(=) If Ais closed and da(z) = 0, then for any n € N there exists a,, € A such that d(z,a,) < i.
Now a,, — z, and since A is closed, x € A.

(3) Consider

dA (.’E)
da(z)+dp(z)
This function is well-defined since if the denominator d 4 (z) +dp(z) is zero, then d 4 (z) = dp(x) =
0, which by (2) impliesz € AN B = @ as A and B are closed. Itis clear that f =0onAand f =1
on B, and by (1) f is continuous. O

f:X-=1001, z—

Problem 8 (Uniform convergence as a metric convergence) Let X be a set, (Y, dy ) be a metric space,
fo: X = (Y.dy)(neN)and f : X — (Y, dy) be maps.

(1) Define “uniform convergence”: f, converge uniformly to f on X if...

(2) OnthesetY* = {f: X — Y : fisany map}, define

) B dy (f(z),9(x))
d(f,g) = i‘el)lz 1 +Ydy(f(x),g($))'

@ Prove: d is a metric on YX.

@ Prove: f, converge to f uniformly if and only if as elements in the metric space (Y*,d), f,

converge to f.

(3) Suppose (X,dx) is also a metric space, and f,, are continuous maps that converge to f uniformly.

Prove: f is continuous.

Proof (1) A sequence of functions (f,,) converges uniformly to a limiting function f on X if given
any arbitrarily small positive number ¢, a number N can be found such that each of the functions

I, fn+1, [vye, - -+ differs from f by less than € at every point « € X, namely

dy (fr(z), f(z)) <e, VkE=N,zeX.

(2) @ disametricon Y since
o d(f,g) =0andd(f,g) =0 < dy(f(z),g(z)) =0forallz € X +— f=g.
o d(f,g) = d(g, f) since dy (f(x), g(x)) = dy (g(x), f(x)) forall z € X.

o Since p(t) = 145 is a metric-preserving function by Problem 6 (1), we have

dy (f(2),h(z)) _dv(f(x).g(z))  _dv(g(x),h(z))
L+ dy (f(z), Mx)) ~ 1+dy(f(2),9(x)) 1+ dy(g(z), h(z))

for all z € X. Taking the supremum over z € X gives

, (o) | dvhh@) Y o
a0 < sup (T T T hata ity < A0+ do



@ (=) If f,, = f, then for any € > 0 there exists NV € N such that

sup dy (fn(z), f(z)) < g Vn > N.

reX
Since the function (t) = I%Lt is increasing on [0, +00), we have
dy (fn(z), 5
Y(f (Z‘) f(x)) < 2 E < E’ Vn > N
+E002

forallz € X. Then d(f,, f) < § <eforalln > N, hence f, — fin (Y, d).

(«<) If f, — fin (Y™, d), then for any ¢ € (0, 1) there exists N € N such that
Vn > N.

)

IR

d(fa, f) <

Therefore
dy (fn(), f(z)) < £
L4 dy (fulz), f(z)) 2

for all x € X and n > NN, which implies

dY(fn(x)af(x)) < 1—¢
2

forallz € X and n > N. Hence f,, = f on X.
(3) For any € > 0, since the sequence of functions (f,,) converges uniformly to f, there exists N € N
vt e X.

such that
dy (fn (1), f(t)) < 3,
Moreover, since f is continuous on X, for every « € X there exists an open neighborhood U such

that
dy (fn(z), fn(y)) < %, Yy € U.

Now the triangle inequality gives

=e, WYyeU.
O

Hence f is continuous at every point z € X.

PSet 2, Part 1

Problem 9 (The Sorgenfrey line) On the set X = R, define
Toorgentrey = {U CR:Vz € U, e > 0s.t. [z, 2 +¢) CU}.

(1) Check: Fsorgentrey is a topology.
(2) Prove: every left-closed-right-open interval [a, b) is both open and closed.
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(3) Prove: every open interval (a, ) is still open with respect to Fsorgentrey-
(4) Show that there is no metric d on R such that J5ogenrey is the metric topology 7.

Proof (1) @ Clearly 9,R € J5orgentrey-

@ If {Us : @ € A} C Foorgentrey, then for any x € U U,, there exists A € A such thatz € Uy, and
aEA
hence there exists ¢ > 0 such that [z,z +¢) C Uy C U U,. Therefore U Ua € Jsorgentrey-
a€eA aEN

® If Uy, Uz € Tsorgentrey, then for any x € Uy N Uy, there exist €1, &2 > 0 such that [z, 2 +¢1) C Uy
and [z, z + €2) C Us. Lete = min{eq,e2} > 0, then [z, 2 + &) C Uy N Us. Therefore U3 N U, €

%orgenfrey-
(2) @ Forany z € [a,b), since e = b — x > 0 satisfies [z, 2 + ¢) C [a, b), we see that [a, D) is open.
@ Forany z ¢ [a,b), if x < a, thene = a — x > 0 satisfies [z, z + ) N [a,b) = @; if x > ], then
e = 1> 0 satisfies [z, z +¢) N [a, b) = &. Therefore [a, ) is closed.

(3) Forany z € (a,b), since e = b — x > 0 satisfies [z, z + ¢) C (a,b), we see that (a, b) is open.

(4) Suppose that (R, Zorgentrey) is a metrizable space and let d be a metric on R inducing the topology
Tsorgentrey- FOTr €ach = € R, since the interval [z, z + 1) is open by (2), we can choose ¢, > 0 such
that By(z,e,) C [#,2 +1). Foreachn € N, let M,, = {z € R: ¢, > 1 }. For distinct z, y € M,, with
x < y, we have

Ba(y, ) € Baly.ey) C ly.y + 1),

and since z ¢ [y,y + 1), we get = ¢ By(y, 1). Thus

: (9-1)

3=

d(z,y) >

On the other hand, by the definition of Zsorgentrey, for each = € M, there exists > 0 such that
[z,z+n) CBy(z, 5). Letr, € QN [z, z + n), then

) 2n

d(z,ry) < % (9-2)

From (9-1) and (9-2), we see that for distinct z,y € M, the corresponding 7, r, are distinct.

Now the coutability of Q implies that M, is countable for each » € N, and hence R = U M, is

neN
countable, which is a contradiction. O

Problem 10 (“Uniform continuity” is not a topological conception) Let (X,dx) and (Y, dy) be met-
ric spaces. We say amap f : (X,dx) — (Y, dy) is uniformly continuous if

Ve >0,30 >0, s.t.dx(x1,22) <d = dy(f(z1), f(z2)) <e.
(1) Prove: dy(z,y) == |arctan(z) — arctan(y)| is a metric on R.

(2) Prove: the metric dy and the absolute value metric d(z,y) = |x — y| on R are topologically equiva-
lent. Are they strongly equivalent?
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(4)

11

Let f : R — R be the identity map, i.e., f(z) = 2. Is f : (R,d) — (R, do) uniformly continuous? Is
f:(R,do) — (R, d)uniformly continuous? Conclude that “uniform continuity” is not a topological

conception.

Is “uniform continuity” preserved if we replace metrics dx, dy by strongly equivalent ones? Prove

your conclusion.

Proof (1) @ Clearlydy(z,y) > Oforallz,y € Rand the injectivity of arctan : R — (—%, Z) implies

(2)

3)

(4)

do(z,y) = 0if and only if x = y.
@ Forall z,y € R, do(z,y) = |arctan(x) — arctan(y)| = |arctan(y) — arctan(z)| = do(y, z).

® Forall z,y,z € R,

do(z, z) = |arctan(z) — arctan(z)| < |arctan(x) — arctan(y)| + |arctan(y) — arctan(z)|

= do(x,y) +do(y, 2)-

Since the map

™ T
fan: R (-1.7)

arctan 53
is a homeomorphism, every open ball in (R, dy) is contained in some open ball in (R, d) and vice
versa. Therefore the metrics dy and d are topologically equivalent. However, since dy is bounded

and d is not, they are not strongly equivalent.
The mean value theorem implies that for all z,y € R,
larctan(z) — arctan(y)| < |z — ¥,

which shows that f : (R,d) — (R, do) is uniformly continuous. On the other hand, we also have

1 n—oQ

1+ n?

larctan(n + 1) — arctan(n)| <

Hence for any ¢ > 0, there exists n € N such that dy(n + 1,n) = |arctan(n + 1) — arctan(n)| < 9,
butd(n + 1,n) = |(n + 1) — n| = 1. Therefore f : (R, dy) — (R, d) is not uniformly continuous.
From this fact and (2) we conclude that “uniform continuity” is not a topological conception.

Suppose dx and d'y are two strongly equivalent metrics on X and dy and dy are two strongly

equivalent metrics on Y, namely
dx < Cdy, dy < Kdy.

for some C, K > 0. If f : (X,dx) — (Y,dy) is uniformly continuous, then for any ¢ > 0, there
exists § > 0 such that dx (x1,z2) < ¢ implies dy (f(z1), f(x2)) < €. Now for any z1,z, € X with

d'y(z1,19) < %, we have dx (71, 22) < Cd'x (21, 72) < §, and then

dy (f(z1), f(22)) < Kdy (f(z1), f(22)) < Ke.

Therefore f : (X,d) — (Y, dy ) is uniformly continuous, which shows that “uniform continuity”
is preserved by strongly equivalent metrics. O
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Problem 11 (Equivalence of neighborhoods axioms and open sets axioms)

(1) Given a neighborhood structure .4 on X, one can define
T ={UcCcX:UcecN(x)foranyz € U}.

Check: 7 is a topology on X, i.e., it satisfies (01)-(O3).

(2) Given a topology 7 on X, one can define, for any z € X,
N(x)={NCX:3U e IstaxecUandU C N}.

Check: .1 is a neighborhood structure on X, i.e., it satisfies (N1)-(IN4).

(3) You may have noticed that in part (1), you used only (N1)-(N3). Can we conclude that the set of
axioms (N1)-(N3) is equivalent to the set of axioms (O01)-(03)?

(4) Prove: the set of axioms (N1)-(N4) is equivalent to the set of axioms (01)-(03). Namely, the

processes 7 ~» A" and A4~ J described above are inverse to each other.
Proof (1) By definition, U C X is open iff and only if U = Int(U).
(O1) The relation Int @ C @ implies that Int @ = &; thus @ € 7. If z € X, then z has at least one
neighborhood N; but N C X and so X is a neighborhood of z by (N2). Thus X € .7.

(02) ForU,V € 7,itUNV = @, thenitis open. If it is not empty, letz € UNV. Then U and V are
both neighborhoods of z, and hence U NV is a neighborhood of « by (N3). ThusUNV € 7.

(O3) Suppose {U, : @« € A} C T andletU = U U,. If U is empty, then it is open. If not, let

aEA
x € U. Then z € U, for some A € A, and U,, being open, is a neighborhood of z. But Uy C U.

So U is also a neighborhood of by (N2).
(2) X € #(z)forallz € X, hence .4 (x) # @.

(N1) If N € A (x), then there exists U € 7 such thatz € U C N.

(N2) If M D N and N € A (x), then there exists U € Z such thatz €¢ U C N C M. Thus
M e A (x).

(N3) If N1, Ny € A (z), then there exist Uy, Us € J such thatx € Uy C Ny and z € Uy C Ns. Let
U=UiNUy thenU € 7 by (02) and x € U C N1 N Na. Thus Ny N Ny € A ().

(N4) If N € 4 (x), then there exists U € 7 such that x € U C N, and by definition U € A4 (x).
Moreover, for any y € U, fromy € U C N we see that N € A (y).

(3) No, since we have not shown that the above two processes are inverse to each other. A counterex-
ample is given below. Let X = {0,1,2} and

’/V(O) = {{Ov 1}’X}’ '/V(l) = {{172}>X}7 /(2) = {{1’2}’X}'

Then one can verify that (N1), (N2) and (N3) are satisfied, while (N4) is not, since {0, 1} € .47(0)
but there is no neighborhood M of 0 such that M C {0,1} and {0,1} € A4 (y) forall y € M. In this

1) 2)
example, the 4/ — .7 — 4 process yields

T ={2,{1,2}, X},
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A0) ={X}, (1) = {12}, X}, A7(2) = {{1,2}, X}.
Clearly .#" # .4, and hence (N1)-(N3) are not equivalent to (O1)-(O3).

M @)
(4) © Letusshow first that 4/ —> 7 — 4. Let .4 be a neighborhood structure on X.

o Let us prove first the inclusion A (7 (A)) C A". Let V € A3(T(A)) for some z € X.
By definition in (2), there exists U € .7 (/) such that x € U C V. By definition in (1),
Ue A(y)forally € U. Since V D U, wehave V € 4 (y) by (N2) for eachy € U. In
particular, V' € A (z). Therefore A (T (A)) C N .

o Conversely, let V € .4, for some x € X. Define
U={yeX:VeN(y}

Then z € U and by (N1) U C V. By (N4) for each y € U there exists a neighborhood W
of y such that V' is a neighborhood for each point of W. Hence W C U. In other words,
each point of U has a neighborhood contained in U. Therefore U € .7 (/") and then
Ve N(T(AN)). Thus N C N (T(N)).
2 1)
@ Now we shall show that .7 — 4" — 7. Let 7 be a topology on X.

o Let us prove first the inclusion 7 C J(A(7)). Let U € 7, then by definition in (2)
U e A4 (x)forall z € U, whichmeans U € (A (7)). Therefore 7 C T (N (T)).
o Conversely, letU € 7 (A4(7)), then U is the neighborhood of each point in .4 (.7). This

means that thee exists V,, € . foreach x € U such thatz € V, C U. ThenU = U V. €
zeU

T by (03). Therefore 7 (A (T)) C . O

Problem 12 (Furstenberg’s topological proof of the infinitude of primes) Foranya,b € Zwithd >0
we define
Nop:={a+nb:neZ}.

(1) Define a topology on Z by
Frurs = {U C Z: eitherU = @, orVa € U, 3b € Zsgs.t. Ny, C U}

® Prove: Jgyrs is a topology on Z.
@ Prove: each N, is open.
® Prove: each N, is closed.

@ Let & = {2,3,- -} be the set of all prime numbers. Prove:

Z\{1,-1} = |J No,-

peEP

® Conclude that &2 is not a finite set.

(2) Define a functiond : Z x Z — R by
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where 7(a — b) is the smallest positive integer that does not divide a — b.

@ Prove: d is a metric on Z.
@ Describe the metric balls B(a, ).
® Show that the metric topology generated by d is the topology Jurs above.

Proof (1) © Itis clear that @,Z € Jgus. If U,V € Fhus (We may assume both U and V' are
nonempty), then for any ¢ € U NV, there exist b1,by € Zs such that N,;, C U and
Nap, C V. Letb = biby € Zso, then Ny, C U NV, which shows that U NV € Ty, If

{Us : @ € A} C Fpyrs, then for any a € U U,, there exists A € A such that a € U, and hence
aEA
there exists b € Z~ such that N, ;, C Uy C U U,,. Therefore U Uy € Trurs.
a€EA acA

@ Forany a’ = a+nb € Ny, setb =b € Zwg, then Ny yy = {a+nb+mb: m € Z} = Ny,
Therefore N, ; is open.

b—1
® Note that N, , = Z\ U Ng+ip, then by @ we see that N, ; is closed.
i=1
@ |J Nop=Jpz=2\{1,-1}.
peEP peEP
® If Z is finite, then U Ny is a finite union of closed sets, which is closed. Then {1, -1} =
peP
7\ U Ny, is open. However, for 1 € {1,—1}, there exists no b € Z~( such that Ny, =
peEP

{1+nb:neZ} C{l,—1}, which is a contradiction. Therefore & is not a finite set.

(2) @ Itis clear that d(a,b) > Oforall a,b € Z and d(a,b) = 0 if and only if a = b. Since 7(a — b) =
7(b—a) for any distinct a, b € Z, we have d(a, b) = d(b, a) for all a,b € Z. For distinct a, b, c € Z,
suppose T(a —b) =m > 2,7(b—c) =n > 2,and let k = min{m,n} > 2. Then1,--- ,k—1all
divide @ — b and b — ¢, and hence devide a — c. Therefore 7(a — ¢) > k, and

d(a,c) = 27Te=e) L gmmin{mn} < 9=m 4L 9=n — (g b) + d(b,c).

log 1
® Since r(a 1) > 2fora £y i67 > 1 then Blar) = 257 < 1 then 7(a ) > 182 and
log % .
B(a,r) =qb€Z:1,---, L | all devidea — b ;. (12-1)
log 2

&) Forany U € J5us\{@} and a € U, by the definition of Fgys, there exists b € Z~¢
such that N, , C U. Letr = 27 then

B(a,r)={c€Z:1,--- ,ball devidea — c}.

In particular, b | (c—a) for all ¢ € B(a, ), which implies B(a,r) C N, C U. ThusU € .7,
and hence 5ys C Jy.

Forany V € 9, \ {@} and a € V, there exists r > 0 such that B(a,r) C V. Set

log L
b= L(c)E;J' then from (12-1) we see that N, x1 C B(a,r) C V. Hence V' € Jpurs, and

thus 9 C Jrurs. O
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PSet 2, Part 2

Problem 13 (Subspace topology) Given any topological space (X, 7) and any subspace A C X, define
the subspace topology on Y to be
Ta={UNA:Ue€Tx}

Prove:
(1) Taisatopology on A.

(2) Suppose B C A C X, then “the subspace topology 75 on B (view B as a subset in (X, 7x))”
coincides with “the subspace topology Ts on B (view B as a subset in (4, T4))".

(3) Theinclusionmap ¢ : (A4, 7Ta) — (X, Tx) is continuous. Moreover, the subspace topology 74 is the
weakest topology on A so that the inclusion map is continuous.

(4) If f: (X,7Tx) — (Y, Ty) is continuous, then f|4 : (4, T4) — (Y, Ty) is continuous.
(5) Amapg: (Y,Ty) — (A, Ta) is continuous if and only if 1 0 g : (Y, Ty') — (X, Tx ) is continuous.

Proof (1) ©® gnNA=@and XNA=Aimply @,A € Ta.

(@) va1,‘/2 € Ta,letU;,Uy € Tx suchthat Vi = Uy NAand Vo = U NA. ThenU, NU, € T
implies VinVv, = (UlmA)ﬂ(UzﬂA) = (Ul ﬂUg)ﬂAG'TA.

@ If{Vy:ae A} CTalet{U,: o€ A} C Tx such that V,, = U, N A for each a € A. Then

U U, € T implies U V, = U(UaﬂA): (U Ua> NAE€Ta.

aEN a€EA aEA aEA

(2) |Ts C ’E; For any V' € Tp, there exists U € 7 such that V = U N B. Since B C A C X, we have
V = (UNA) N B, which implies V € Tpas U N A € Ta.

ﬁ; C Tg| Forany W ¢ 7A'EJ;, there exists V € T4 such that W = V N B. Since V = U N A for some
UeT,wehave W =(UNANB=UNB e Tg.

(3) For any open set U C X, we have : *(U) = U N A € T4. Hence ¢ is continuous. For the inclusion
map A — X to be continuous, U N A must be open in A for each U € T, which means T4 is the
weakest topology on A so that the inclusion map is continuous.

(4) Since f|a = f o is the composition of continuous maps, it is continuous.

(5) (<) Supposetog: (Y,Ty) — (X, Tx) is continuous. If U is any open subset of 4, there is an open
subset V C X such that U = ANV =:~*(V). Thus

g U) =g (THV)) = (Log)TH(V),

which is open in Y by our continuity assumption. This proves that f is continuous.

(=) Suppose that g : (Y,7y) — (A, T4) is continuous. For any open subset V' C X, we have
(Log) ' (V) =g~ (71 (V) =g~ (ANV),

which is open in Y since ANV is open in 4, so ¢ o g is continuous as well. O
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Problem 14 (Convergence v.s. continuity) On the set N, = N U {c0}, define
Too = {A: A C Nor ACis a finite subset in N}.

(1) Show that 75 is a topology on N.

(2) Let (x,,) be a sequence in a topological space (X,7), and 2y € X. Define amap f : Nooc — X by
f(n) =z, and f(co0) = zy. Prove: x,, — zoin T ifand only if f : (No, 7o) — (X, T) is continuous.

Proof (1) @ Since @ C Nand NS = &, we have &, N, € Tx.

@ Suppose U,V € 7. If either U or V is a subset of N, then so is U N V. Otherwise, both U*¢
and V¢ are finite subsets in N, so (U NV)¢ = U°U V¢ is also finite in N. In either case we have
unv e 7.

® Suppose {U, : a € A} C T. If all U, are subsets of N, then so is their union. Otherwise,

C
there exists A € A such that U5 is a finite subset in N. Then < U Ua> C Uy is also a finite
a€A

subset in N. In either case we have U Uy € Too-
acA
(2) (=) Suppose x,, — z¢ in T and U is any open subset of X. If 2y ¢ U, then f~'(U) C N is open
in Ng. If zy € U, from z,, — xo we know there exists N € N such that z,, € U foralln > N.
Thus (f _1(U))C consists of at most IV elements of N and is open in N. In either case f is

continuous.

(<) If f: (N, T) — (X, T) is continuous, then for any open subset U C X containing x( we
have f~!(U) € Ta. Since oo € f~1(U), we have f~'(U)® is a finite subset in N. This implies
that x,, € U for all n sufficiently large, so z,, — xo. O

Problem 15 (Topologies for various continuity)
(1) (Right continuity) Endow R with the Sorgenfrey topology.

@ Explore the meaning of convergence in (R, Zorgenrey )-

@ Recall that a function f : R — R is right continuous if lim+ f(zn) = f(zo). Prove: a function
Tp—>Tg

f + R — R is right continuous if and only if the map f : (R, ,%Orgenfrey) = (R, Tysual) is
continuous. So people also call Sorgenfrey topology the right continuous topology.

(2) (Upper semi-continuity) Let (X, 7) be any topological space. We say a function f : X — R us
upper semi-continuous at a point xy € X if for any € > 0, there exists a neighborhood U of z such
that f(z) < f(xo) + € holds for all z € U, and we say f is an upper semi-continuous function if it is

upper semi-continuous everywhere.
@ Construct a topology Z;sc. on R so that a function f : X — R is upper semi-continuous if
and only if f : (X, 7) = (R, Zisc.) is continuous.

@ For which set A C X, the characteristic function x 4(x) defined by “xa(z) = 1 for z € A and

xa(x) =0forz ¢ A” is upper semi-continuous?

® Extend Z,s.. to be a topology on R = R U {£o0}, and prove: given any family of upper

semi-continuous functions f,, the infimum f = inf f, is upper semi-continuous.
(&3
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Proof (1) ®© By Problem 9 (2), every left-closed-right-open interval [a, b) is open with respect to
Forgentrey- I Tn, — 20 N (R, Toorgentrey ), then for any e > 0, since [z, zo + €) is an open and
contains x, it must contain all but finitely many z,,. Conversely, if for every ¢ > 0, there exists
N € Nsuch that z,, € [zg,z9 + ¢) for all n > N, then for any open set U containing z,, by
the definition of F5orgentrey We can choose ey > 0 such that [x¢, o +€9) C U. Thus x,, € U for
all sufficiently large n. Therefore a sequence {z,, },—, converges to z in (]R, %orgenﬁey) if and

only if it “approaches z, from the right”.

@ (=) Suppose f : R — R is right continuous and U is any open subset of (R, Fsua1). For
any xg € f _1(U), since f : R — R is right continuous at x, there exists ¢ > 0 such that
f(z) € Uforallz € [xq, 20 +¢),i.e., [z0, 20 +¢€) C fH(U). Therefore f~1(U) € FSorgentrey
which means f is continuous.
(<) Suppose the map f : (R, %orgenfrey) — (R, ysual) is continuous. For any zp € R and
e > 0,since f'((zg — g,z0 +¢)) is open in (R, %Orgenfrey), there exists § > 0 such that
(20,20 +6) C f~'((zo — €,20 + €)). Thus x,, — x{ implies f(z,) — f(z0) in (R, Tusual),
ie., f:R — Ris right continuous.

(2) @ Define
Fase. = {9 U{R}U{(—00,a) : a € R}.

Let us check that .7 s . is a topology on R:

o By definition @, R € F 5.
o LetU,V € Yysc. Ifoneof U,V is @ or R, thenitis clear that UNV € 7, 5... Otherwise, let
U= (—00,a)and V = (—o0,b) forsome a,b € R. ThenUNV = (—oo, min{a, b}) € Fsc.-
o Suppose {U, : o € A} C Fsc. It suffices to consider the case where all U, are of the
form (—o0,a4) (aq € R). Leta = sup{a, : @« € A}. If a = 00, then U Us=R€ Fse.-
aEN
If a € R, then U Uy, = (—00,a) € Fyse.
a€EAN
Now we shall show that a function f : X — R is upper semi-continuous if and only if f :

(X, 7) = (R, Zys..) is continuous.

(=) Let f : X — R be upper semi-continuous and U be any open subset of (R, Zsc). If
U = @ orR, then f~!(U) is open in X. Otherwise, let U = (—o0,a) for some a € R.
For any zy € f ~1(U), we have f(zy) < a. Since f is upper semi-continuous at o, for
€= %@0) > 0 there exists a neighborhood V' of zy such that f(z) < f(z¢) +¢ < a
forallz € V. Hence V C f~!(U) and then f : (X,.7) — (R, Zs..) is continuous at .
Therefore f : (X, 7) — (R, %) is continuous.

(<) Suppose f : (X,7) = (R, Zsc) is continuous. For any zp € X and ¢ > 0, since
fH((—o0, f(x0)+¢)) is openin X and contains g, it follows by definition that f is upper

semi-continuous at xg.

@ Letxzg € X. If 29 € A, then xa(z9) = 1 and obviously f(z) < f(zo) + ¢ forany z € X
and € > 0, which means y 4(x) is upper semi-continuous at zo. If zo ¢ A, then x4(z¢) =0
and the upper semi-continuity of x 4(z) at xy implies that there exists a neighborhood U of
xo such that xy4(z) = Oforallz € U,ie, UNA = @. This shows that A® is open, so A is
closed. Conversely, if A is closed, then the same argument shows that x 4 (z) is upper semi-

continuous.
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@ Let

—_~—

Fase. ={AUB: A€ Zsc,B =0, {+o0}, {—o0}, {£o0}}.

Then it is immediate that EU\;: defines a topology on R and is an extension of 7, .. For
any xo € x and € > 0, by the definition of pointwise infimum, there exists A € A such that
In(zo) < f(xo) 4 5. Since f is upper semi-continuous at x, there exists a neighborhood U
of 2¢ such that f(z) < fa(wo) + § forall z € U. It follows that

f@) < falw) < falwo) + 5 < flao) + 5 + 5 = flao) +
for all z € U. Therefore f is upper semi-continuous. O

Problem 16 (Pasting lemma) Let X,Y be topological spaces. Consideramap f: X — Y.

(1) Suppose X = A U B, where A, B are both closed subsets in X. Suppose f|4 : A — Y and
flB : B =Y are continuous. Prove: f : X — Y is continuous.

(2) Show that the same result fails for X = U A,,, where each A,, is closed in X.
n=1
(3) Let A, be a family of closed subsets in X with X = U Aq, and suppose the family is locally finite,
«
i.e., each point p € X has a neighborhood U, that intersects finitely many A,’s. Prove: if each f|4,,
is continuous, then f is continuous.
(4) Prove: if X = U U,, where each U,, is openin X, and if each f|y, : U, — Y is continuous, then f

is continuous.

Proof (1) It suffices to show that the preimage of each closed subset K C Y is closed in X. Since
FHE)NA = (fla) "(K)is closed in Aand f~'(K) N B = (f|g) ' (K) is closed in B, and A, B
are both closed in X, these two preimages are both closed in X. It follows that

F7HE) = FTHE)N (AU B) = (fla) T (E) U (flp) " (K)

is closed in X. Therefore f is continuous.

(2) Consider X = {0} U {1 : n € N} with the subspace topology inherited from R. Let A; = {0} and

Apir = {2} forn € N, then X = U A, and each A, is closed in X. Take f = x{o}, then f is not
n=1
continuous at 0. However, f| 4, is continuous for each n € NU {0}.

(3) Givenz € X there is a neighborhood U, of z such that U, (we can choose U, to be open) intersects
only finitely many A,’s, say Ay, -- , A,. Note that for each i = 1,--- ,n, U, N A; is closed in U,.
n
Since U, = U (Uz N A;) and each f|y,na4, is continuous, an inductive version of (1) shows that
i=1

flu, is continuous. Then X = U U, where each U, is open in X and each f|y, is continuous, so

zeX
f is continuous by (4).

(4) Let V C Y be any open subset. Any point z € f~!(V) has an open neighborhood U, on which f
is continuous. Continuity of f|y;, implies, in particular, that (f|r;,)~*(V) is an open subset of U,
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and is therefore also an open subset of X. Then

(flo) ' (V) ={y € Us: f(x) eV} = fH(V)NT,

is an open neighborhood of = contained in f~(V), hence f~!(V) is open in X. Therefore f is
continuous. O

PSet 3, Part 1

Problem 17 (Basis v.s. subset/product topologies)

(1) Let (X, 7x) be a topological space, and B a basis of 7. Let A C X be a subset, with subspace
topology Ta. Prove: B4 :== {AN B : B € B} is a basis of T4.

(2) Let (X, 7x) and (Y, Tv) be topological spaces, with basis Bx and By respectively. Prove: Bxxy =
{B1 x By : B1 € Bx, B, € By} is a basis for the product topology Tx xv-

(3) Let 71, 72 be topologies on X, and B1, B2 bases that generate 77, 7 respectively. Prove: 7; is weaker
than 75 if and only if for any z € X and any B € B; that contains z, there exists B’ € By such that
x € B CB.

Proof (1) B C 7 implies By C T4. Forany U € T4 and z € U, there exists V' € 7T such that
U=VnNA.Sincex € V, thereexists B € Bsuchthatz €¢ BC V. Thenz€c ANBC ANV =U.
Therefore B4 is a basis of T4.

(2) Bx C Tx and By C Ty imply Bxxy C Txxy. Forany U € Txxy and (z,y) € U, there exists
V € Tx and W € Ty such that (z,y) € V x W C U. Since x € U, there exists B; € Bx such that
x € By C V. Similarly there exists B, € By such that y € B, C W. Then (z,y) € By x By C
V x W C U. Therefore Bx xy is a basis of Tx xy .

(3) («=) Forany U € T; and = € U, there exists B € By such that x € B C U. By assumption, there
exists B’ € By suchthatz € B’ ¢ B C U. Since B’ € T, U € T. Therefore 71 C Ts.

(=) If 1 C T3, then for any € X and any B € B; that contains z, since B € 71 C 7, there exists
B’ € By such that z € B’ C B. O

Problem 18 (Neighborhood basis) Let (X,7) be a topological space. Like a basis, we can define a
neighborhood basis of (X, T') as follows: a family B(z) C N (x) of neighborhoods of x is called a neighbor-
hood basis at x if for any A € N (z), there exists B € B(x) such that B C A.

(1) Express N (z) in terms of a neighborhood basis B(z).
(2) Show thatif B is a basis of T, then B(z) = {B € B : « € B} is a neighborhood basis at x.

(3) Write down a theorem that characterizes the continuity of a map f at a point « via neighborhood
basis, and prove your theorem.

(4) Define the concept “neighborhood sub-basis”, and write/prove a statement that “characterizes the

continuity of a map f at a point = via neighborhood sub-basis”.

Proof (1) N(z)={V C X:V D BforsomeB € B(z)}.
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(2) Clearly B(z) C N(x). For any A € N (x), there exists U € T such that z € U C A. Since B is
a basis of T, there exists B € Bsuch thatz € B C U C A (so B € B(z)). Therefore B(z) is a
neighborhood basis at x.

(3) Theorem Amap f : (X, Tx) — (Y, Ty) is continuous at x € X if and only if for any B € B(f(x)),
fY(B) is a neighborhood of x, where B(f(x)) is a neighborhood basis at f(x).

Proof The “only if” part is just the definition of continuity at x. For the “if” part, let N be a
neighborhood of f(z). By (1), there exists B € B(f(z)) such that B C N. Then f~'(N) > f~!(B)
is a neighborhood of « by assumption. Hence f is continuous at x.

(4) A “neighborhood sub-basis” at x is a family S(z) C P(X) such that z € S for all S € S(z) and the
collection of all possible finite intersections of elements of S(z) forms a neighborhood basis at x,
namely

N@E)y={N:N=S5n---NS, forsome Sy, --,S, € S(x)}.

Theorem A map f : (X, Tx) — (Y,Ty) is continuous at x € X if and only if for any S € S(f(x)),
f1(8) is a neighborhood of x, where S(f(x)) is a neighborhood sub-basis at f(z).

Proof The “only if” part is trivial since S(f(z)) C N(f(z)). For the “if” part, let N be a neigh-
borhood of f(z), then N = S;n---N S, for some Sy, --,S5, € S(f(x)), and

FTHN) = 71 S NN 7 (Sm),

where each f7!(S;) is a neighborhood of x by assumption. Thus f~*(NN) is a neighborhood of z,
and f is continuous at z. O

Problem 19 (Product topology and product metrics) Let (X,dx) and (Y, dy) be metric spaces. En-
dow X x Y with the product metric

[dx (z1,22)? + dY(yl>y2)p]%7 I1<p <o,
max{dx (x1,x2),dy(y1,y2)}, p=o00.

dg?)xy((xhyﬁ, (x2,y2)) = {

Prove:

(1) IfUisopenin (X,dx), Visopenin (Y,dy), then U x V is open in (X XY, dg?';)y).

(2) W is an open set in (X xY, dg?ox)y) if and only if for any (z,y) € W, there exists » > 0 such that
B(x,r) x B(y,r) C W.

(3) Prove the same conclusion for 1 < p < oo.

So “the metric topology of the product metric” = “the product topology of the metric topologies”.

Proof (1) For any (z,y) € U x V, there exists r; > 0 such that B(z,r;) C U and r2 > 0 such that
B(y,r2) C V. Let r = min{ry, 75}, then BS, (2, y),7) C B(x,71) x B(y,r2) C U x V. Therefore
U x Vis open in (X XY, dg?‘;)y).

(2) It suffices to note that BEY, ((2,), ) = B(z,r) x B(y,r).
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(3) @ Suppose U is openin (X, dx) and V is open in (Y,dy). For any (z,y) € U x V, there exists
r1 > 0 such that B(x,r;) C U and r2 > 0 such that B(y,r2) C V. Let r = min{ry, 2}, then

dx (z,%) <dP., ((x,y), @ 9) <r<r, dy(y,7) <dP(z,y),(#7) <r <

forall (z,9) € ]B%g’())xy((x, y),r). Hence U x V is open in (X xY, dg’())xy).

@ If W is open in (X xY, dg?)xy>, then for any (z, y) € W, there exists 7y > 0 such that

BY. v ((2,9),70) C W.

Choose r > 0 such that r < 2~ rg, then for any (Z,9) € B(z,7) x B(y,7),
[dx (2, )P + dy (y,§)"]7 < (2rP)7 = 2771 < 7.

Therefore B(z,r) x B(y,r) C W.

® Suppose W C X xY and forany (z,y) € W, there exists > 0 such thatB(z, r) xB(y,r) C W.
Then by @ B(z,r) x B(y,r) is an open set in (X xY, dg‘?)xy) that contains (x,y), thus W is

open in (X XY, dg?)xy). [
Problem 20 (Various topologies on R") Consider the space of sequences of real numbers
X =RN = {(z1,23,---) : x, € R}.

On X we have defined three topologies: the box topology Zx, the product topology Fproduct, and the

“uniform topology” Finiform induced from the uniform metric

duniform((xn)v (yn)) = sup min{|xn - ynlv 1}
neN

(1) Prove: f%roduet - %niform C f%ox-

(2) One can also regard every element (z1, z,---) in X as a map
N>R, n—x,

and thus identify X with the space of maps M (N, R). By this way we get the pointwise convergence
topology 7. on X. Prove 7,c. = Jproduct-

(3) Fix two elements (a1, aq,---) and (b1, be,- -+ ) in X, and define a map
f:)(—>)(7 (xl,x2,~-)»—>(a1x1+b1,a2$2+b2,---).

Prove that if we endow X with the product topology, then f is continuous.

(4) If we endow X with the box topology, is f continuous?

Proof (1) ‘ Fproduct C Finiform ‘ For any U € product and any (z,,) € U, by the definition of product

topology, there exists open sets Uy, - - - , Uy, C R such that

(xp) €Uy X -+ X Up xRxRx---CU.
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For each U;, there exists r; > 0 such that B(z;,r;) C U;. Let r = min{ry,--- , 7,1} > 0, then
Buniform((Zn),7) CUL X -+ X Upy x RX R--- C U.

Therefore U € Fniform-

Faniform C Jbox | For any U € Fniform and (x,,) € U, there exists r € (0, 1) such that

IB%uniforrn((fzf‘n% T) cU.

Then

<7]30)( > H]E(xw 75) - Buniform((xn)vr) cu.
i€N

Hence U € Jo.

(2) For any U € J,. and (z,) € U, by the definition of pointwise convergence

topology, there exists ny,--- ,n,, € Nand € > 0 such that
w((@n);na, s nm;e) = {(yn) € X t |yn, — xn,| <&, V1<i<m} CU.
Now let
U B(zy,e), ifk =n, forsomei e {1, ---,m},
k =
R, otherwise.
Then

%roduct > H Uy = w((mn)§n1a te ,nm;g) cu
keN

Hence U € Zproduct-

Toroduct C Fpe. | Forany U € Fproduet and (z,,) € U, by the definition of product topology, there
exists open sets Uy, - - - , Uy, C R such that

(Xn) €U X+ X Up xRxRx---CU.
For each U;, there exists r; > 0 such that B(z;,r;) C U;. Lete = min{ry,--- , 7} > 0, then
w((zp);1,- - yme) CUL X - X Upy X RxR--- CU.

Therefore U € ...

(3) Forany U € Zproduct and (z,,) € f~1(U), let (y,) == f((zn)). By (2), there exists ny, -+ ,nj, € N
and ¢ > 0 such that

w((yn);nla'” 7nk;€) = {(Zn) €X: |an 7yni‘ <g, Vi = 1, 7k} cU.

Let

IBS(a:m, 6), ifk = n; for somei € {1,--- ,k} and a,, # 0,
Vi, = |an,

R, otherwise.
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Then for any (z,,) € H Vi € Fproduct, 1et (wy) = f((2,)), we have
kEN

[Wn; = Yn;| = [(@n; 20, +bn;) = (@, Tn; + bn,)| = |an, (20, —20,)| <6, Vi=1,--- k.

This shows that (z,,) € H Vi € fHw((yn);n1, -+ snuse)) © f7H(U). Therefore f~'(U) €
kEN
Fproduct, and thus f is continuous.

(4) Forany U € Jhoy and (z,,) € f~(U), there exists open sets {U,,}22_; in R such that

(yn) = f((xn)) S H Un cU.

neN

Fori e N, let
fiIR%R, 1"—)@11'14-61

Then each f; is continuous, and then fi_l(Ui) is open in R. Hence H fi_l(Ui) € Jhox and
=

(wa) € [T 7 (W) C 71U,

i€N

Therefore f~(U) € Z4ox, and thus f is continuous. O

PSet 3, Part 2

Problem 21 (Induced and co-induced topologies)

(1) Let (Z,7z) be a topological space, and f : X — Y, g : Y — Z be maps. Let Ty be the induced
topology on Y by g. Prove: the induced topology on X by f (from 7y ) is the same as the induced
topology on X by g o f (from 7).

(2) State and prove a similar result on co-induced topology.
(3) Prove the universality for the co-induced topology.
Proof (1) Jpor={(g0f) ' (V):VeTz}={f o' (V):VeTz}={fU):UeTv} =7

(2) Proposition Let (X, Tx) be a topological space, and f : X — Y, g : Y — Z be maps. Let Ty be the
co-induced topology on 'Y by f. Prove: the co-induced topology on Z by g (from Ty ) is the same as the
co-induced topology on Z by g o f (from Tx).

Proof Using the construction of 73 we have

Ty={vez:g (V)eTv}={vVez: g (V) €T}
={VeZ:(gof) ' (V) eTx} = Tyoy-

(3) Proposition Let (X, ) be a family of topological spaces, and F = {f, : Xo — Y} be a family of
maps. Endow Y with the F-induced topology. Then a map f : Y — Z is continuous if and only if each
fofa:Xa — Zis continuous. Moreover, the co-induced topology on Y induced by F is the only topology
satisfying this property.
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Proof If fis continuous then clearly all functions f o f, are continuous. Conversely, suppose that
all f o f, are continuous. Let U C Z be an open set. Then (f o fo)""(U) = f;'(f~'(U)) is openin
X, for all a, which implies that £~ (U) is open in Y. Therefore f is continuous.

Denote the co-induced topology on Y by 7y . Suppose Ty is another topology on Y with the same
property, we shall show that 7y = Ty..

Let g : (Y,77) — (Y, 7y) be the identity map. Then (g0 fo) " L(U) = f2'(U) € F, for

all U € Ty and all o, which implies that g is continuous. Hence 7y C Ty..

Leth : (Y,Ty) — (Y, Ty) be the identity map, then h is automatically continuous.
Hence ho f, : (Xa, 7.) — (Y, Ty) is continuous for all a. But ho f, = f,, by the definition

of the co-induced topology, Ty C Ty . O

Problem 22 (Hawaiian earring) Prove that the Hawaiian earring

E= n[_jl{(x,y) eR?: <x— i)2+y2 = <;>2}

(o)
is not homeomorphic to the wedge sum \/ S! of countably many circles.

n=1

Proof The Hawaiian earring is compact since it is a bounded closed subset of R?. However, the wedge
sum of countably many circles is not compact. For example, one can choose an open cover of the wedge
sum where each circle S* is covered by an open set that does not include points far away from the wedge

point in other circles, then no finite number of these open sets can cover infinitely many circles. O
Problem 23 (Quotient map v.s. open/closed map)

(1) Supposep: X — Y is a surjective continuous map. Prove: if p is either open or closed, then it is a
quotient map.

(2) Construct a quotient map that is neither open nor closed.

(3) Let SO(n) be the special orthogonal group. Define a map
f:S0(n) = S" A Ae,

where e; = (0,---,0,1) is the “north pole vector” on snt.

@ Prove: f is surjective, continuous and open, and thus is a quotient map.

@ Consider the natural (right) action of SO(n — 1) on SO(n) by
B 0
B~A:A<O 1), VB € SO(n — 1), A € SO(n).

Prove: the orbits of this action are the fibers of the quotient map f.

® Conclude that SO(n)/SO(n — 1) ~ "1
Proof (1) It suffices to show that “A C Y is open/closed <= p~'(A) is open/closed in X”.

(=) Use the continuity of p.
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(<) Since p is open/closed and surjective, A = p(p~'(A)) is open/closed whenever p~'(A) is
open/closed.

(2) Let A= {(2,y) eR*:2 > 00ry =0} and ¢ : A — R be the projection on the first coordinate. We
shall show that ¢ is a quotient map but not open nor closed.

(Quotient map) Since q is continuous, it suffices to show that C' C R is closed if ¢~ *(C) is closed
in A. Suppose ¢~ *(C) is closed in A, and let C; :== C N Rxq, C— = C' N Rg,. Then
¢ (Cr) =q (O)n{(z,y) €R*: x>0}
is closed in R?, which implies that C'. is closed in R. Similarly,
g (Co)=q¢ " (C)n{(z,y) eR*:z < 0andy =0}

is closed in R?, which implies that C_ is closed in R. Therefore C' = C'; U C_ is closed in R.

(Not open) Consider U = {(z,y) € R*:0< z < 1,1 <y < 2}, then U is open in A but q(U) =
[0,1) is not open in R.
(Not closed) Consider C = {(z,y) € R* : 2 > 0,2y = 1}, then Cis closed in Abut ¢(C) = (0, +00)

is not closed in R.

(3) @ Foreach A € SO(n), Ae; is the n-th column of A, which implies that f is continuous. Since
for any v € S"~!, there exists A € SO(n) such that v is the n-th column of 4, f is surjective.
For any open set U C SO(n), f(U) is just the image of U under the projection map on the n-th
column, which is open in S"~*. Hence f is open.

@ By expanding A in block form, we see that

ABO . A1 as B 0 . AlB as
01'_a3a401_a33a47
hence the n-th column of A is preserved under the action of B € SO(n — 1). Conversely, for
any A € SO(n) with Ae; = Aey, there exists B € SO(n — 1) such that A = Adiag(B,1).

Therefore
Oy=f"1 (Aey)

for each A € SO(n). In other words, the orbits of this action are the fibers of f.

® The map f : SO(n) — S" ! induces an equivalence relation on SO(n), where A, L As if and
only if f(A;) = f(Az). From the surjectivity of f, we have the bijection

(som)/ &) ~1m(p) =",
But @ tells us that the fibers of f are just the orbits of the action of SO(n — 1) on SO(n), namely
(SO(n) / f’i) ~ SO(n)/SO(n — 1).
Therefore we find the bijection

©:50(n)/SO(n —1) — S" 1, [A] — Ae;.
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Breaking the bijection into two steps:

SO(n)/SO(n — 1) % SO(n) - s,

Since f : SO(n) — S™~! is continuous by @, the universality of the quotient topology tells us
that ¢ is continuous. Furthermore, the quotient topology on SO(n)/SO(n — 1) implies that g
is an open map. Also f is an open map by ©, hence ¢ = f o ¢ is an bijective continuous open
map, which is a homeomorphism. O

Problem 24 (Covering space action) Let G be a group acting on a topological space X. LetY = X /G
be the orbit space, and p : X — Y be the quotient map. Let U C X be an open set, such that

g-UNU=g, Vg#ecd.

Prove:

(1) V:=p(U)isanopensetinY.

1

(2) Forany g € G, themap p; =po7,:g  -U — V is a homeomorphism.

Proof (1) We need to prove that p~*(p(U)) is open in X. Note that the preimage of p(U) under p is
the union of the G-orbits of points in U:

p ) =g U= 0.

geG geG

Since for each g € G, 7,4 is a homeomorphism between U and 7,(U), the right-hand side is a union
of open sets, hence open in X. Therefore V' := p(U) is openin Y.

(2) (Injectivity) If py(x) = py(y) for some z,y € U, then there exists h € Gsuchthatg-z=h-(g-y).
This is equivalent to z = (g_lhg) -y, and then by our assumption g 'hg = ¢, i.e., hg = g and
h =e. Hence g - * = ¢ - y, which implies x = y.
(Surjectivity) Since 7, and p are both surjective, p, = p o 7, is surjective.
(Continuity) Since 7, and p are both continuous, p, = p o 7, is continuous.

(Inverse continuity) For any open set W C U, 7,(U) is open in X since 7, " = 7,1 is continuous.

Then by (1), p(74(U)) is open in Y. Therefore pg_1 is continuous. O

PSet 4, Part 1

Problem 25 (G5 sets) Let (X,7) be a topological space. A subset A C X us called Gs set if there

exists countably many open sets Uy, Us, - - - so that A = ﬂ Un,.

n=1

(1) Show that [0,1) is a G setin R.
(2) Show that any closed set in a metric space is a G set.

(3) Let (Y, d) be a metric space, and f : (X,T) — (Y,d) a map. Prove: “the set of points where f is
continuous” is a G5 setin X.
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Proof (1) [0,1) = ﬂ (—1,1) is a Gs set.
n=1

(2)

Suppose A is a closed set in a metric space X and let G,, = U B(a, 1), then each G,, is open. If

a€A
o0
T € ﬂ G, then there is some z,, € A such that d(z,,z) < % Then z,, — x, and since A is closed,
n=1 -
x € A. Therefore A = ﬂ G, is a Gs set.

n=1

The set of points where f is continuous is

n

{r€X :w(z)=0} = ﬁ{xeX:wf(£)<l},

n=1

where

we(z) =lm sup |f(z) — f(w)].
d N0 z,wEIBI()x,é)
If wy(z) < L, then for sufficiently small § > 0, we have

sup  |f(z)— f(w)] < =,

z,WEB(x,25) n

Since B(y, §) C B(x, 20) for y € B(z, §), this implies

1
wy(y) < "
for all y € B(z,d). Therefore each {z € X : wy(z) < 1} is open, and the set of points where f is

continuous is a G set. O

Problem 26 (“Sequentially continuous = continuous” for (Al) spaces) Let X be an (Al) space, Y

be any topological space. Prove: a map f : X — Y is continuous at x if and only if it is sequentially

continuous at x.

Proof The “only if” part holds for any topological space, so we only need to prove the “if” part. For
any closed subset C' C Y, to see that f~*(C) is closed in X, by the first countability of X, it suffices to

show that for any sequence (z,,) in f~*(C) that converges to xo, we have zo € f~*(C). By sequential
continuity, z,, — zo implies f(x,) — f(x), and since f(z,) € C and C is closed, we have f(z¢) € C.
Therefore z¢ € f _1(0), as desired. O

Problem 27 (Closedness for the derived set)

(1) Consider a set X = {a, b, c} of three elements. Let

T ={2,{a},{b,c},{a,b,c}}.

® Check: 7 is a topology on X.
@ Denote A = {b}. Find A’ and (A")'. Is A’ closed?

(2) Let (X, d) be a metric space. Prove: for any A C X, the derived set A’ is closed.
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(3) For a general topological space (X,.7),

® For any subsets A, B C X, prove: (AUB) = A" UB'.
® Prove: if A C X is closed, then A’ is closed.
® For any subset A C X, prove: (A') ¢ AU A
Proof (1) ® Wehaveo,X € 7,{a}U{b,c} ={a,b,c} € 7,and {a}N{b,c} =@ € 7 (unions or
intersections with @ or X are trivial to check).
@ A’ ={c}and (A')" = {b}. The derived set A’ is not closed since (4')° = {a,b} ¢ 7.
(2) It suffices to show that (A’)" € A’. Let z be a limit point of A’ and U be an open set containing z.
Then there is some y € U N (A" \ {z}). Now U is an open set containing y € A’, and since X is

a metric space, this means that U contains infinitely many points of A. To sum up, any open set
containing  contains infinitely many points of A, so z € A’. Therefore (A’)’ € A’, as desired.

(3) @ |A'UB c(AUB)

A C (AU B) implies A’ C (AU B)’, and similarly for B'.

’(AUB)’ cAUB
such that

Suppose ¢ A’ U B, then there exist open sets U4, Up containing x

Usn(A\{z}) =2, Usn(B\{z})=2.

Then
UanUp)N((AUB)\ {z}) =2.

Since U4 N Up is an open set containing z, this means = ¢ (AU B)".

@ Since A is closed, A = AU A’ and therefore A’ C A. For any z € X \ A’, since z in not a limit
point of A, there is some open set U containing = such that U N (A \ {z}) = @. From = ¢ A’
and A’ C Awehave A’ C A\ {z}, hence U N A’ = @. This shows that A’ is closed.

® Ifz ¢ AUA’, then there is an open set U containing = such that U N (A4 \ {z}) = @. And since
x ¢ A, this becomes U N A = @. Hence foranyy € U wehave UN (A\{y}) =UNA=g,
which implies y ¢ A’. To sum up, = has an open neighborhood U such that U N A" = &, so
x ¢ (A'). Therefore (A') c AUA'. O

Problem 28 (Convergence by net) We call (P, <) a directed set if
o (P, =) is a partially ordered set.

o For any a, § € P, there exists v € P such thata < yand 8 < ~.

For a topological space X, a net isamap f : (P, <) — X from a directed set (P, <) to X. We will use the
notation (z,,) instead of a map “f : a — x,” if there is no ambiguity. We say a net (z,,) converges to xo,
denoted by x, — o, if for any neighborhood U of x, there is an o € P such that 23 € U holds for any
a =< g.

(1) Realize NV (x) as a directed set. You need to carefully choose the partial order relation so that it can

be used in part (2) below.
(2) Prove: z € AU A’ if and only if there exists a net (z,) in A that converges to z.

(3) Prove: amap f : X — Y is continuous if and only if for any net (z,) in X which converges to a

limit xo, the net (f(z,)) in Y converges in Y to f(zo).
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Proof (1) N(z)canbe partially ordered by reverse inclusion, i.e., U < V iff V' C U. This is a directed
setsince forany U,V e N(z), UNV e N(z)and U <UNV,V <UNV.

(2) («=) Suppose (z,) is a net in A that converges to x. Then for any open set U containing z, by the
definition of convergence by net, it contains some z, € A. Thus z € A.

(=) Assume z € A. Forany U € N (), there exists zy € U N A by assumption. Then (21 )yen(z)
is a net in A. Moreover, for any neighborhood V of z, then x; € V for all U C V, that is, for
allU with V < U. Thus zy — =.

(3) (=) Assume f is continuous and let (x,) be anetin X converging to z¢. Let U be a neighborhood
of f(zo). Then f~!(U) is a neighborhood of z, so there exists a such that x5 € f~*(U) for all
B with a < §, so that f(zg) € U for all such 8. Thus f(zs) — f(x0).

(<) Suppose that f is not continuous. Then there exists U open in Y such that f~!(U) is not
open in X. Then there exists g € f~*(U) such that no neighborhood of x is contained in
f71(U),sothatzg € X\ f~1(U). It follows from part (2) that there is anet (z,,) in X \ f~(U)
converging to z. Asno point f(z,) belongs to U, it follows that the net (f(z,)) in Y does not
converge to f(zg) € U. O

PSet 4, Part 2

Problem 29 (Points and sets in subspace topology) Let (X, 7) be a topological spaceand Y C X a
subset, endowed with subspace topology. Let A C Y. We denote by A" the closure of A in Y etc. Find
the relation between each pair below: if they are equal, prove it; if one is contained in another but not
vice versa, prove the relation and provide a counterexample for the other.

(1) A" and A'~.

(2) A and A~

(3) 0¥ Aand 0¥ A.

(4) Int¥ (A) and Int™ (A).

Proof (1) Wehave A’ c A, or more specifically, A’ = A~ Ny.

AY ¢ <A’ *n Y) Ifz € X'¥, then x € Y. Moreover, for any neighborhood U of z in X, since

U NY is a neighborhood of z in Y, we have (UNY) N (A\ {z}) # @. As A C Y, thisis
equivalentto U N (A\ {z}) #9,s0x € Ay,

(A’ *n Y) c A | Ifz € A NY, for any neighborhood U of z in Y, there is some neighborhood

Vofzin X withU =VNY. Sincex € A'X,Vﬁ(A\{at}) # @, and therefore UN(A\{z}) # &
as ACY.Hencex € A",

Take X =R, Y = (0,1) and A = (0,1). Then A"~ =[0,1] and A"* = (0,1).

(2) From A" = Au A, ¥ = Au A%, and results in part (1), we have A=A ny.In particular,

A" ¢ A" The reverse inclusion does not hold by the same counterexample in part (1), where

A" =(0,1)and 4~ = [0, 1].
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(3) Itis always true that 9 A C 0~ A. To see this, let z € 9* A and U be an open set in X containing
z. Then U NY is openin Y, hence

G£UNY)NA=UnNA,
G£UNY)N(Y\A) cUNX\A).

Thus x € 0¥ A, and ¥ A ¢ 9% A. The reverse inclusion does not hold in general. Take X = R and
Y =A=(0,1). Then9¥A = {0,1} and 0¥ 4 = 2.

(4) By the relation between the interior and the closure, and using part (2), we have

IntY(A)zy\X\AX:Y\(YmmX) —Y\Y\4"

_ (X\mx> ny = (X\X\(AU(X\Y))X> ny
_ (X\mx) Y =t (AUYS)NY
5 (IntX(A)UIntX(YC)> ny

=Int*(A)NY = Int*(A).

The reverse inclusion does not hold in general. Take X =R, Y = A = [0, 1]. Then Int™ (4) = (0, 1)
and Int* (A) = [0,1]. O

Problem 30 (Closure and interior in box and product topology) Let X, be topological spaces, and
Ay C X, Consider the box topology Zhox and the product topology Zproduct On H Xa.

(1) With respect to which topology, do we always have H Ay = H AL?

(2) With respect to which topology, do we always have Int (H Aa> = H Int(A,)?

Solution (1) The equality holds for both F, and Fproduct-

H A, C H A, | Let (z4) be a point of H A,and U = H U, be a basis element for either the box

[e3

or product topology that contains (z, ). Since z, € A, and U, is an open neighborhood of z,

we can choose a point yo, € Uy N (Aq \ {24 }) for each a. Then (y,) € UN (H Aa\ {(xa)}> .

Since U is arbitrary, it follows that = € H Ag.

H A, C HTQ Suppose (z,) € H A, in either topology. For each given index 3, let V3 be an

arbitrary open set of X containing x. Since wgl (V) is open in H X, in either topology, it
[0}
contains a point (y,) € H Ay withyg # 5. Thenyg € VgN(Ag\ {xs}). Since V3 is arbitrary,

it follows that x5 € Ag.

(2) The equality holds for box topology.
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H Int(A,) C Int (H Aa> Since each Int(A,) is open in X,,, the inclusion holds.

Int (H Au> C H Int(A4,) | Let (z4) € Int <H Aa> , then for each « there is an open set U, C X,

containing z,, with
[Ivac Int(HAa> c [ Ao
This implies U, C A, for each «, hence U, C Int(A,) and (z,) € H Int(A,).

This equality fails for the product topology. Take X,, = R and A,, = (0,1) for each n € N. Then
H Int(4,,) = H (0,1). However, by the definition of product topology, this cannot be an open
n=1

n=1

set in H X,., and hence Int(H A,,,) #+ H Int(A,). O
n=1

n=1 n=1
Problem 31 (Closure of union of closed sets) Let (X,.7) be a topological space.
(1) Let A, B be subsets in X. Prove: AUB = AU B.

(2) Let A, be a family of subsets in X. Prove: U A, C U A,.

(3) Find an example so that U/Ta =+ U A, for a family of subsets 4, C R.

(4) We say a family {A,} of subsets in X is locally finite if for any « € X, there exists an open neigh-
borhood of U, of = so that A, N U, # @ for only finitely many o’s. Prove: if { A, } is a locally finite
family, then {A, } is a locally finite family, and U/Ta = U A,.

Proof (1) Since AU B is closed and contains both A and B, it contains A and B, hence their union.

The reverse inclusion follows since AUB C (AUB) = AUB.

(2) Ifx € U/Ta, then 2 € A for some 3. For any neighborhood U of z, U N (Ag \ {x}) # &, and hence
Uun (U Ao\ {x}) # ©@. Since U is arbitrary, this implies z € U Aq.

(3) Consider R with the standard topology and all singletons {r} for r € Q. Then U {r} = U {r} =
reQ reQ

Q, while U {r}=Q=R.
reQ

(4) For any z € X, since {A,} is locally finite, there exists an open neighborhood U, of = so that
A, NU, # @ for only finitely many a’s. Suppose Az N U, # @ for some 3, we shall show that
Ag NU, # @. If U, contains a point of Ag, then we are done. If U, contains a limit point of Ag,
then U, is a neighborhood of this limit point, and hence it must contain a point of Ag. This shows
that {4, } is locally finite.
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For the second part, by (2) it suffices to prove that U A, C U A,, and note that it is enough to

show that U/Ta is closed. Take any = ¢ U/Ta By local finiteness of {4,} (and then of {4,}),

there exists an open neighborhood U of = so that A, N U # @ for only finitely many «’s, say
ai,...,0n. Then
U=U\(As, U---UA,)

is an open neighborhood of z that does not intersect any A4, and contains x. Thus the complement
of U A, is open, i.e., U A, is closed, and the proof is complete. O

Problem 32 (Characterize continuity via interior)

(1) In class we proved

Amap f: X — Y between two topological spaces is continuous if and only if f(A) C f(A)
holds for any A C X.

Apply the idea of “open-closed” duality, write down the corresponding characterization of conti-
nuity of f via the interior operation, and then prove it.

(2) Show that f : X — Y is a closed map if and only if f(A) C f(A) holds for any A C X.
(3) Prove a similar property for open maps via interior.

Proof (1) We can characterize continuity of f via the interior operation as follows:

Proposition A map f: X — Y between two topological spaces is continuous if and only if
fH(Int(A)) C Int(f'(A))

holds forany A C Y.
Proof
(=) Suppose f is continuous and let p € f~*(Int(A)). Then f(p) € Int(A), hence there exists an

open neighborhood U of f(p) contained in A. By the continuity of f, f~*(U) C f~'(A) is
open in X and contains p, so p € Int(f~'(A)).

(«=) For any openset U C Y, we have

F7HU) = 71 Int(U) € Int(f7H(0)) € 71U,

Therefore f~'(U) = Int(f~'(U)) is open in X. Hence f is continuous.

(2) (=) If fis aclosed and A C X, then f(A) is closed in Y since A is closed in X. Therefore

f(A) C f(A) implies f(A) C f(A) = f(A).

(<) Suppose A C X is closed. Then f(A) C f(A) = f(A) C f(A), hence f(A) = f(A) is closed.
Therefore f is a closed map.

(3) We can characterize openness of a map in terms of interiors as follows:

Proposition A map f: X — Y between two topological spaces is open if and only if

S Int(4)) > Int(f(4))
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holds forany A C Y.
Proof

(=) Suppose f is open. Forany A C Y, Int f~'(A) is open in X, hence f(Int f~'(A)) is open in
Y. Also note that f(Int f~*(A)) C f(f'(4)) C A4, therefore f(Int f~'(A)) C Int(A), and
thus

Int f~*(4) C f~'(f(Int f~*(A4))) C f~*(Int(A)).

(<) Suppose U C X is open, then take A = f(U), so that
U=Int(U) CIntf1(f(U)) C f{Int f(U)).

Hence f(U) C f(f'(Intf(U))) C Intf(U), which implies f(U) = Int f(U) is openin Y.
Therefore f is an open map. O

PSet 5, Part 1

Problem 33 (Intersection of compact sets)

(1) Let X be a Hausdorff space. Prove: if K, are compact subsets of X, then ﬂ K, is a compact subset

[e3%

of X.
(2) Find an example: A, B are compact subsets of a topological space X, while A N B is non-compact.

Proof (1) Since every compact subset of a Hausdorff space is closed, each K|, is closed. Then ﬂ K,

is closed, and it is compact since it is a closed subset of a compact set (any fixed K3).

(2) Take R with the usual topology and add in two more points a and b. Declare the open sets to be
the usual open sets in R together with R U {a},R U {b} and R U {a,b}. Now A := RU {a} and
B := R U {b} are both compact, but AN B = R is not compact. O

Problem 34 (Compactness for the “upper semi-continuous” topology) In Problem 15 you are sup-
posed to construct the upper semi-continuous topology on R, and the solution is

Tnse. = {@} U{R} U {(—00,a) : a € R}.
(1) Is (R, Zys..) compact / sequentially compact?
(2) Describe all compact subsets in (R, Zs..).

(3) State a theorem called “the extremal value theorem for upper semi-continuous functions” and
prove it.

Proof (1) (R, Js.)isnon-compact since {(—oo,n) : n € N} is an open cover of R with no finite sub-
cover. Take the sequence xz,, = n, then it has no convergent subsequence, which means (R, Z;s..)
is not sequentially compact.

(2) Asubset A € (R, %5 )is compact if and only if it is @ or has a maximum.
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(<) If A has a maximum M, then for any open cover of A, there must exist an open set (—oc, a)
(a € RU{+0}) containing M, which does cover A.

(=) Suppose A # @ does not have a maximum and let M be the supremum of A.

o If M < oo, then {(—o0o, M — 1) : n € N} is an open cover of A, but it has no finite
subcover by the definition of supremum.

o If M = 400, then {(—o0,n) : n € N} is an open cover of A, but it has no finite subcover.

(3) Theorem Ifafunction f : (X, ) — Ris upper semi-continuous and K C X is compact, then f attains
its maximum on K.

Proof In Problem 15 (2) ® we proved that a function f from a topological space (X,.7) to R
is upper semi-continuous if and only if f : (X,.7) — (R, Jusc) is continuous. So if K C X is
compact, then f(K) is compact in (R, F 5. ), and by (2) we know that f(K) has a maximum. [

Problem 35 (Limit point compact) Let X be a topological space. If for any infinite subset S of X one
has S’ # @, then we say X is limit point compact.
(1) Consider the cofinite topology (X, Teofinite)- Is it limit point compact?

(2) Show that X = (N, Jiscrete) X (N, Jhivial) is not compact, not sequentially compact, but is limit
point compact.

(3) Prove: if X is compact or sequentially compact, then it is limit point compact.
(4) Show that any closed subset of a limit point compact space is limit point compact.
(5) Let X be limit point compact and f : X — Y be continuous. Is f(X) limit point compact?

Proof (1) If S C X is infinite, then for any = € X, the set S\ {z} is infinite, so U N (S \ {z}) # @
for any non-empty open set U C X. This means z is a limit point of S, and S’ = X. Therefore
(X, Jeofinite) is limit point compact.
(2)  © {{n} x N:n € N} is an open cover of X, but it has no finite subcover, so X is not compact.

@ Take the sequence z,, = (n, 1), then it has no convergent subsequence, which means X is not

sequentially compact.

@ For any non-empty subset S C X, take some (mg,ng) € S, then any (mg,n1) with ny # ng is
a limit point of S. Thus X is limit point compact.

(3) © Suppose X is compact, and S C X is any subset. Suppose X has no limit point, then S is
closed since S = SUS’ = S. Forany a € S, there exists an open set U, such that SNU, = {a}.

Now S¢U{U, : a € S} is an open cover of X. By compactness, there exists a1,--- ,a; € S

such that i
X = SC @] <U Ulu) N
i=1

It follows that

k k
S=SNX=5n (UUQ> =J©snU.,) ={ar, - ax}

i=1 i=1

is a finite subset. This implies that X is limit point compact.



35

@ Suppose X is sequentially compact, and S C X is any infinite subset. Take any infinite
sequence (x1, T, --) in S such that z; # z; for i # j. Then there exists a subsequence

(Tny, Tny, - - - ) converging to some xy € X. It follows from definition that
xo € {Tpn,, Ty, -} C {1,202, } C 5.

Hence S’ # @ and X is limit point compact.

(4) Suppose X is limit point compact, and A C X is an infinite closed subset. For any infinite subset
S C A, 8% # @. By Problem 29 (1) we know that §'* = 5'* N A. Since Ais closed, §'* ¢ A ¢
A. Therefore §'* = §'* N A = §'% + @, and then A is limit point compact.

(5) Not true in general. For example, X = (N, Jgiscrete) X (N, Firivial) is limit point compact as shown

in (2). Consider the projection onto the first factor:
- (N, f%iscrete) X (N, '?trivial) - (N, f%iscrete)y

which is continuous. However, 71 (X) = N is not limit point compact since any subset in a discrete

space has no limit point. O

Problem 36 (One-point compactification) Given any topological space (X, .7"), we say a compact topo-
logical space Y is a compactification of X if there exists a homeomorphism f : X — f(X) C Y such that
FX) =Y.

(1) Prove: both S* and [0, 1] are compactifications of R.
(2) For any non-compact topological space (X, ), define a topology .7* on the set X* = X LI {co} by
T*=T U{X"}U{K°U{oo}: K C X is closed and compact}.
Prove: 7™ is a topology on X*, and (X*,.7") is a compactification of (X, .7). This is called the
one-point compactification of (X, 7).

(3) Prove: the one-point compactification of N is homeomorphic to {0} U {1 : n € N} (as a subset in
R).

(4) Construct a compact Hausdorff topology on any set X.

Proof (1) @ Leto:S'\{N} — R be the stereographic projection that sends a point = other than
the “north pole” N on S to the point u € R chosen so that U = (u, 0) is the point in R? where

the line through N and = meets the subspace 25 = 0. It is easy to obtain a formula for o

o S\ {N} 5 R, (x1,2) = —2

1—%‘2.

Its inverse f := o~ ' is given by

2r 2%-1
RS\ {N =)
PRSI, oo (S

Since both o and f are continuous, f is a homeomorphism between R and S*\ { N'}. Moreover,
St is compact in R? and f(R) = S! \ {N} = S'. Therefore S' is a compactification of R.
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@ Consider the homeomorphism

1 1
f:R—=(0,1), z+— —arctanz + 7
™

Since f(R) = (0,1) = [0, 1] is compact, [0, 1] is a compactification of R.

(2) For conciseness, we regard @ as a closed and compact subset of X, then
T* =T U{K°U{cx}: K C X is closed and compact}.
® Clearly o€ F C I*and X* € T".

@ IfU,,U; € I,thenUiNU; € 7 C T*. IfU; = X*\ C; where C, is closed and compact in X
(i =1,2), then C; U C, is again closed and compact in X, and

UlmUQ:(X*\C1)Q(X*\OQ)=X*\(01UCQ)Ey*.
IfU; € 7 and Uy = X\ Cy where Cs is closed and compact in X, then

UlﬂUQ:Ulﬁ(X*\Cg):Ulﬁ(X\Og)EgCy*.

® Forany {U, : « € A} C 7, if U U, = @ or X¥, then U U, € 7. Otherwise there are

aEN aEA
three cases:

o If{U, : € A} C 7, then U U, e T".
aEN

o If {Uy: e A} C {K°U{o0}: K C X is closed and compact}, then

XN\ (Y Ua= V(X" \Va)

a€cA aEA

is closed in (X, 77), and for any fixed § € A,

X\ J Ua X\ Us.
aEA

Since any closed subset of a compact space is compact, X ™\ U U, is compact in X ™\ Ug.

aEA
Therefore
U Uy € {K°U {0} : K C X is closed and compact} C 7.
aEA
o If
AM={AeA:U\cT}#+0
and

Ao ={AeA:Uye{K°U{oo}: K C X isclosed and compact}} # &,
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(4)
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then by the above two cases we know that U Uy € 7 and
ach

U Uy € {K°U{o0}: K C X is closed and compact}.

a€eNs

Now

SR (CORCED)
= (X*\ U Ua>ﬂ<X*\ U Ua>

a€Ay a€lg

= (X\ U Ua>ﬁ<X*\ U UO,).

a€N; a€lg

Note that in “x” we used the fact that co ¢ X™* \ U Uas. Hence X™ \ U U, is closed in
aENy acA
the compact subspace X\ U U, of (X,.7), so it is compact. Therefore
a€Ny

U Uy € {K°*U{o0} : K C X is closed and compact} C .7*.

aEN

So 7™ is a topology on X*.

To see that (X™*, 7") is a compact space, take any open cover {U,, : « € A} of X*. Then there
exists 3 € A such that oo € Ug. By the definition of 7", X \ Up is closed and compact in
X. Since {U, : @ € A} is an open cover of X* \ Us, it has a finite subcover {Us,--- ,U,}.
Now {Ug,Us, - -- ,U,} is a finite subcover of {U, : a € A} that covers Ug U (X™\ Ug) = X™.
Therefore (X*, ™) is compact.

The inclusion map ¢ : X — X ™ is clearly a homeomorphism between X and ¢(X'). Moreover,
any open set containing oo is of the form KU {oo} for some closed and compact K C X, and
K¢ # @ since X is non-compact by assumption, this open set must intersect ¢(X). Therefore
oo € (X)" and «(X) = X*, which proves that (X*, .7*) is a compactification of (X, 7).

Consider the bijection

f:NU{oo}H{O}U{TIL:nGN}, n»—)%, 50 5 0.

For any open set U C {0} U {1 :neN},if 0 ¢ U, then f~"(U) consists of finitely many points
and is open in NU {oco}. If 0 € U, then there exists N € N such that % e Uforalln > N, ie.,
the complement of f~*(U) is a union of a finite set with {oo}, which is closed and compact in N.
Hence in both cases one has f~*(U) is open in NU {co}. Therefore f is a continuous bijection from
the compact space NU{oo} to the Hausdorff space {0} U{+ : n € N}, which is a homeomorphism.

Pick a point 2y € X and endow X \ {z(} with the discrete topology. Then let (X \ {zo}) U {zo} be
the one-point compactification of X \ {z(}. Now X endowed with this new topology is compact
by (2). To see that it is also Hausdorff, we only need to consider the case of separating x( from
any other point 21 € X \ {x(} by disjoint open sets. Since {z1} is closed and compactin X \ {zo},
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(X \{zo,z1}) U{zo} = X \ {z1}isopenin X. Then {z;} and X \ {z;} are two disjoint open sets
separating z; and zo. O

PSet 5, Part 2

Problem 37 (Compact subsets of R™)
(1) Prove Alexander subbasis theorem for R with S = {(—00,a), (a,) : a € R}.
(2) Prove any finite closed interval [a, b] in R is compact using (1).
(3) Show that a subset in R™ is compact if and only if it is bounded and closed.

Proof (1) Letus begin by showing that a subset X' C R whose every S-cover has a finite subcover is

closed and bounded.

(Boundedness) If K has no upper bounded, then the S-cover {(—oo,n) : n € N} has no finite
subcover, a contradiction. Similarly, if K has no lower bound, then the S-cover {(—n, o) :
n € N} has no finite subcover, again a contradiction. Thus, K is bounded.

(Closedness) For any sequence (x,,) in K that converges to € R (we may assume z,, # « for all
n), we can pick a subsequence (z,, ) such thateither z,,, > zforallkorz,, < xforallk. Inthe
former case, we must have € K for otherwise the S-cover {(z, 00)}U{(—00,z — 1) : n € N}
of K has no finite subcover. In the latter case, we still have x € K, for otherwise the S-cover
{(=00,z)} U{(z + %,00) : n € N} of K has no finite subcover. Thus, K is closed.

For any sequence (z,,) in K, since K is bonuded, (z,) has a convergent subsequence (z,, ). And
since K is closed, the limit of (z,, ) is in K. This implies that K is sequentially compact, which is

equivalent to compactness in R.

(2) Suppose {(—o0,b;)}ier U {(a;,00)} e is a cover of [a, b]. It is reasonable to assume all b; > 0 and

J (=00, i) = (—Ooasupbi)» U (ai,00) = (iggaj,oo),

iel i€l jed J

a; < 0. Since

we have sup b; > 125 a;. Thus, there exists iy € I and jo € J such that b;; > a;,. Then there is a
iel J
finite subcover {(—o0, b;,), (a;,,00)}. By (1), [a, b] is compact.
(3) (=) Suppose K C R is compact. Since a compact subset of a Hausdorff space is closed, K is
closed. If K is unbounded, then the open cover {B(0,n) : n € N} has no finite subcover, a

contradiction. Thus, K is bounded and closed.

(<) Suppose K C R is bounded and closed. Since K is bounded, K C [a,b]" for some a,b € R.
By (2), [a, b] is compact, and then [a, b]" is compact by Tychonoff’s theorem. So K is a closed
subset of a compact set, hence compact. O

Problem 38 (Topology of the Cantor set) Consider the Cantor set

oo 3"7t-1

3k+1 3k+2

c=01\J U ( o )
n=1 k=0



M
(2)
3)
(4)

(5)

J 3
Proof (1) LetC; = [0,1]\

(2)

3)

(4)
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Prove: every point in the Cantor set is a limit point.
Prove: as a subset of [0, 1], the Cantor set is nowhere dense.
For any closed subset F' C C, construct a continuous map f : C — F'so that f(z) =z forallz € F.

Define a map

> 2ay,
g:{O,l}N—> [0,1], a=(ai,az,---) HZ;))T
k=1

Prove: g induces a homeomorphism between ({0, 1}", Zroduct) and C.

Show that the map

. N 2 _ = a2k—1 = a2k
h:{0,1}" — [0,1]*, a—(a17a27~")'—><z ok 722>

is continuous and surjective. Is h injective?

"1‘1<3k +1 3k+2
n=1 k=0 CHE
vals. For any € C and any € > 0, choose n € N such that 37" < e. Then the closed interval in

), then each C; is a finite union of closed inter-

C,, containing z is contained in B(x, ¢). Note that the two endpoints of this interval are both in C,
and one of them is different from . This shows that every open set containing 2 contains a point
in C different from z. Thus, z is a limit point of C.

oo

Since C' = ﬂ C,, is closed, C = C. Moreover, no open interval in [0, 1] is disjoint from all the
n=1

deleted open intervals of [0, 1]. Hence Int(C) = @.

Let F be a nonempty closed subset of C. Then [0, 1] \ F is open in [0, 1], so it can be written as a

countable disjoint union of open intervals in [0, 1]:

oo

0,\NF = | | Jn.

n=1

If J, is of the form (ay,, by,), then clearly a,,, b, € F. Since C does not contain any open interval, we
can pick some z,, € (ay,b,) \ C. If J,, is of the form [0, b,,), then b,, € F' and we take z,, = 0. If J,
is of the form (ay, 1], then a,, € F and we take x,, = 1. Now define

x, ifxeF,
f:C—=F, x—qa,, ifrc (a,,z,]forsomen,

bn, ifx € [z,,b,) for somen.

For z € C'\ F, there is an open set containing = on which f is constant, so f is continuous at z. For
x € F,if x is a limit point of F on both sides, then since f|r = Idr, we see that f is continuous at
x; if x is an a,,, then f is left-continuous at z, and since f is constant on (a,,, z,], f is continuous at

x; the same argument applies to the case where x is a b,,. Thus, f is a continuous function.

The bijectivity of ¢ is immediate from the ternary expansions of real numbers in C. To prove that
g~ : C — {0,1}"is continuous, by the property of product topology, it suffices to prove that each
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': C — {0,1} is continuous, where 7, is the projection onto the n-th component. Then

T og
we only need to show that the preimages of {0} and {1} under 7, o g~' are both closed in C. In
fact, they are both intersections of C' with finitely many closed intervals, which are closed in C

1

as desired. Now ¢~ is a continuous bijection from the compact space C' to the Hausdorff space

{0,1}", which is a homeomorphism.

(5) The fact that h is surjective follows from the fact that every real number in [0, 1] has a binary ex-
pansion. To prove that k is continuous, by the property of product topology, it suffices to show
that the map

- b
h:{oal}N%[Ovl]? (blaan"')HZﬁ
k=1

is continuous. By (4), we can regard {0, 1} as the Cantor set C, and then & can be viewed as a
surjection from C' to [0, 1] which is non-decreasing. Note that a non-decreasing function can only
have jump discontinuities, and surjectivity implies there are no jumps. Thus, A is continuous, and
so is h. However, h is not injective. For example, both (1,1,0,0,0,0,---)and (0,0,1,1,1,1,---) are
mapped to (3, 1). O

Problem 39 (Sequential compactness for products)

(1) Let Xy,---,X,, be sequentially compact topological spaces. Prove: the product space X = X; x

-+ x X, is sequentially compact.

(2) Is X = {0, 1}" sequentially compact when equipped with the box topology Fhox?

(3) Let (X,,d,) be compact metric spaces. Define a metric on X = H X,, via

n=1

oo

d((xn), (yn)) =Y [1+ diam(X,,)] -2

n=1

Prove: on X the metric topology .7 coincides with the product topology.

Proof (1) It suffices to prove the statement for n = 2. Let X and Y be two sequentially compact
topological spaces. Let (zx,yx) be a sequence in X x Y. Since X is sequentially compact, there
is a subsequence (zy,) converging to some z € X. Since Y is sequentially compact, there is a
subsequence (ykﬂ) converging tosome y € Y. Then (x’m ) ykn) converges to (z,y) in X x Y. This
shows that X x Y is sequentially compact.

(2) Consider e¢; € X where the i-th coordinate is 1 and all other coordinates are 0. If the sequence
(e1, ez, --) has a convergent subsequence, then the limit must be (0,0, - --), but {(0,0,---)} itself

is open in the box topology and no e; is in this set. Thus, X is not sequentially compact.

(3) Suppose U € . Then forany (a,,) € U there exists r > 0 such that B((a,,),r) C U.
Consider

V:BI(GM%) Xooee XBN(GNvg) ><AXVNJrl ><AXN+2 X € %roduct-



41

Take N € Nsuch that 27V < 5 then for all (b,,) € V we have

(an, by) Nz =1
7L ny TL g l .
[1+ diam(X )} 2n Z 2n + Z Al

M8

d((an), (bn)) =

n:l

Hence (a,) € V C B((ay),r) C U, which implies U € Froduct-

Suppose V' € Fproduct, which has the form

V:V1X'--XVkXXk+1 XX;C+2><~-~,

where each V; is open in X;. For any (z,,) € V, there exists r1, - - - , 7 > 0 such that B(z;,7;) C
Vifor1l <i<k. Let
= min n "k >0
o= 1+ diam(X1)]- 20"’ 1 + diam(Xy,)] - 2 ’
then (z,,) € B((zy),r0) C V. Hence V € 7. O

Problem 40 (Interior of compact subsets)

(1) Let X, be a family of topological spaces such that X, is non-compact for infinitely many «’s. Let

K be a compact set in H Xos Tproduct |- Prove: K has no interior point.

(2) Consider the space ¢*(R) defined by

PR) = (a)nen : 2]z = <Z|xn|2> <400 b CRY,

endowed with the metric dy. Is the closed unit ball compact? Can a compact subset have any
interior point?

(3) A topological space (X, 7) is called locally compact if for every x € X, there exists a compact set
K, and an open set U, such that
relU, C K,.
Prove: the product (H Xa, %mdmt) of a family of topological spaces is locally compact if and

(03
only if there is a finite set of indices A such that

| compact fora ¢ Ao,
X, is
locally compact for e € Ag.

Proof (1) Suppose (z,) € Int(K) and take an open neighborhood U = H U, of (z4) contained in

[0
K. Then Ug = X3 for some 3 where X3 is non-compact. Now fix an open cover {V) : A € A} of



42

Xp, then {W) : A € A} is an open cover of K with no finite subcover, where W = H W) o and

[

X@’ a )
Wyw = # 5
Vi, a=p.

(2) The closed unit ball in ¢*(R) is non-compact, for the sequence (e, e, - - - ) has no convergent sub-
sequence. Suppose K C ¢*(R) is compact and has an interior point (x,,) € K. Then there exists
r > 0 such that B((z,),r) C K. Let

Then the sequence (y,(ll)), (y,ff)) ,- -+ lies in K but has no convergent subsequence since any two

.
V2
any compact subset of £*(R) has no interior point.

distinct points in this sequence have distance —%=. This contradicts the compactness of K. Therefore

(3) (=) Suppose the product space is locally compact. Then for any X, and z € X,,, we can pick a
point in the product space whose a-th coordinate is x. This point has a compact neighbor-
hood, and by projecting this neighborhood to X, we get a compact neighborhood of z. Thus,
each X, is locally compact. Next, for any (z,) in the product space, there exists a compact
neighborhood of (z,). By the definition of product topology, this neighborhood can be writ-
ten as H K., where K, = X, for all but finitely many a’s. And all these X,’s are compact

«
since the projection maps are continuous. Thus, only finitely many X, s can be non-compact.

(<) Suppose each X, is locally compact and all but finitely many X, ’s are compact. Then for any
(x4) in the product space, there exists a compact neighborhood K, of each z,, and for o ¢ Ay
we can let K, = X,,. Then H K, is a compact neighborhood of (z,) by Tychonoff’s theorem

and the definition of produgc topology. Thus, the product space is locally compact. O

PSet 6, Part 1

Problem 41 (Totally bounded) Let (X,d) be a metric space, and A C X (equipped with subspace
metric).

(1) Suppose (X, d) is totally bounded. Show that (A4, d) is totally bounded.
(2) Suppose (A, d) is totally bounded. Propose a condition on A so that (X, d) is totally bounded.

(3) Show that (X, d) is totally bounded if and only if any sequence in X has a subsequence that is
Cauchy.

(4) Let (X, d) be complete. Prove: A is compact if and only if 4 is totally bounded.

Proof (1) Foranye > 0, thereexistszy,--- ,z, € Xsuchthat A C X = U ]B(asi, %) After getting rid

i=1

of the balls that do not intersect A4, let us say A C U B (xlk , %) For each k, picka, € ANB (xik , %)
k=1



(2)

(4)
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Note that B(ag,¢) D B(;,,5), hence A C U B(ay, ). Finally, we see that A = U Ba(ax, ), so

k=1 k=1

(A, d) is totally bounded.

Condition: A is dense in X.

Proof For any ¢ > 0, there exists a1, ,a, € Asuchthat A C U B(a,, §5). Since A is dense in

i=1
X, for any = € X, there exists a, € A such that d(z,a,) < 5. Suppose a, € ]E%(ak, %) for some k,

then d(z,ar) < d(z,a,) + d(az,ar) < 5§+ 5 = €. Hence x € B(ax, <) and thus X = U B(a;,€).

i=1

Therefore, (X, d) is totally bounded.

(=) Suppose (X,d) is totally bounded. For any sequence {z,} and any ¢ > 0, since X can be
covered by finitely many balls of radius §, one of these balls must contain infinitely many
terms of {z,,}. Let us denote this subsequence by {z,,}. Then for any /1,l2 € N, we have
d(n, ,Tn,) < 5+ 5 = e Hence {z,, } is Cauchy.

(<) Suppose any sequence in X has a subsequence that is Cauchy but (X, d) is not totally bounded.
Then there exists € > 0 such that X cannot be covered by finitely many balls of radius €. Let

us pick z; € X. Since X cannot be covered by a ball of radius € centered at x;, there exists
k—1

2 € X \ B(z1,¢). Similarly, we can find z; € X \ U B(zi,€). Then the sequence {xj} has
i=1
no Cauchy subsequence, since for any n,m € N, we have d(z,,, .,) > ¢, a contradiction.
A subspace of a complete metric space is complete if and only if it is closed. Since A4 is already
closed, A is compact if and only if it is totally bounded. Therefore, what we need to prove becomes:

A is totally bounded if and only if A is totally bounded.

(=) Suppose A is totally bounded. For any ¢ > 0, there exists a1,---,a, € A such that A C

|UB(ai,§). Forany & € A\ A, the ball B(, §) must contain some a, € A. Suppose a, €
i=1

B(ax, 5) for some k, then d(z, ay) < d(z, a,) + d(ag,a;) < 5+ 5 =e. Hence A C U B(ai,€),
i=1
which means A is totally bounded.

(<) Thisis part (1). O

Problem 42 (Isometric embedding on a compact metric space is a homeomorphism)

Let (X, d) be a compact metric space, and f : X — X be an isometric embedding. Prove: f is a homeo-

morphism. Can we remove compactness assumption on X?

Proof (Injectivity) If f(x) = f(y), then d(z,y) = d(f(x), f(y)) = 0and z = y.

(Continuity) Since f is an isometric embedding, f~'(B(f(z),)) = B(x,¢) forany z € X and € > 0.

(Surjectivity) Suppose there exists x € X \ f(X). Since f is continuous, f(X) is compact, hence closed.

By Problem 7 (2), d := ds(x)(x) > 0. Now consider the recursively defined sequence
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Then d(xg,z,) > d for all n > 1. This implies that d(zx,zx4+n) > dforallk > Oand n > 1.
Therefore d(z,,, ,,) > d for all n # m, which violates the (sequential) compactness of X. Hence

f(X) =X, 1ie., f is surjective.
Now f is a continuous bijection from a compact space to a Hausdorff space, hence a homeomor-
phism. However, we cannot remove the compactness assumption on X, a counterexample is given by

the right shift map on [0, +c0):
f:[0,400) = [0,400), z+—xz+1.

It is obviously an isometric embedding, but not surjective, hence not a homeomorphism. O

Problem 43 (Completion of metric spaces) Let X be a set, and (Y, dy) be a metric space. Consider
the space of bounded maps,

BX,Y)={f:X =Y : f(X)isbounded inY}.

(1) Prove: the supremum metric d(f, g) == sup dy (f(z), g(x)) is a metric on B(X,Y).
reX

(2) Prove: if Y is complete, so is (B(X,Y), dwo).
> In what follows, suppose (X, dx) is a metric space, and take Y = R.

(3) Fixapoint zg € X. For any a € X, define a function f, : X — Rvia f,(z) == dx(z, a) — dx(z, zo).
Prove: f, € B(X,R).

(4) Prove: the map
d:(X,d) - (B(X,R),d), ar fa

is an isometric embedding, i.e., dx (a,b) = doo(fa, f) for any a,b € X.
(5) Prove: any metric space (X, dx) admits a completion.

(6) Prove: if (Y7, d1) and (Y5, d2) are two completions of (X, dx ), then (Y1, dq) and (Y3, d2) are isomet-

ric.

Proof (1) Clearly dwo(f,9) > 0 and dw(f,9) = 0if and only if f = g. For any f,g € B(X,Y),

doo(f,9) = sup dy (f(z),g(z)) = sup dy (9(z), f(x)) = do(g; f)-

zeX reX

Finally, for any f, g, h € B(X,Y), we have

doo(f,h) = sup dy (f(x), h(x))

reX
< sup(dy (f(x), g(x)) + dy (9(x), h(z)))

rxeX
< sup dy (f(z),g(x)) + sup dy (g(z), h(z))
rzeX rzeX

(2) Suppose {f,}isaCauchysequencein (B(X,Y),dx). Forany z € X, |fn(z) — fin(2)| < doc (frs frm),
hence {f, ()} is a Cauchy sequence in Y. Since Y is complete, { f,,(z)} converges to some y, € Y.
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Now define f : X — Y via f(x) = y,. By construction, f(X) isboundedinY’, hence f € B(X,Y).
Moreover, for any ¢ > 0, there exists N € N such that do.(fs, fm) < § forall n,m > N. Letting
m — 0o, we have do(fn, f) < § < eforalln > N. Therefore {f,,} converges to f, and thus
(B(X,Y),ds) is complete.

3) |fal2)| = ldx(2,a) — dx(z,z0)| < dx(a,z9) < oo forall z € X.
(4) The triangle inequality gives
supldx (z,a) — dx(z,b)| < dx(a,b),
zeX
and equality holds when x = a or = b. Therefore

doo(fas fo) = Slelgl[dx(% a) = dx(x,z0)] — [dx (z,0) — dx (2, 20)]|

= sup|dX(x, a) —dx(x,b)]
reX

= dx((l, b)

(5) There are two ways to construct the completion of (X, dx).

(Method 1) By (2), (4) and Proposition 2.3.7, (<I>(X)7 doo) is a completion of (X, dx).
(Method 2) Let C(X) denote the set of all Cauchy sequences in X and define the equivalence
relation ~ on C(X) by
(zn) ~ (yn) <= 71121(;10 dx (n,yn) = 0.

Denote the equivalence class of (x,) € C(X) by [z,] and let X = C(X)/ ~ be the set of all
equivalence classes. Define a metric d: X — R0 by

d(['rnL [yn]) = nh_{r;o dx (xm yn)

For x € X, let & = (z,z,z,---) be the constant sequence with value z and let ¢ : X —
X,z [3]. If ¢(z) = ¢(y), then by definition nh_)n(}o d(z,y) = 0, which implies z = y. Hence
¢ is injective, so we can identify X with its isomorphic copy ¢(X) C X. Moreover, this also
shows that d([2], [§]) = dx (z,y). To show that $(X) = X, let [z,] € X and £ > 0 be arbitrary.
Since () is Cauchy, there exists N € N such that

, VYn,m > N.

Do M

dX (Ina znz) <

Then we have

d([zn], [zn]) = lgn dx(zn,2n) < = <e.

Therefore ¢(X) = X. Finally we demonstrate that ()A( , CZ) is complete. By the completeness
criterion, it suffices to show that every Cauchy sequence in ¢(X) converges in X. Let ([w;,]) be

a Cauchy sequence in ¢(X), so each w,, has the form (w,,, wy,, w,, - - - ). Since ¢ is an isometry,

d(Wp, W) = dx (W, W), Yn,m € N.
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Therefore, the sequence (w,) is Cauchy in X. Let w = [(w,,)] € X. Then for any € > 0, since
there exists M € N such that

d(wp,wm) < =, ¥Yn,m > M.

DO ™

Thus for all n > M, we have

d([wy],w) = lim dx (wn, wm) <
m—r 00

<E.

DO ™

Therefore [@,] — w € X asn — oo, and X is complete. So (X', d) is a completion of (X, dx).

(6) Let 91 : X — Y7 and ¢2 : X — Y5 be the corresponding isometries. Then ¢ := ¢3 o (;51_1 gives an
isometry from ¢1(X) to ¢2(X). Since ¢1(X) and ¢2(X) are dense in Y7 and Y3 respectively, we can
extend ¢ continuously to a map ¢ : Y1 — Y5. To be specific, for any y € Y7, we can find a Cauchy
sequence (y,,) in Y7 with limit y. Then we define

P(y) = lim P(yn),

which converges as Y3 is complete. Next we show that ¢ is surjective. For any w € Y3, let (w,,) be a

Cauchy sequence in ¢2(X) with limit w. Let y,, be the preimage of w,, under ¢. Theny := lim y,
n—oo

is well-defined since Y; is complete and satisfies

P(y) = lim Y(y,) = lim w, = w.

n—oo n—oo

Therefore % is surjective. To show that v is injective, suppose that

lim ¢(y,) = lim ¥(y),)

n—oo n—oQ

and

lim y, =y, limy, =1
n—oo n—oo

For any £ > 0, pick M € Nsuch that ¢(y,) and ¢(y,,) liein B(¢(y), §) forall n > M. Then we have

d1(Yn, Yp) = d2(V(yn), ¥ (yn)) < 2 % <e.

This implies y = ¥/, so ¢ is injective. Since the distance function of a metric space is continuous, it
follows that ¢ is an isometry on all of Y7, and Y; and Y5 are isometric. O

Problem 44 (Lebesgue property) We say a metric space (X, d) has the Lebesgue property if any open
covering of X has a positive Lebesgue number.

(1) Suppose (X, dx) has the Lebesgue property. Prove:

@ (X,dx)is complete.
@ For any metric space (Y, dy), any continuous map f : X — Y is uniformly continuous.

® If A, B are non-empty disjoint closed subsets in (X, dx), then dist(A, B) = inf{dx (z,y) : €
A,y € B} > 0.
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(2) Prove: if for any metric space (Y, dy), any continuous map f : X — Y is uniformly continuous,
then (X, dx ) has the Lebesgue property.

Proof (1) @ If (X,dx) is not complete, then there exists a Cauchy sequence {x,,} that does not
converge in X. By Problem 43 (5), (X, dx) admits a completion ()A( ,cZ). Let z € X be the
limit of {z,,} in X. Let Vo = X \ By (z,3),and fork > 1let Vi, =B (2, 51) \ Bg (2, 307)-
Then {Uj, : k > 0} where Uy, = V;, N X is an open cover of X. However, for any § > 0, the set
B¢ (x,9) N X cannot be contained in any Uy, which contradicts the Lebesgue property.

@ Suppose f : (X,dx) — (Y,dy) is continuous, and let ¢ > 0 be arbitrary. For each z € X
choose an open neighborhood U, of x with f(U,) C By ( f(z), %) Let § be a Lebesgue number
for the open cover {U, : € X }. Then dx (z1,22) < ¢ implies dy (f(z1), f(22)) < §+§ =«

@ Since A, B are non-empty disjoint closed subsets, by Problem 7 (2), d4(b) > 0 and dg(a) > 0
foralla € Aand b € B. Thus for every a € A, we can find an open ball B(a, ¢,) that does
not intersect B. Similarly, for every b € B, we can find an open ball B(b, ¢;) that does not
intersect A. Now {B(a,&,) : a € A} U {B(b,&,) : b € B} is an open cover of A U B. By the
Lebesgue property, there exists § > 0 such that any subset whose diameter is less than ¢ is
contained in some B(a, &,) or B(b, p). If dist(A4, B) = 0, then there exists ap € A and by € B
such that dx (ag, by) < d. So ag and by must lie in the same open ball, which contradicts our

construction.

(2) Suppose such metric space (X, dx ) does not have the Lebesgue property. Then there exists an open
cover {U, : a € A} such that for all § > 0, there exists a subset A5 whose diameter is less than § but
is not contained in any U,. Now for any n € N, choose z,, y, € A% with z,, # y,. We shall show
that no subsequence of {x,,} converges in X. If there is a subsequence {z,, } converging to some
x € X, then z € U, for some «. Then there exists ¢ > 0 such that B(x,¢) C U,. Since z,,, — z, if
we choose ny, large enough so that n—lk < 5 and d(z,,,r) < §, then for any a € A, , one has

1 €
d(a,z) < d(a,xn,) + d(zp,, ) < — + = <e.
’ Ng 2
Hence A, C B(z,e) C U,, a contradiction. Therefore {z,,} has no convergent subsequence, and
similarly {y, } has no convergent subsequence. Therefore the set

E = {z1,y1,%2,Y2, - }

has no limit point, which implies that it is discrete. So any function defined on E is continuous.
By passing to a subsequence, we may assume that z,, # y.,, for all n,m € N. Now we can define a
function f : E — {0, 1} by taking f(z,,) = 0and f(y,,) = 1foralln,m € N. Since E = EUE = FE
is closed, by the Tietze extension theorem, f can be extended to a continuous function F on X. By
assumption, F' : X — R is uniformly continuous. However, |F(x,,) — F(y,)| = 1 as d(zn,yn) — 0,
a contradiction. Therefore (X, dx ) has the Lebesgue property. O



Problem 45 (Uniform metric)
(1) Prove Proposition 2.4.3:

Suppose Y is a complete metric space. Then
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is a complete metric on M(X,Y).

(2) Here is another proof of Proposition 2.4.4 / Problem 8 (3) for the special case Y = R:

Suppose f, € C(X,R) and f, — f in (M(X,R),d,). To prove f is continuous, it is
enough to prove that for any a € R, f~*((—o0,a)) and f~*((a,+o0)) are open. Let’s

prove the first one is open. Let’s fix an « with f(z) < a. Take ¢ = a — f(z). Then there

exists NV such that dy(f,, f) < § forn > N. Since fy is continuous, there exists an open
neighborhood U of x such that | fx(y) — fn(x)| < § forally € U. It follows that for all

yeU,|f(x) = fy)l <e.SoU C f~((~00,a)).

It seems that this is not a good proof since it only works for ¥ = R and can’t be easily adjusted to

prove the general case (i.e., general Y'). However, what exists is reasonable. Find out the advantage

of this proof.

Proof (1) In Problem 8 (2) ® we have proved that d, is a metric on M(X,Y’). To show that dy is
complete, let { f,} be a Cauchy sequence in M(X,Y’). Then for any ¢ € (0,1), there exists N € N

such that dy(fn, fm) < € for all n,m > N. In particular, for any z € X,

dy(fn(:r), fm(gj)) < 3
L+dy (fu(), fm(2)) ~14e

for all n,m > N. This implies that

dy (fn(2), fm(2)) <&

(45-1)

for all n,m > N, so {f,(x)} is a Cauchy sequence in Y. Since Y is complete, there exists y,, € ¥’
such that f,(z) = y, as n — oo. Define f(z) = y,, then f € M(X,Y). Letting m — oo in (45-1)
we get dy (fn(z), f(z)) < cforallz € X andn > N, ie., du(fn, f) < e foralln > N. Thus f,, — f

in M(X,Y).

(2) This proof exploits the simplicity of the basic open sets in R and the order structure of R. O

Problem 46 (More on LCH)

(1) (Strucure of non-compact LCH)

@ Let K be a compact Hausdorff space, p € K and X = K \ {p} is non-compact. Prove: X is

LCH.
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@ Conversely, suppose X is an non-compact LCH. Let X* = X U {oo} be the one-point com-
pactification of X (see Problem 36). Prove: X* is compact and Hausdorff.

(2) (The evaluation map could fail to be continuous without local compactness) Consider the eval-

uation map

e:Qx€E(Q[0,1]) = (0,1, (. f) = e(x, f) = f(x).
@ Prove: Q is not locally compact.

@ Prove: forany ¢; € Q and any closed subset A C Q with ¢; ¢ A, there is a continuous function
f1 S @(Q, [0, 1]) such that f1(Q1) = ]., f1 (A) = {0}

® Now let fy € €(Q, [0, 1]) be the zero map f,(Q) = {0}, and take any ¢ € Q. Prove: e is not
continuous at (go, fo) (where we endow C(Q, [0, 1]) with the compact convergence topology).

Proof (1) @ Since (T2) property is hereditary, X is Hausdorff.

(Proof 1) Since K is Hausdorff, {p} is closed, and then X = K \ {p} is open. It suffices to
show that every open subspace X of a compact Hausdorff space K is LCH. To show that X
is locally compact, let z € X and let U, C X be an open neighborhood of z. Since X is
assumed to be open, U, is also open in K. Now K is compact Hausdorff, {z} is a compact
subset of K, and U, is an open subset of K containing {z}. It follows that there exists an
open subset 1, C K such that

{z}cV,CcV,CcU, CX.

Since K is Hausdorff, V,, is a compact neighborhood of = in X. Thus X is LCH.

(Proof 2) Given z € X, we show X is locally compact at . Choose disjoint open sets U and
V of K containing = and p, respectively. Then the set C = K \ V is closed in K, so it
is a compact subspace of K. Since C lies in X, it is also compact as a subspace of X.
Moreover, C contains the neighborhood U of z, as desired.

@ (X is compact) Let .Abe an open cover of X*. The collection .A must contain an open set of
the form X \ C, where C is a compact subset of X. This is because otherwise the point
oo would not be covered. Take all the members of A different from X™ \ C and intersect
them with X; they form a collection of open sets of X covering C. Since C is compact,
finitely many of them cover C; the corresponding finite collection of elements of A will,

along with the element X* \ C, cover all of X ™.
(X™ is Hausdorff) Letx and y be two points of X ™. If both of them lie in X, there are disjoint
open sets U and V open in X containing them, respectively. On the other hand, if x € X
and y = oo, we can choose a compact set C' in X containing an open neighborhood U
of z since X is LCH. Then U and X* \ C are disjoint open neighborhoods of x and o,

respectively, in X ™.

(2) @ Let U be an arbitrary neighborhood in Q. Then U contains some open interval (a,b) N Q for
some a,b € R. Because of the existence of irrational numbers, the set (a,b) N Q can be parti-
tioned into infinitely many disjoint open intervals in @, which serves as an infinite cover with
no finite subcover. Thus U cannot be compact. Therefore no neighborhood in Q is compact,

which implies Q is not locally compact.

@ This follows from the Urysohn’s lemma for metric spaces (see Problem 7 (3)).
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® We have shown in @ that no neighborhood in Q is compact. Hence for any open neighborhood

U of gy and any compact set K in Q, there exists ¢; € U \ K. By @ there is a continuous
function f; € €(Q,[0,1]) such that fi(¢q1) = 1 and f1(K) = {0}. Then f; € B(fo; K,¢) for
every ¢ > 0. This shows that any neighborhood of (¢, fo) contains some point (¢1, f1) such
that e(q1, f1) = 1, so e is not continuous at (qo, fo)- O

Problem 47 (More on compact-open topology)

(1) Prove Proposition 2.4.21, i.e., if (Y, d) is a metric space, then J;. = J.,, on C(X,Y).

(2) Let (X, JGiscrete) be discrete. What is Z., on M(X,Y)?

(3) LetY be Hausdorff. Prove: (C(X,Y), Z,.) is Hausdorff.

(4) Prove: if X is locally compact and Hausdorff, then on €(X,Y’),

Proof

S{z},U) = U S(K,U).

compact neighborhood K of

1) Let S(K,V) ={f € C(X,Y) : f(K) C V} be arbitrary, where K is compact

in X and Vis openin Y. It suffices to show that S(K,V) € Z... Forany f € S(K,V), we have
f(K) C V. Since f is continuous, f(K) is compact and then closed in Y. Since the closed set
V¢ and the compact set f(K) are disjoint, the distance d; := dist(f(K), V°) is positive. This
implies that B(f; K,dy) C S(¥,V). Thus

S(K,V)= |J B(f;K,df) € Fec.
fES(K,V)

Let B(f; K,¢) be arbitrary, where f € C(X,Y), K is compact in X, and ¢ > 0. It

suffices to find a basis element for .7, that contains f and lies in B(f; K, €). Each point of X
has a neighborhood V, such that f (V) lies in an open set U, of Y having diameter less than
e. (For example, choose V;, so that f(V;) lies in the £-neighborhood of f(z). Then f(V;) lies
in the $-neighborhood of f(z), which has diameter at most 23—5) Since K is compact, we can
cover K by finitely many such sets V,, say for z = z1, -+ , 2. Let K, = V,, N K. Then each
K, is closed in the compact set K, so it is compact. Now the basis element

S(Kﬂh’ UI1) n---N S(Kwn7 an) S fyc‘o.

contains f and lies in B(f; K, ¢), as desired.

(2) If X is a discrete space, then the compact subsets of X are the finite subsets. Therefore the compact-

open topology on M(X,Y') is the product topology, i.e., the pointwise convergence topology.

(3) Forany f # ¢gin C(X,Y), there exists zy € X such that f(zo) # g(xo). Since Y is Hausdorff, there
exist disjoint open neighborhoods U and V of f(z¢) and g(xo), respectively. Now f € S({zo},U)
and g € S({zo},V). Also, S({zo},U) and S({zo}, V) are disjoint open sets in (C(X,Y), Zo.)-
Therefore (C(X,Y), Z.,.) is Hausdorff.
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(4) |LHS c RHS| For any f € S({x},U), since f is continuous, f~!(U) is open in X and contains the

compact set {z}. Sicne X is LCH, there exists an open set V C X such that V is compact and
{zgycV V).

This shows that V is a compact neighborhood of z and f € S(V,U) C RHS.

RHS c LHS| This is trivial. O

Problem 48 (Compactly generated spaces)

(1) Read the materials on compactly generated spaces (page 103), and prove: any locally compact
space is compactly generated.

(2) Prove: any first countable space is compactly generated.
(3) Find a compactly generated space that is not locally compact.

Proof (1) Suppose that X is locally compact. Let A N K be open in K for every compact subset K
of X. We show A is open in X. Given = € A, choose an open neighborhood U of z that lies in a
compact subset K of X. Since AN K is open in K by hypothesis, ANU = (AN K)NU is open in
U, and hence open in X. Then ANU is an open neighborhood of x contained in 4, so A is open in
X. Therefore X is compactly generated.

(2) Suppose that X is first countable. If AN K is closed in K for every compact subset K of X, we show
that A is closed in X. For any = € A, we show that z € A. Since X has a countable neighborhood
basis at z, there is a sequence {z,, }5~, of points of A converging to z. The subspace

K ={z}U{z, :neN}

is compact, so that A N K is by assumption closed in K. Since A N K contains z,, for every n, it
contains z as well. Therefore, = € A, as desired. Hence A = A is closed in X, and X is compactly
generated.

(3) Similar to Problem 46 (2) @, the space Q N [0, 1] is not locally compact. However, Q N [0, 1] is first
countable, so it is compactly generated by part (2). O

PSet 7, Part 1

Problem 49 (Uniformly equicontinuous) Let(X,dy)and (Y,dy)bemetricspaces. A family F € ¢(X,Y)
is called uniformly equicontinuous if for any ¢ > 0, there exists § > 0 (which depends only on ¢) such that
dy (f(z1), f(z2)) < € holds for any f € F and any pair of points z1, z2 € X satisfying dx (z1,z2) < 0.

(1) Prove: if F is a finite set consisting of uniformly continuous functions, then F is uniformly equicon-
tinuous.

(2) Show that if F is a family of Lipschitz continuous functions with a common Lipschitz constant,
then F is uniformly equicontinuous.

(3) Show thatif X is compact, then F is uniformly equicontinuous if and only if it is equicontinuous.
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Proof (1) Suppose F = {f1,---, fn}. Since each f; is uniformly continuous, for each ¢ > 0, there
exists 0; > 0 such that dx (z1,22) < ¢; implies dy (fi(z1), fi(xz2)) < e. Let 6 = min{dy,---,d,}-
Then dx (z1,x2) < § implies dy (fi(z1), fi(z2)) <eforalli=1,--- ,n.

(2) Suppose dy (f(z1), f(22)) < L-dx(x1,22) forall f € Fand 21,25 € X. Givene > 0,letd = £,
then dx (x1,z2) < 6 implies dy (f(z1), f(z2)) < e forall f € F.

(3) The “only if” part is trivial. For the “if” part, suppose F is equicontinuous. Given ¢ > 0, for any
rg € X, there exists ., > 0 such that dx (z,70) < 0z, implies dy (f(z), f(zo)) < 5 forall f € F.
Since X is a compact metric space, the open cover {B(z,0s,) : ©o € X} has a Lebesgue number
0 > 0. Then dx (z1,x2) < ¢ implies z1,x2 € B(xo, dz,) for some zy € X, and hence

dy (F(21), £(2)) < dy (F(@1), F(x0)) +dy (f(w2), fl@o) < 5+ 5 =<

forall f € F. O
Problem 50 (Applications of Arzela—Ascoli)

(1) Suppose k = k(z,y) € €([0,1] x [0,1],R). For any f € €([0, 1], R), define

1
Kﬂ@:AkWMﬂww-

Prove: K is a compact operator, i.e., it maps any bounded set in (€([0, 1], R), d;) into a compact

subset in the same space.
1
(2) We want to minimize the functional ®[f] := / f(t) dt. Consider the set
~1

F={feC(=11L[0,1]): f(=1) = f(1) = 1}.
® Whatis inf ®[f]? Is the infimum attained?
fer

@ For any constant C' > 0, let

Fo=A{feF:|f(x) = fy)l < Clz —yl}.

Prove: the infimum fir}f ®[f] is attained. Can you find the function?
€fc

Proof (1) Suppose F C (€([0,1],R),do) and sup |f(z)] < M for all f € F. Since k(z,y) €
z€[0,1]
€([0,1] x [0,1],R), it is uniformly continuous. Then for any ¢ > 0, there exists § > 0 such that

|k(2,y) — k(xo,y)| < 57 forall z, 29,y € [0, 1] satisfying |z — 20| < . So when |z — x| < 0, we have

1
IKf@%—Kf@wlz‘A[wa)—k@myﬂﬂmdy

1
<A|uam—kumwwvwn®

g
<— . M=e.
M g
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This shows that G .= {Kf : f € F} C €([0,1],R) is equicontinuous. For any a € [0, 1], the set

Jo ={g(a) : g € G} = {Kf(a): f € F}

is bounded by M ” r§1a[z)< I |k(x,y)|, so G is pointwise bounded and then pointwise precompact.
)€

By Theorem 2.5.8 (1), G is compact in (€([0, 1], R), Z...). Since [0, 1] is compact, (€ ([0, 1], R), Z..) =
(€([0,1],R), ds). Therefore, K maps F into a compact subset in (C([0,1],R), dw ).
(2) @ Define
—nr—n+1, x€ [ 1,—-1+ }
fn(x) - 0, ( 1 1 — *),
nr—n+1, [1 ]
Then f, € F and ®[f,] = £+ — 0asn — oo. So finjfrfb[f} = 0. However, the infimum is not
€
attained since ®[f] = 0 would imply f =0 on [-1, 1].

@ Forany e > 0,let 0 = &. Then |z — y| < 0 implies |f(x) — f(y)| < Clz — y| < e. Therefore,
Fc is equicontinuous. Since (F¢), C [0,1] for all a € [0, 1], F¢ is pointwise precompact. By
Arzela—Ascoli theorem (compact space version), the infimum fir}g ®[f] is attained.

€fc

o If C < 1, then the function

—Cx+1-C, z¢€[-1,0],

fz) =
Cxr+1-0C, =x€(0,1]

attains the infimum.

o If C > 1, then the function

—-Cx+1-0C, z¢€ [—1,%},
flx) =40, v e (125, %,

Cx+1-0C, 16(@,1]

—

attains the infimum. O

Problem 51 (Arzela—Ascoli for locally compact + o-compact spaces) Prove Theorem 2.5.12:

Let X be locally compact and o-compact, and (Y, d) be a metric space. Let F C C(X,Y") be a subset
which is equicontinuous and pointwise precompact. Then any sequence in F has a subsequence that
converges uniformly on compact sets of X to a limit function f € C(X,Y).

Proof Letus first construct a sequence of compact sets { K; }:2; such that X = U Kiand K; C Int K;44.

i=1
00

Since X is o-compact, we can write X = U C;, with each C; compact. Take K; = C;. Now given K;, we
i=1

define K. Since X is locally compact, for each point x € K;, there is an open set U, and a compact set

Vz such that 2 € U, C V. Then { U, : x € K;} is an open cover of K Since K; is compact, there exists

r1,--,x, € K; such that K; C U Upg; = U. Let Kiyy = Ci 1 U U Ve,, then K, is a finite union of
j=1 j=t
compact sets, so it is compact. Since U is openand U C K; 1, we get K; C U C Int K44, as desired.
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Since F is equicontinuous and pointwise precompact, so is its restriction to each K;. Then we

can pick a sequence { f,(ll)} in F which converges uniformly on K. Next, we pick a subsequence
n=1

{ f12 }oo ) of { £ }OO ) which converges uniformly on K,. We continue this process to get a sequence
of subsne?:luences, an?iithen apply Cantor’s trick: define a sequence by f, = f{™). Then the sequence
{fn}or, converges uniformly on all K.

Finally, for any compact set X C X, we claim that K C K, for some i. If not, then K \ K; # @ for
all i. Take z;; € K \ K such that all z; are distinct. Then the sequence {z;};2, lies in the compact set K,
so it has a limit point =y € K. Suppose 29 € K,, then the neighborhood Int K, of o must contain
infinitely many x;, which is a contradiction. Therefore any compact set X' C X is contained in some Kj,

and the sequence {f, } >, converges uniformly on K to a limit function f € C(X,Y). O

Problem 52 (o compactness) A topolotical space is called o-compact if it can be written as the union

of countably many compact subsets.
(1) Is the Sorgenfrey line o-compact?
(2) Show that the product of two o-compact spaces is o-compact.
(3) What about the product of countably many o-compact spaces?

(4) Prove: if X is o-compact and locally compact Hausdorff, then X has the following exhaustion
property: there exist open sets {U,, } such that

o Each U, is compact.

o U, C Uy, for each n.

oX:Um.
n

Proof (1) The Sorgenfrey line is not o-compact. We shall prove that any compact subset of the Sor-
genfrey line is at most countable. As a consequence, countable union of compact sets is at most
countable, which cannot cover R. To see this, consider a non-empty compact subset K of the Sor-

genfrey line. Fix an « € K, consider the following open cover of K:
{[z,+00)} U{(—o0, 2 — 1) : n € N}.

Since K is compact, this cover has a finite subcover, and hence there exists r,, € R such that the
interval (r, z] contains no point of K apart from z. This is true for all z € K. Now choose a
rational number ¢, € (r,,z] N Q. Since the intervals (r,, z], parametrized by x € K, are pairwise

disjoint, the function ¢ : K — Q is injective. Therefore K is at most countable.

(2) Suppose X = U KiandY = U L;, where all K; and L; are compact. Then

i=1 j=1

XxY = | (KixLy).

4,j=1

Each K; x L; is compact since K; and L; are compact. Therefore X x Y is o-compact.
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(3) The product of countably many o-compact spaces may fail to be o-compact. For example, H R is
k=1

oo o0
not o-compact. To see this, suppose to the contrary that H R = U C;, where all C; are compact.

k=1 i=1
n 00

Take K,, = U C;, then {K,,};2, is a sequence of increasing compact sets whose union is H R.
i=1 k=1
Since each projection map my, is continuous, m;(K,) C R is compact for all k. So there exists

M, 1 € Ry such that 73 (K,,) C [—M,, x, My, ). Then

8

Kn C [_Mn,kaMn,k]~

k

1

Since {K,, },~; is increasing, we can assume that {M,,  };—; is increasing for each fixed k. Now

consider the element = (My1 4+ 1,Mz2 +1,---) € H R. Then z ¢ K, for all n, which is a

k=1
o]

contradiction. Therefore H R is not o-compact.
k=1

(4) In the first paragraph of the proof of Problem 51, we have constructed a sequence of compact sets

{K;}2, such that X = U K; and K; C Int K;4,. Since X is LCH, by Proposition 2.4.16, for each
i=1
i, there exists an open set U; such that U; is compact and

K, CU,CcU; CIntK; .

Now the open sets {U; } satisfy all the required properties. O

PSet 7, Part 2

Problem 53 (Topological algebra) Let X be a topological space. Endow C(X,R) with the compact
convergence topology.

(1) Prove: the addition, multiplication and the scalar multiplication
a:C(X,R) x C(X,R) = C(X,R), (f,9) —=al(f,9) = [f+g,
m: C(X,R) x C(X,R) = C(X,R), (f.9)— m(f.g9)=fyg,
s:RxC(X,R) = €(X,R), (X g)—s(Ag)=Ag
are continuous. As a consequence, C(X, R) is a topological algebra.
(2) Prove Proposition 2.6.4:

Let A be a topological algebra, and Ay C A a subalgebra. Then the closure Ay is a (closed)
subalgebra of A.

Proof (1) @ Forany (f,g9) € C(X,R) x C(X,R), consider the basis element for .7 of the form
B(f + g;K,e), where K C X is compact and ¢ > 0. Then B(f;K,5) x B(g;K,5) C
a ' (B(f + g; K,¢)) is an open neighborhood of (f, g). Therefore, a is continuous.
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@ Forany (f,g) € C(X,R) x (X, R), consider the basis element for .7 .. of the form B(fg; K,¢),

where K C X is compactand ¢ > 0. Let F' := sup | f(z)| and G == sup |g(z)|.
reEK reK

o If F # 0, then for any (f,g) € B(f;K, ﬁ) x B(g; K, 5% ), we have

F(@)g(x) = F@)a(@)| < 17 @) - l9@) - 3(@)] + 3@ - |f(@) = Fia)]
< @)+ 9(@) = @) + (13() - g(@)| + lg(@)]) - | £(@) = F(a)
g
<r ﬁ+(2F+G>%+2G

=&

forall z € K. Therefore (f,9) € B(f; K, 55 ) x B(g: K, 57) € m ™ (B(fg: K. €)).

o If F =0, then f(z) = 0 forall z € K. For any (f,g) € B(f; K, 55) x B(g; K,G), we have

|F@))] < |F@)] - (3) - g(@)l + o)) < o 26 =<

Therefore (f, g) € B(f; K, 55) x B(g; K,G) C m™ ' (B(fg; K,¢)).
Therefore, m is continuous.

® Forany (), g) € RxC(X,R), consider the basis element for .7; . of the form B(\g; K, €), where

K C X is compactand ¢ > 0. Let M = sup |g(x)|.
rzeK

e . e
o If M > 0, then for any (u, h) € B(X, 55;) X B(g, K, ?JFQW),wehave

[uh(z) = Ag(x)| = [[ph(z) — pg(x)] + [[pg(z) — Ag(2)]]
< pl-1h(z) = g(@)| + |n = Al - |g(2)|
< (Iu AL+ AN - [h(@) = g(2) ] + | = Al - |g(2)]

3
s ) = +2|A|+7 M

N

for all z € K. Therefore (), g) € B(\, 557) x B(¢; K, =5+ ) C s 1 (B(\g; K, ¢)).
3N = 2]

o If M =0and X # 0, then g(z) = 0forall z € K. Forany (u, h) € B(), |)\|)><B<g;K7 ﬁ),

luh(z) = Ag()] < (I = Al + A - [A(x)] < 2[A] - 2|)\| =c

for all x € K. Therefore (), g) € B(A,|A]) x B(g; K, ﬁ) C s 1 (B(\g; K,¢)).
o If M =0and A\ = 0, then (), g) € B(0,1) x B(g; K,¢) C s ' (B(\g; K, ¢)).
Therefore, s is continuous.
(2) For the topological algebra (A, +, ) and its subalgebra A, since addition + : A; x A; — A; is

continuous, we have

A71+A71C.A1+A1 ZI.
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Similarly, since multiplication - : A; x A; — A; is continuous, we have
E'ICAl - Ay CI.

Likewise, the fact that A, is a vector subspace of A follows from the continuity of scalar multipli-
cation. Therefore, A; is a (closed) subalgebra of A. O
Problem 54 (Applications of Stone—Weierstrass)

(1) Prove: any continuous function on [0, 1] can be approximated uniformly by functions of the form
aop + ar1e” + aze® + -+ + a,e™, n e N.

@ As a consequence, prove if f is a continuous function on [0, 1] satisfying

1
/f(ar;)em”dasz()7 n=0,1,2,---, (54-1)
0

then f = 0.
@ What if (54-1) holds only for even n?

(2) Let X,Y be compact Hausdorff spaces. Prove: any f € C(X x Y,R) can be approximated uni-
formly by functions of the form

Hi@)g1(y) + fa(2)g2(y) + - + ful@)gn(y), n €N,

where f;, € (X, R), gr € C(Y,R).

(3) Let A be the set of (rational) functions of the form %, where p, g are polynomials with deg(p) <
deg(q), and ¢(z) # 0 for all z € R. Prove: if f € C(R,R) and li_>m flz) = ‘Er_n f(z), then f can

be approximated uniformly by functions in A.
Proof (1) Since [0, 1] is compact and Hausdorff, A := (1,e") is a subalgebra of €([0, 1], R) that van-

ishes atno point and separates points, by Stone-Weierstrass theorem, A is dense in (C([0, 1], R), doo ).

@ For any € > 0, there exists g € A such that do(f, g) < €. By assumption,

' 21’ xXr = ' 2{E X — ' X e xXr = ' X X)) — X X
/Of()d /Of()d /Of()g()d /Of()[f()g()}d
< / @ f(@) - g(o)|de < e / (@) de.

Since € > 0 is arbitrary, we have f = 0.

@ Note that A" := (1,e°") is a subalgebra of €([0,1],R) that vanishes at no point and sepa-
rates points. By Stone-Weierstrass theorem, A’ is dense in (C([0, 1], R), ds). Therefore, the
conclusion still holds by the same argument as above.

(2) Since X,Y are compact and Hausdorff, so is X x Y. Moreover, both €(X,R) and C(Y,R) separate
points. Since A := (fg: f € C(X,R),g € C(Y,R)) is a subalgebra of €(X x Y,R) that vanishes at
no point and separates points, by Stone-Weierstrass theorem, A is dense in (C(X x Y, R), dw)-

(3) Let A* be the set of functions of the form % where p, ¢ are polynomials with deg(p) < deg(q)
and ¢(z) # 0 for all € R. Then A” is a subalgebra of Cy(R, R).
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S € A*, so A* vanishes at no point.

2 +1
T

¢ For any a,b € R with a # b, the rational function —————
(z—32) +1

€ A” separates a and b.

Since R is locally compact and Hausdorff, by Problem 56 (2), A* is dense in Cy(R, R). Now for any

f € C(R,R) with lim f(z) = lim f(z) = L, the function f — L lies in €y(R,R), so f — L can
Tr—00 r——00

be approximated uniformly by functions in A* C A. And since the constant function L is in A,

f=(f — L)+ L can be approximated uniformly by functions in A. O

Problem 55 (Stone—Weierstrass for complex/quaternion-valued functions)
(1) Prove Theorem 2.6.16:

Let X be compact Hausdorff, and A C C(X, C) be a complex subalgebra which separates points
and vanishes at no point. Moreover, assume A is self adjoint, then A is dense in C(X, C).

q —iqi — jgj — kqk

(2) For any quaternion q = a + bi + ¢j + dk € H|, check: a = 1

2.6.12 for €(X, H).

. Then prove Theorem

Proof (1) SinceRe f = f%f and Im f = L1, the set Ag of real and imaginary parts of functions in A
is a real subalgebra of C(X, R) to which the Stone-Weierstrass theorem applies. Since A = { f +ig :
f,g € Ar}, the desired result follows.

(2) For g = a+ bi+ ¢+ dk € H, we have

q —igi —jgj — kek
=(a + bi+ ¢ + dK) — i(a + bi + ¢j + dK)i — j(a + bi + ¢j + dk)j — k(a + bi + ¢ + dk)k
=a + bi + ¢ + dk — ai® — bi® — ciji — diki — aj* — bjij — ¢* — djkj — ak® — bkik — ckjk — dk>
=a+bi+c+dk—a+bi—c¢—dk+a—bi+c—dk+a—0bi—c+dk
=4a.

q —iqi —jqj — kqk

Therefore, the scalar part a is the real number 1

. Likewise,

Cdi— o + ik + ai
o the scalar part of —gi is b which is the real number a-lgtjgx+q .

4
¢ the scalar part of —gj is ¢ which is the real number 4 — ik 47 Jat kql.
o the scalar part of —gk is d which is the real number —ak 1q]4— ik = kq'
Now the theorem follows by similar arguments as in part (1). O

Problem 56 (Stone—Weierstrass on LCH)
(1) Let X be LCH. Prove: Cy(X, R) is an algebra.
(2) Prove Theorem 2.6.17 (Stone—Weierstrass theorem on LCH):

Suppose X is an non-compact LCH. Let A C Co(X,R) be a subalgebra which vanishes at no
point and separates points. Then A is dense in Co(X, R).
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Prove: any f € Cy([0,4+00), R) can be approximated uniformly by functions of the form

Z are ™ neN.

k=—n

Proof (1) Itsuffices to show that Cy(X,R) is closed under addition, multiplication and scalar multi-

(2)

3)

plication.

o Forany f,g € Co(X,R) and ¢ > 0, there exists compact K¢, K, C X such that

f@)| < S on(Kp)* and [g(x)| < 5 on (K,)"

Then |f(z) +g(z)| < |f(z)|+ |g9(z)| < e outside the compact set Ky UK, so f+g € Co(X,R).
o Forany f,g € Co(X,R) and ¢ > 0, there exists compact K¢, K, C X such that

|f(z)] <eon(Kyf)¢ and |g(z)| < 1on(&K,)".

Then |f(x)g(x)| < € - 1 outside the compact set Ky U K,, so fg € Co(X,R).

o Forany f € Co(X,R), A e Rand e > 0,if A =0, then A\f =0 € Co(X,R); if A # 0, there exists
compact K C X such that

uw<ﬁmm

Then |\ f(z)| < e on K¢, s0 Af € Co(X,R).
Therefore, Cy(X, R) is an algebra.

Consider the one-point compactification X* := X LI{oco} of X (see Problem 36). By Problem 46 (1)
®, X* is compact and Hausdorff. Any f € Cy(X, R) canbe extended continuously to f* € C(X*,R)
by f*(z) = f(z) forall z € X and f*(co) = 0. To see this, it suffices to check the continuity of
f* at oco: for any neighborhood U of f*(c0) = 0, there is some ¢ > 0 such that B(0,e) C U; and
there exists compact K C X such that |f(z)| < e on K, i.e,, KU {o0} C (f*) " (B(0,¢)). Now A
corresponds to a subalgebra A* C C(X™*,R) that vanishes only at co and separates points. Since
A* is not dense in €(X™,R), by Theorem 2.6.13,

A* ={f* € C(X*,R): f*(c0) = 0}.
Note that the right-hand side restricts to Cy(X,R), so A is dense in Cy (X, R).

The set A of functions of the form Z are ™ (n € N) is a subalgebra of €y([0, +00),R) that
k=—n

vanishes at no point and separates points. Since [0, +00) is LCH, A is dense in Cy([0, +o0),R) by
part (2). O
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PSet 8, Part 1

Problem 57 (Closedness of graph) Let X,Y be topological spaces, define the graph of amap f : X —
Y to be the set
Gy ={(z,f(z)):ze X} CX xY.

(1) Prove: Y is Hausdorff <= forany X and f € C(X,Y), Gy isclosedin X x Y.
(2) Construct a discontinuous function f : R — R whose graph is closed.

(3) (Closed graph theroem) Prove: if Y is a compact Hausdorff space, then f is continuous if and
only if G¢ is closed.

Proof (1) (=) Let(z,y) € (X xY)\ Gy, so that f(x) # y. Since Y is Hausdorff, there exist disjoint
open sets U and V in Y such that f(z) € U and y € V. Then f~'(U) x V is an open set in

X x Y containing (z,y) but disjoint from Gy, so G is closed.
(«=) Take X =Y, and consider the identity map Idy : ¥ — Y. Then Gy = {(y,y) : y € Y}is
closed in Y x Y by assumption, so Y is Hausdorff by Proposition 2.7.19 (2).

@) f) - { .

0, z=0.

(3) The “only if” part is already proved in (1). Now assume Gy is closed in X x Y. Let z € X and
let V be an open neighborhood of f(z) inY. Then C == Gy N (X x (Y \ V)) is closed in X x Y.
Denote by mx the projection map X x Y — X. We claim that 7x(C) is closed in X. Indeed, let
zo € X \7mx(C) be arbitrary. Then the slice {z} x Y is contained in the open set (X xY')\ C. Since
both {z¢} and Y are compact, by the tube lemma, there exists open neighborhood W of z( in X
suchthat {zo} xY C WxY C (X xY)\C. Thisimplieszp € W C X \nwx (C). Since x, is arbitrary,
X \ 7x(C) is open, so mx (C) is closed in X. Now U := X \ m1(C) is a neighborhood of z, and
we claim that f(U) C V. Suppose to the contrary that there exists 1 € U with f(z1) ¢ V. Then
(z1, f(x1)) € C, 50 Tx ((z1, f(x1))) = 21 € 7x(C), a contradiction. Therefore z € U  f~*(V), so
f is continuous. O

Problem 58 (Lindelof property) A topological space (X, .7) is called Lindeldf if any open covering of
X admits a countable subcovering.
(1) Prove Proposition 2.7.14:
o Any second countable space is Lindeldf.

o Any o-compact space is Lindeldf.

(2) Suppose (X, .7) is second countable. Prove: any basis B of .7 has a countable sub-family B, C B
that is still a basis.

(3) Prove Proposition 2.7.15:

o Any closed subspace of a Lindeldf space is Lindeldf.
o The continuous image of a Lindeldf space is Lindeldf.

o A metric space is Lindeldf if and only if it is second countable.
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Check: (R, Zzocountable) is Lindelof but not o-compact.

Check: the Sorgenfrey line (R, Zsorgentrey) is Lindelof.

Proof (1) Let{U, : @ € A} be an open cover of X.

)

3)

(4)

(5)

o Suppose (X, 7) is second countable and {B,,};2 is a countable basis of .7. For each B,,
if there is some U, containing B,,, then choose such U, and denote it by U,. Otherwise,
let U,, = @. Since each point # € X has a neighborhood V,, contained in some U,, and V,
contains some B,, about z, it follows that {U,, },>  is a countable subcover of {U, }nen.-

oo
o Suppose X is o-compactand X = U K,, where each K, is compact. For each n, there exists

n=1

(o)
a finite subcover {U,,, : a, € A,} of {U, : a € A} for K,,. Then U {Ua, 1 an € Ay} isa
n=1
countable subcover of {U, }aen.-
Let {U,,} >, be a countable basis of .7. Let B = {B,, : a € A} be an arbitrary basis of .7. For each
n, there exists A,, C A such that U,, = U B, . Since X is Lindelof by (1), there exists a countable
a€EN,

subset A/, C A,, such that U,, = U B,,. Then B, = U {B, : a € A]} is a countable sub-family
aeN’, n=1
of B that is still a basis.

o Suppose X is Lindel6f and A is a closed subspace of X. For any open cover {Us, }aca of 4, let
Uy = Vo N Afor each o € A, where V,, is open in X. Since Ais closedin X, {V,, : « € A} U A
is an open cover of X. By Lindelof property, there exists a countable subcover {V,,}52; U A°
of X. Then {V,, N A}>°, is a countable subcover of {U,, : a € A}.

o Suppose X is Lindelof and f : X — Y is continuous. For any open cover {U, : a € A} of
f(X), {f ' (Ua) : « € A} is an open cover of X. By Lindelof property, there exists a countable
subset A’ C A such that {f~'(U,): a € A’} is still a cover of X. Then {U, : @ € A’} isa
countable subcover of {U, : @ € A}.

o The “if” part is already proved in (1). Now suppose X is a Lindelof metric space. For each
n € N, the collection {B(z, 1) : 2 € X} is an open cover of X. By Lindeldf property, there
exists a countable subcover {U,, ; }5=;. For any open set U in X and any x € U, there is some
n € Nsuch that z € B(x, %) C U. Since x must be contained in some Uy, ;;, which is a ball of
radius 5-, it follows by the triangle inequality that « € Uy C B(z, ). Hence {Usn i }3%—1
is a countable basis of X.

For any open cover {U, : a € A} of (R, Ziocountable), Pick any aq € A such that U,, # @. Then
R\ U,, is countable, denote it by {z,},>,. For each n > 2, choose a,, € A such that z,, € U,,,.
Then {U,, }°2, is a countable subcover of {U,, : « € A}. Therefore (R, Z:ocountable) i Lindel6f.

However, compact sets in (R, Zzocountable) Must be finite (any infinite subset A contains some count-
able subset {z,, } 2=, and the open cover { (U kot ATk }) ‘ }:O:1 of Ahas no finite subcover), so count-
able union of compact sets is still countable, which cannot cover R. Therefore (R, Z:ocountable) is N0t
o-compact.

Since B = {[a,b) : a,b € R} is a basis of Torgentrey, it suffices to show that each B-cover of R admits

a countable subcover. Suppose R = U [, Do ). We claim that R\ U (aq, ba) is at most countable.
acA ac
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In fact, forany = ¢ U (@, bq), there exists 8, € A such thatx = ag,. Note that such open intervals

acA
(ag,,bs, ) are disjoint for different z, so the claim follows. Now the set

Ag = {536 EAN:z¢ U(aa,ba)}

aEN

is at most countable. Since {(aq,by) : @ € A} is an open cover of U (Gq, Do) in the usual topology
acl
of R, and U (aa,bq) is a second countable metric space as Ris (A2), by (3) itis Lindelof. Therefore
aEN
there exists a countable subcover A’ C A such that U (aasba) = U (aasbe). Then
a€A acN’

{laa,ba) : v € A} U {[ag, bg) : B € Ao}

is a countable subcover of {[aq,ba) : @ € A}. Therefore (R, Zsorgentrey) is Lindelof. O

Problem 59 (Hereditary properties) A topological property P is called hereditary if

(1)
(2)

(3)

(X, ) satisfies P = any subspace Y of X satisfies P.
Prove: (Al) and (A2) are hereditary, but (T4) is not hereditary.

Which of the following properties are hereditary:
compact / sequentially compact / locally compact / separable / Lindelsf / (T1) / (T2) / (T3)
A topological property P is called closed hereditary if
(X, 7) satisfies P = any closed subspace Y of X satisfies P.

For the non-hereditary properties above, determine whether they are closed hereditary.

Proof (1) Since the intersection of a basis / neighborhood basis of the total space with a subspace is

(2)

still a basis / neighborhood basis of the subspace, (A1) and (A2) are hereditary. However, (T4)
is not hereditary. Consider R endowed with the cofinite topology, then any two nonempty open
sets in R intersect, so R is not (T4). Let X = R U {oo}, whose open sets are those of (R, Zofinite)
together with X. Now any two nonempty closed sets in X intersect (they both contain c0), so X
is (T4). This shows that (T4) is not hereditary.

® Compactness is not hereditary. For example, [0, 1] is compact, but (0, 1) is not.

@ Sequential compactness is not hereditary. One can take the same example as above.

® Local compactness is not hereditary. For example, [0, 1] is locally compact, but [0, 1] N Q is not
(see Problem 46 (2) @).

@ Separability is not hereditary. Take any non-separable space Y and consider X =Y U {oo},

whose open sets are given by
{tU{UU{co}:UisopeninY}.

Then X is separable since {co} = X. However, Y C X is not separable.



63

® Lindelof property is not hereditary. Take any non-Lindel6f space Y and consider X =Y U

{o0}, whose open sets are given by
{U:UisopeninY}U{VU{oo}:V CY andY \ V is countable}.

Then for any open cover {U, : @ € A} of X, one can first pick o; € A such that co € U,,. By
construction U,, = VU{oco}, where V cocountableinY. LetY\V = {z, }7>,. Foreachn > 2,
choose «a,, € A such that z,, € U,,,. Then {U,, },>, is a countable subcover of {U, : o € A},
so X is Lindelof. However, Y C X is not Lindel6f.

® (T1) is hereditary since (T1) is equivalent to “every singleton is closed”.

@ (T2) is hereditary since the intersections of any two disjoint open sets with a subspace are

disjoint open sets in the subspace.

(T3) is hereditary. Let X be (T3) and Y be a subspace of X. For any closed subset A of ¥
and any x € Y\ A, there exists a closed subset B of X such that A= BNY. Since X is (T3)
and z ¢ B, there exist disjoint open sets U and V in X such that B C U and « € V. Then
AcCUnNY and z € VNY. Therefore Y is (T3).

(3) @ (T4) is closed hereditary. Suppose X is (T4) and Y is a closed subspace of X. For any two
disjoint closed sets A and B in Y, since Y is closed in X, A and B are closed in X. Since X is
(T4), there exist disjoint open sets U and V in X suchthat A C Uand B C V. Then A Cc UNY
and BCVNY,soYis (T4).

@ Compactness is closed hereditary. This is Proposition 2.1.16 (1).

®

Sequential compactness is closed hereditary. This is Proposition 2.1.16 (2).

@ Local compactness is closed hereditary. Suppose X is locally compact and Y is a closed sub-
space of X. For any « € Y, since X is locally compact, there exists a compact neighborhood
K of z in X. Then K NY is a neighborhood of z in Y. Moreover, it is compact. In fact, for
any open cover {U, : o € A} of KNY in X, {Y°} U{U, : @ € A} is an open cover of K
in X. Since K is compact, there exists a finite subcover {Y°} U {U,,, - ,U,, } of K in X.
Then {U,,, - ,U,, } is a finite subcover of {U, : o € A}. Therefore K NY is a compact
neighborhood of z in Y and Y is locally compact.

® Separability is not closed hereditary. One can take the same example as in (2) @, where
Y = X \ {o0} is closed in X but not separable.

® Lindelof property is closed hereditary. This is Problem 58 (3). O

Problem 60 (The Sorgenfrey plane) Consider the product of two Sorgenfrey lines,
(R27 %orgenfrey) = (R, f%orger\frey) X (R, %orgenfrey)y

which is known as the Sorgenfrey plane.
(1) Prove: it is first countable, separable but not second countable.
(2) Isit Hausdorff?

(3) Consider the subspace A = {(z, —z) : © € R}. Isit closed? What is the induced subspace topology
on A?
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Prove: it is not Lindel6f.

Proof (1) For any (z,y) € (R Jiorgentrey), the collection {[z,2) x [y, 1) : n € N} is a countable

(2)

3)

(4)

neighborhood basis of (z,y). Hence (Rz, %orgenfrey) is first countable. Since Q? is a countable
dense subset of (R?, Forgentrey ), it is separable. However, (R?, Ziorgentrey) is not second countable.
In fact, if it were second countable, by Problem 59 (1), (A2) is hereditary, so (]R, %Orgenfrey) would
be second countable, which contradicts Example 2.7.8 (2).

Forany z,y € (R, %Orgenfrey) with © < y, the open sets [x,y) and [y, y + 1) are disjoint and contain
2 and y respectively. Hence (]R7 %orgenﬁey) is Hausdorff. By Problem 61 (1), (T2) is productive, so
(R?, Ziorgentrey) is also Hausdorff.

By Problem 9 (3), the topology sorgentrey is finer than the usual topology on R. It follows that
Tsorgentrey 18 finer than the usual topology on R2. Since A is closed in the usual topology of R?,
it is also closed in (R?, ZZorgentrey)- For any (z,—z) € A, the open set [z,z + 1) X [z, —z + 1)
of (R2, %Orgenfrey) intersects A only at (z,—z), so {(xz, —z)} is open in A. Therefore the induced
subspace topology on A is discrete.

The subspace A C (R*, Zsorgentrey) is not Lindeldf since the open cover {(z, —z) : « € R} has no
countable subcover. By Problem 59 (3), Lindeldf property is closed hereditary, so (R, Z5orgentrey )
is not Lindelof. O

PSet 8, Part 2

Problem 61 (Productive properties) A topological property P is called productive if

)
(2)

3)
(4)
(5)

each (X,, 7,) satisfies P —> (H X, yproduct> satisfies P.
Prove: (T1), (T2) and (T3) are productive.

Conversely, if H X, %roduat) is (T1), (T2) or (T3), can we conclude that each (X, 7,) is (T1),
(T2) or (T3)?

Is (T4) productive? Is Lindelof productive?

Prove: separability and metrizability are not productive. What about (A1), (A2)?

Can you introduce a weaker version of productivity, so that those non-productive properties in
part (4) satisfy the weaker one?

Proof (1) Ifeach(X,,Z,)is (T1), then for any distinctz,y € H X, there exists § such that zg # yg.

Since Xp is (T1), there exist open sets Ug, V3 in X3 such that 3 € Ug \ V3 and yz € Vi \ Us. Let
Upo=Xqand V, =Y, foralla # . ThenU = HU and V = HV are open sets in HX such

thatz e U\ Vandy e V\U. HenceHX is (Tl)

If each (X, 7, ) is (T2), then for any distinct z,y € H Xa, there exists § such that x5 # yg. Since

X3 is (T2), there exist disjoint open sets Ug, V3 in X g such that 23 € Ug and yg € V. Let U, = X,
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and V, =Y, forall a # 5. Then U = H Uyand V = H V. are disjoint open sets in H Xq such

thatx € U and y € V. Hence HX is (T2)

[e3

If each (X, %) is (T3), then for any z € H X, and any open neighborhood U = H U, of x, we

can always find an open neighborhood V' = H V,, of z such that V C U. Indeed, when Ua = Xo

let V, = X, too. For the finitely many o’s such that U, # X,, since each X, is (T3), we can find
open sets V,, such that V,, C U,. Then by Problem 30 (1),

V=[[Va=]]Vac]]U.=U.

By Proposition 2.7.19 (3), this implies that H X is (T3).
«

Each (X, ) can be viewed as a subspace of H Xa, so by Problem 59 (2), if (H Xa, roduct)
is (T1) / (T2) / (T3), then each (X, 7, ) is (Tl) / (T2) / (T3).

By Problem 58 (5), the Sorgenfrey line (R, Zorgentrey) is Lindeldf. However, (R?, Zroduct) is not
Lindelof by Problem 60 (4). So Lindel6f property is not productive.

The above example can also be used to show that (T4) is not productive:

(R, Forgentrey) is (T4) | Let A and B be disjoint closed sets in (R, Zsorgenrey). For any a € A, we

have a € B®. Subce B¢ is open, we can take ¢, > 0 such that [a,a +¢,) N B = @. Similarly, for
any b € B, we can take ¢, > 0 such that [b,b + ¢;,) N A = @. Note that we always have

[a,a4+¢e,)N[b,b+ey) =2, VYa€ Aandb € B,

for otherwise we would have b € [a,a + ¢,) or a € [b,b + &), which is a contradiction. It
follows that

Up = U [a,a +¢&,) and Upg:= U[b,b+€b)
a€A beB

are disjoint open sets separating A and 5.

(R?, Forgenfrey) is not (T4) | In Problem 60 (3) we have shown that A = {(z,—z) : = € R} is

closed in (Rz, ﬂpmduct), and the subspace topology on A is discrete. Thus any subset of A is
closed in (R?, Zproduct)- If (R, Foorgentrey) is (T4), then by Urysohn’s lemma, for any A C A,
since A and B := A\ A are both closed in the Sorgenfrey plane, there exists a continuous
function f : (R?, Foorgentrey) — [0, 1] such that f(A) = {0} and f(B) = {1}. Therefore

|G((R27%orgenfrey)7 [0, ]_])| > |2A| — |2]R| _ 2N1 =N,

On the other hand, by Problem 60 (1), the Sorgenfrey plane is separable, so any continuous
function on it is determined by its values on a countable dense subset, which means

‘e((RQ, f%orgenfrey), [0, 1])‘ < HO’ 1”}&0 — N‘fo =N;.

This is a contradiction. Therefore (R2, %orgenfrey) is not (T4).
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(4) All these properties may not be preserved by products. Let each X, be the discrete space {0, 1},

and let X = H X, where |[A]| > X;. Then each X, is separable, metrizable, (Al) and (A2).
a€eN

‘ X is not separable ‘ Suppose D were a countable dense subset of X. Then for distinct o, 8 € A,

the sets 7, 1(0), ﬂgl(O) and ’/Tﬁ_l(].) are all nonempty open sets in X. Then 7, *(0) N wgl(l)
and 7r[;1 (0) are both nonempty open sets in X, and they are disjoint. Since D is dense,

DN (w;l(O) N wglu)) and Dnw;(0)
are disjoint nonempty subsets of D. It follows that
DNz;'(0) and DN 7T[;1(0)
are distinct subsets of D. Thus the map
d:A—2P aw— DN H(0)

is injective, which implies |A| < [2P] = 2" = Ry, a contradiction.

‘ X isnot (Al)/(A2)/metrizable ‘ Assume {B,, },_, is a countable neighborhood basis at the point
p € X. For each n, 7 (B,,) = {0,1} for all but finitely many «. Since there are uncountably

many o, we can select one, say oy, such that 7, (B,) = {0, 1} forall n. Then ;! (pa,) = {z €
X : Zay = Day ) is an open neighborhood of p which contains no B,,, a contradiction. There-
fore X is not (Al), and then not (A2). Since each X, is compact Hausdorff, by Tychnoff’s
theorem and then productivity of (T2), X is compact Hausdorff. So by Proposition 2.8.13, X
is metrizable if and only if it is (A2). Therefore X is not metrizable.

(5) The four properties in (4) are all preserved by countable products.

Separability | Suppose each X, is separable and let X = H Xy,. Foreach n, let D,, be a countable

n=1
dense subset of X, and fix a point z,, € D,,. Then consider

E,, = {ye HDn:yn ::Unforalln>m}
n=1

and let F = U E,,. Since each E,, is countable, it follows that F is countable. Note that any

m=1

nonempty open set in X is of the form

m—1 0
V=[] U.x[] Xn
n=1 n=m

where U, is a nonempty open set in X, for 1 < n < m. Since

m—1 e}
VAE,=[[(VanDy) x [ {2z} # 2,
n=1 n=m

we see that V N E # @. Therefore F is a countable dense subset of X.
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Metrizability | Suppose each X, is metrizable. Moreover, by replacing the original metric with its

corresponding uniform metric d,,, we can assume that each X, is bounded. Then by Problem
39 (3), the topology induced by the metric

o0

_ dn(Tn, Yn)
d(@n); (Yn)) _Z 1+d1am( ] 2n

coinicides with the product topology on X. Therefore X is metrizable.

(A1) | Suppose each X, is first countable and let X = H X,. Take any z = (z,,) € X. For each
n=1

n, let { B, 1 }7=, be a countable neighborhood basis at z,,. Then
U O{ I 20 T 50
=1k=1 =1 m=n+1

is a countable neighborhood basis at .

o0
(A2) | Suppose each X, is second countable and let X = H X,,. For each n, let {B,, 1} 7=, be a
n=1
countable basis for X,,. Then

UU{HBka H Xm}
n=1k=1 =1 m=n+1

is a countable basis for X. O

Problem 62 (Baire space) A topological space is called a Baire space if every intersection of countable
collection of open dense sets in the space is dense.

(1) Use “open-closed” duality to give an equivalent characterization of Baire space.
(2) Prove: any complete metric space is a Baire space.

(3) Prove: any compact Hausdorff space is a Baire space.

(4) Prove: any locally compact Hausdorff space is a Baire space.

Proof (1) A topological space is a Baire space if and only if every countable union of closed sets in

the space with empty interior has empty interior.

(2) & (3) By Problem 7 (2) and Proposition 2.7.20, whether X is complete metric or compact Hausdorff,
it is regular. Given a countable collection {A4,,}~; of closed sets of X having empty interiors, we
want to show that their union U A,, also has empty interior in X. So, given the nonempty open

n=1
set Uy of X, we must find a point z of Uj that does not lie in any of the sets A4,,.

Consider the first set A;. By hypothesis, A; does not contain Uy. Therefore, we may choose a point
y of Uy that is not in A;. Since X is regular and U \ 4, is open in X, by Proposition 2.7.19 (3), we
can choose an open neighborhood U; of y such that z € U; C Uy C Uy \ Ay, that is,

ﬁﬁAlzﬁ and aCU(].
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If X is metric, we also choose U; small enough that its diameter is less than 1.

In general, given the nonempty open set U,,_1, we choose a point of U,,_; that is not in the closed
set A,,, and then we choose U,, to be an open neighborhood of this point such that

U,NA,=@ and U, C U,_1,

and also diam U,, < % in the metric case.

o0

We assert that the intersection ﬂ U, is nonempty. From this fact, the desired result will follow.

n=1
[eS)

Forifx € ﬂ U, then z is in Uy because U; C Uy. And for each n, the point z is not in A,, because
n=1
U, is disjoint from A,,.

o If X is complete metric, since U3 D Uy D -+ is a nested sequence of nonempty closed sets
in the complete metric space X, and diam U,, — 0 as n — oo, our assertion follows from the

Cantor’s intersection theorem.
o If X is compact Hausdorff, since the collection {m}f;l has the finite intersection property,

our assertion follows from Proposition 2.1.6.

(4) Suppose X is a non-compact LCH space. Let X* = X LI {co} be the one-point compactification of
X. Then by Problem 46 (1) ®, X* is a compact Hausdorff space. So by (3) X* is a Baire space. Let
{Un}221 be a countable collection of open dense sets in X. Since X is non-compact, {co} ¢ T
by the construction of 7™ (see Problem 36 (2)). Therefore any open neighborhood of o is of the
form V' U {oo} where V' is a nonempty open subset of X. Then V NU,, # @ for all n, which implies

that oo is a limit point of each U,,. So {U, };2; is also a collection of open dense sets in X*, and

since X™* is a Baire space, ﬂ U, is dense in X *. It follows that ﬂ U, is dense in X. Therefore X

n=1 n=1
is a Baire space. O

Problem 63 (Applications of Urysohn lemma)

(1) Let X be a compact Hausdorff space, zp € X, and U is an open neighborhood of z¢. Prove: for
any € > 0 and any continuous function f : X — R, there exists a continuous function g : X — R
satisfying all of the following three conditions:

o sup |g(z) - f(z)] <e.

reX
o g= fonU°".

o there exists a neighborhood V' of x such that g(z) = f(zo) on V.
(2) Let X be LCH. Recall

o Cp(X,R) ={f: X — R: fis continuous and bounded}.
o C(X,R)={f:X — R: fis continuous and compactly supported}.

o Co(X,R) ={f: X — R: fis continuous and vanishes at infinity}.

On Cy(X,R) we have a metric do(f,g) = sup |f(z) — g(z)|. Prove: the closure of C.(X,R) in
reX
Ch(X,R) is Co (X, R).
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Proof (1) After translating f by f(z(), we may assume f(zo) = 0. Since f : X — Ris continuous, the
set W = f~'(B(0, §)) is an open neighborhood of zy. Then Uy := U NW is an open neighborhood
of z¢. Since X is Hausdorff, {z(} is compact. By Proposition 2.4.16, there exists an open set V such
that V is compact and {zo} C V C V C Uy. By Proposition 2.7.22, X is normal. So by the Urysohn
lemma, there exists a continuous function i : X — [0, 1] such that (V) = 0 and h(U§) = 1. Now
take g = fh, then we have

o sup |g(z) = f(z)| = sup | f(z)[|h(x) = 1] = sup |f(z)[[h(z) = 1] < sup |f(z)| < § <e

rxeX rzeX zeUp xe€Ug

o g(x) = f(z)h(x) = f(z) for z € Ug, thus g = f on U°.
o g() = f(@)h(z) = 0= f(zo) on V.
(2) By Theorem 2.6.17 / Problem 56 (2), it suffices to show that C.(X,R) is a subalgebra of Cy(X,R)

which vanishes at no point and separates points.

¢ Since the union of two compact sets are compact, the support of the sum/product of two
compactly supported functions is a closed subset of a compact set, hence compact. Also it is
obvious that scalar multiples of compactly supported functions are compactly supported.

o Forany z € X, choose an open neighborhood U of . Since the compact set {z} and the closed
set U¢ are disjoint, by Theorem 2.8.9, there exists a compactly supported continuous function
f:+X —[0,1] such that f(z) =1 and f(U°) = 0. Hence C.(X, R) vanishes at no point.

o For any z,y € X with x # y, since X is Hausdorff, the singleton {y} is closed. And since
{z} is compact, by Theorem 2.8.9, there exists a compactly supported continuous function
f:X —[0,1] such that f(z) =1 and f(y) = 0. Hence C.(X,R) separates points. O

Problem 64 (Metrizability for compact Hausdorff spaces) Let (X, .7)be a compact Hausdorff space.
Show that the following are equivalent:

(1) X is metrizable.

(2) The diagonal A C X x X is a G set.

(3) There exists a continuous function f : X x X — R such that f~*(0) = A.

Proof |[(3)= (2)| A=f""! ﬂ F7H(=1, 1) isa Gs set.

(2) = (1) | Since X is compact Hausdorff, by Corollary 2.8.13, it suffices to show that X is second count-

able. Suppose A = ﬂ G, where each G,, is open in X x X. For each fixed n and for any z € X,
n=1

since (z,z) € A C G, we can find some open neighborhood U of z such that U’ x Uy C G,,.
Since X is regular, there exists an open neighborhood V. of x such thatz € V* C V* C U”. Since
X is compact, finitely many of the V;* cover X, say X = V" U--- UV, . Now consider

o0
——=C
Tm? 1 m ?

which is countable. Moreover, for any distinct =, y € X, since (z,y) ¢ A, there is some n such that
(z,y) ¢ Gp. Choose some V! containing x. Note that V* x V! C G,,soy ¢ V" . Hence V!

and V;» = are disjoint open sets separating x and y.

H Cs
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Now consider the topology 7s generated by S. The above observation shows that (X, 7s) Haus-
dorff. We claim that the corresponding basis

B={B:B=S5nN---NS,, forsomeSy,---,S, €S}
is a countable basis for 7. Indeed, since S is countable,
|B| < |finite subsets of S| < N(l) + N% + Ng 4+ =N+ Vg + Vg + -+ =Ng.
Since Js C 7, the identity map
Idy : (X, 9) — (X, Is)

is continuous. Moreover, it is a bijection from a compact space to a Hausdorff space, so it is a
homeomorphism. Therefore these two topologies are the same. Now B is a countable basis of
(X,.7),s0 X is second countable as we needed.

(1) = (3) | For the metric space (X, d), the function d : X x X — R is continuous and d~'(0) = A. O

PSet 9, Part 1

Problem 65 (Uniqueness of extension)
(1) Prove Lemma 2.9.2:

Let X, Y be topological spaces, A C X be a dense subset, and f : A — Y be a continuous map.
IfY is a (T2) space, then f admits at most one continuous extension.

(2) Can we replace (T2) by (T1)? If yes, prove it; if not, give a counterexample.

Proof (1) Suppose that f admits two continuous extensions g1, g2 : X — Y. Then there exists = €
X such that g1 () # g2(z). Since Y is Hausdorff, there exist disjoint open sets Uy, Uz such that
g1(z) € Uy and go(x) € Uy. Now gy '(U1) N g5 *(Us) is an open neighborhood of , so it contains
some a € A by density. But this contradicts the fact that g1 (a) = f(a) = g2(a).

(2) The conclusion does not hold if Y is a (T1) space. Consider X =Y = (R, Zofinite)- Then Y is a
(T1) space, and A = Z is dense in X. For the inclusion map f : A — Y/, any function of the form

fi(z) = where t¢7Z

is a continuous extension of f. O

Problem 66 (Tietze extensions with restrictions) Let (X,.7) be a (T4) space, A C X be closed.

(1) Let C be a convex compact subset of R™. Prove: any continuous map f : A — C can be extended
to a continuous map f : X — C. In particular, any complex-valued continuous function on A can
be extended to X while keeping the norm.
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(2) Let f: A— Rand g1, g2 : X — Rbe continuous functions. Suppose
g1() < f(x) < g2(x), Vo € A and  gi(z) < g2(2), Vo € X.
Prove: f can be extended to a continuous function f : X — R such that

g1(z) < f(z) < go(z), VreX.

Proof (1) Asstated in Remark 2.9.7, f can be extended to a continuous function g : X — R™. Since
C is a convex compact subset of R™, it is a strong deformation retract of R™, so there exists a

continuous retraction 7 : R™ — C. Thenr o g : X — C is the desired extension of f.

(2) Since X is normal and A is closed, by Tietze extension theorem, f can be extended to a continuous
function go : X — R. Then f = min{max{go, g1}, g2} is a continuous extension of f that satisfies
g1(z) < f(z) < go(z) forall z € X. O

Problem 67 (Retraction) Let X be a topological space, A C X be a subspace. We say A is a retract of
X if there exists a continuous map 7 : X — A such that

r(z) =z, VxeA

Such a map r is called a retraction.
(1) Prove: if X is Hausdorff, A is a retract of X, then A is closed.

(2) Prove: Aisaretract of X if and only if for any topological space Y, any continuousmap f : A — Y
has an extension f : X — Y.

(3) Suppose X is normal and A is closed. Prove: if Y is a retract of R’ (with product topology, where

J is any set), then any continuous map f : A — Y admits a continuous extension f : X — Y.

Proof (1) Fixany a ¢ A. Supposer : X — A is a retraction and r(a) = b = r(b) € A. Since X is
Hausdorff, there exist disjoint open sets U,V such that a € U and b € V. Then (U N A) and
r~1(V N A) are disjoint open sets. Note thata € 7~ *(b) C r~*(V N A),so UNr~ (VN A) is an open
neighborhood of a disjoint from A. This shows that A® is open, so A is closed.

(2) (=) Justtake f = f or wherer: X — Ais a retraction.
(<) TakeY = A and f = Id 4. Then the extension f: X — Ais a retraction.

(3) Let::Y — R’ be the inclusion map. Then ¢ o f : A — R’ is continuous and so is each 7; 0t o f :
A — Rfor j € J. Since X is normal and A is closed, by Tietze extension theorem, each 7 ot o f

can be extended to a continuous function g; : X — R. With these we obtain a continuous function
g: X 5 R’ andthen f =rog: X — Y is the desired extension of f. O

Problem 68 (Different compactifications) Let X,Y, Z be LCH spaces.

(1) Prove that the Stone-Cech compactification X is the largest compactification of X: for any com-
pact Hausdorff compactification K of X (with an embedding ¢ : X — K), there is a surjective
continuous closed map F' : fX — K which extends the embedding ¢ : X — K.
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Prove that the one-point compactification X* is the smallest compactification of X.

Given any continuous map ¢ : X — Y, we constructed a continuous map Sy : X — Y. Prove
that the “lifting” ¢ ~~ B¢ is “functorial” in the following sense:

@ If Idx is the identity map, then fldx = Idgx.
@Ifp: X —-Y,y:Y — Z are continuous maps, then () o p) = B¢ o Be.

Proof (1) By the universal property of Stone-Cech compactification, there exists a continuous map

(2)

3)

¢ : X — K suchthat o = . Since ¢ is a continuous map from a compact space to a Hausdorff
space, itis closed. By Problem 32 (2), ¢(5X) = @(B(X)) D P(BX) = o(X) = K, so ¢ is surjective.

Lemmal If Aisdensein X, then for every open U C X we have U = U N A.

Proof For every x € U and any neighborhood W of x, the intersection W N U is open and
nonempty. Since A is dense, we have W NU N A # o, and it follows that x € U N A. Thus
the inclusion U C U N A holds. The reverse inclusion is obvious.

Lemma 2 A locally compact dense subspace M of a Hausdorff space X is open in X.

Proof Every point2 € M has aneighborhood U in the subspace M such that the set TV =TnM
(see Problem 29 (2)) is compact and thus closed in X. SinceU C UNM,wehave U CUNM =
UNM C M. Let W be an open subset of X satisfying U = M N W. Then by Lemma 1

reWCW=MnW=UCcCM,

which shows that every point € M has a neighborhood W in the space X contained in the
subspace M, i.e., that M is openin X.

Note that Lemma 2 shows that any Hausdorff compactification ¢ : X — Y of the LCH space X

satisfies ¢(X) is open in Y, and it follows that ¢ is an open map. Now consider the map

x, ify = p(x) forsomezx € X,
F:YV5X"=XU{0}, y— v=vl)

00, ify ¢ ¢(X).
It is obvious that F' is surjective. Let U C X be open.

o Ifoo ¢ U, then F~1(U) = ¢(U) is open in ¢(X), and then open in Y by Lemma 2.
o Ifoo € U,letU = (X \ K)U{oc} where K is compact in X. Then " *(K) = ¢(K) is compact
inY,soitis closed in Y. Hence F~'(U) =Y \ F~!(K)is openin Y.

Therefore F' is a continuous map from a compact space to a Hausdorff space, which is closed. This
shows that X* is the smallest compactification of X in the sense of Remark 2.9.22.

@ Since Idgx satisfies Idgx o 8 = 5 o Idx, by Proposition 2.9.20, fIdx = Idgx.

@ Since (B o Bp)of=Ppo(BpoB)=ppo(Bop)=(BYof)op=(Boy)op=pSo(Poyp),
by Proposition 2.9.20, (1) o ) = B o Bep. O
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PSet 9, Part 2

Problem 69 (Local finiteness)

(1)
(2)

(3)
(4)
(5)

Prove: if F = {A} is a locally finite family of subsets, so is F = {4}.

Prove: if X is countably compact, then any locally finite family of subsets 7 (whose elements need
not be open) is indeed a finite family.

Prove: countably compact paracompact space is compact.
Prove: X is compact if and only if every open cover of X has a locally finite subcover.

Prove: if every locally finite open covering of X has a finite subcover, then X is pseudocompact.

Proof (1) This has been proved in Problem 31 (4).

(2)

(3)

Lemma / Exercise 2.1.3 (3) X is countably compact if and only if for every nested sequence Fy D Fp D - -

of nonempty closed subsets of X, the intersection ﬂ F,, is nonempty.
n=1

Proof

o0 o
(=) If ﬂ F, = o, then U F; = X, ie, {F;} -, is a countable open cover of X. Since X

n=1 n=1
k
is countably compact, there exists a finite subcover {th }izl’ which implies ﬂ F,, =9 a
i=1
contradiction.

(<) Let{U,}52, be a countable open cover of X. Foreachn,letV,, =U;U---UU, and F,, = V..
Suppose that no finite subcollection of {U,};~, covers X. Then each F,, is nonempty, and

o0 o0
Fy D F5 D ---. By the assumption, ﬂ F,, # @, which implies U V,, C X, a contradiction.

n =

n=1 n=1

Now suppose X is countably compact and there exists a locally finite family {4,,}>2; of nonempty

subsets of X. Let F,, = U Ag. Then Fy D F» D --- and by (1), {Tn}le is also a locally finite

k=n
family, so
oo oo
F, = 1li AL =0.
(150 = Jim, U 4=
n=1 k=n

This is a contradiction by the lemma.

For any open cover {U, : a € A} of X, since X is paracompact, it admits a locally finite open
refinement {V; : B € A’'}. By (2), |A’'| < oo. Then for each 8 € A, there exists ag € A such that
Vi C Uq,. Thus {U,, : 8 € A'} is a finite subcover of {U, : @ € A}. Hence X is compact.

The “only if” part is trivial. Now suppose every open cover of X has a locally finite subcover. By
(2), it suffices to show that X is countably compact. Let {U, },~; be a countable open cover of

X. Suppose it has no finite subcover. For each n, let V,, = U Ug. Then {V,,}7°; has no finite
k=1
subcover and Vi C V, C ---. It follows that {V,,};2; is an open cover of X with no locally finite

subcover (for any subcover V,,, C V,,, C ---, any point z € V,,, is contained all V,,, fori > 1), a
contradiction. Therefore X is countably compact and hence compact by (2).
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(5) Let f be a continuous real-valued function defined on X. Note that {f~'(n —1,n + 1)}n ez is @

locally finite open covering of X, the existence of a finite subcover implies that f is bounded. [

Problem 70 (Products of paracompact spaces)
(1) Prove: the Sorgenfrey line is paracompact, while the Sorgenfrey plane is not.
(2) Is paracompactness productive? Is it preserved under continuous maps?
(3) Prove: if X is compact, Y is paracompact, then X x Y is paracompact.

Proof (1) © The Sorgenfrey line is Lindelof (Problem 58 (5)), (T1) and (T4) (Example 2.7.17),
hence (T3). So it is paracompact by Proposition 2.10.7.

@ By the proof of Problem 61 (3), (RQ, %Orgenfrey) is not normal. Since a paracompact Hausdorff

space is normal by Proposition 2.10.11, (R?, Z5orgentrey) cannot be paracompact.

(2) © By (1) we know that paracompactness is not productive.

@ By Problem 15 (2) the identity map from R to (R, Zs..) is continuous. The usual real line
is paracompact since it is Lindelof and (T3). However, (R, 7. ) is not paracompact. For
example, the open cover {(—oo, n)};2; has no locally finite refinement, since any nonempty

open set in (R, Zs..) is of the form (—oo, a) where a € RU {oo}.
(3) LetU bean open cover of X xY. Forany y € Y, the slice X x {y} is compact, so there exists a finite
subcover {U, 1 },*, ofU. Let N, = U, 1U- - -UU,», . Then N, is an open set containing X x {y}, and
by the tube lemma, there exists an open neighborhood W), of y such that X x {y} ¢ X x W, C N,.
Now {W, : y € Y} forms an open cover of Y. Since Y is paracompact, there exists a locally finite

open refinement {I,_ : a € A}. Let us show that

Nz

U U0 (X x W)}

a€cN k=1

is a locally finite open refinement of ¢{. Take any point (z,y) € X x Y. First y is in some W,_,
and (z,y) € X x W, C N, is covered by {U,_ N (X x W, )}.29. Since Y is paracompact,
there exists an open neighborhood V of y in Y such that V intersects only finitely many W, . Then
X x V is an open neighborhood of (z, y) that intersects only finitely many U, ;. Therefore X x Y

is paracompact. O
Problem 71 (LCH version of P.0.U.) Let X be a o-compact LCH space, and & = {U,} be an open
cover of X.

(1) There exist two locally finite open coverings V = {V,,} and W = {W,, } such that

o W, CW, CV, CV,,andV, is compact,

o for each n, there exists U,, € U such that V,, C U,,.
(2) Prove Theorem 2.10.15 (LCH version of P.O.U.):

Let X be a o-compact LCH space. Then for any open covering U = {Uy} of X, there exists a
partition of unity {p,, } such that

o each supp(py ) is compact,
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o for each n, there exists U, € U such that supp(py) C Ua.

Proof (1) By Problem 52 (4), there exists an open cover {G,, }»>, of X such that G,, C G,, C G141

(2)

and each G,, is compact. Let G_; = Go = @ and fixn > 1. Foreach z € G,, \ G,,_1, choose U, € U
so that x € U,. Since

o the compact set G, \ G,,—1 is contained in the open set G, 1 \ G,,—2,

o the compact set {z(} is contained in the open set U,,

by Proposition 2.4.16 we can choose an open neighborhood N, of = such that
N, CU, N (Gp+1\Gn—2) and N, is compact.

Since {Nx}w €G\Gn 1 is an open cover of the compact set G, \ G _1, it admits a finite subcover
I, C {Nw}xe?"\an,l' By construction, for each W € I';,, there is some U € U such that W C
Un (Gn+1 \ m) Apply Proposition 2.4.16 again to find for each W € I',,, an open set Vyr such
that

WcCViw CViw CUN(Gpi1 \Grz2) and Vi is compact.

Now enumerate {W,,}o°; = U I',, and define V,, = Vi, . The collections V = {V,} and W =
n=1

{W,,} satisfy the desired properties.

LetV = {V,}and W = {W, } beasin (1). By the LCH version of Urysohn lemma (Theorem 2.8.9),
for each n, there exists f,, € Cc(X, [0,1]) such that f,, (W,,) = {1} and f,,(V);) = {0}. Since ¥V = {V},}

is locally finite, each x € X has an open neighborhood on which f := Z fn is well-defined and
n=1
continuous. Note that f > 1 because W = {W,,} covers X, so p,, := L= is a well-defined member

o €EU. O

- =

of C.(X,[0,1]) for each n and satisfies supp(p,) C V,, C U, for some

Problem 72 (Examples of non-examples of topological manifolds)

(1)
(2)
(3)

(4)

Prove: every topological manifold is o-compact.
Prove: RP" is a topological manifold.

(Line with doubled point) Let X = (R x {0,1})/ ~, where (z,0) ~ (x,1) for all  # 0. Prove: X
is (A2) and locally Euclidean, but not (T2).

(Long line) Let €2 be the smallest uncountable well-ordered set. That is, 2 is an uncountable set,
and there is a well-order < on € such that for any a € ), the set {b € 2 : b < a} is countable. Let
L =Q x (0, 1]. Define an order on L via

(a,t) < (b, s) if and only if “a < b” or “a =band ¢t < s”.

For any « < y in L, consider the interval (z,y) ={z € L: 2 < z < y}.

® Prove: there “intervals” (z,y) form a basis for a topology on L.

@ Prove: with respect to this topology, L is (T2), locally Euclidean, but not (A2). It is called the
long line.
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Proof (1) Let M be a topological manifold and B be a countable basis of M. For each z € M,

2)

3)

(4)

there exists an open neighborhood U, of + homeomorphic to an open subset V,, of R", denoted
by ¢, : Uy - V,. Find an open ball B(¢(z),¢) in V,. Then there exists B, € B such that
B, C ¢~ (B(p(x), 5)). Since ¢(B,) is compact, it follows that B, is compact. Since 3 is countable,
the collection { B, : # € M } is a countable cover of M by compact sets, so M is o-compact.

For each 0 < i < n, consider U; = {[zg : --- : x,,] € RP" : ; # 0} and the map
gOiIUi%Rn7 [xo;...;xn]p—) (xoz...xi_ljxi-"_l,... ’x”).

Then ¢, is a homeomorphism between U; and R". Since RP" = U U, it is locally Euclidean. For
i=0
any two points in RP", either they are in different U; and we are done, or they are in the same U;

and by the homeomorphism ¢;, we can find disjoint open neighborhoods of them. Hence RP" is
(T2). Since R™ is (A2) and there are n + 1 charts in total, RP" is (A2).

The collection

U U {la-ra+rrxfoypu [J {l(=rnr)x{0yu | (=) x{1}]}

q€Q\{0} r€(0,g)NQ r€Q>0 r€Q>0

is a countable basis of X, so X is (A2). For z # 0, the open neighborhood [(m - %‘, T+ %) X {0}}

||

is homeomorphic to (ac - %, x + 7) For the two origins, both [(—1,1) x {0}] and [(—1,1) x {1}]
are homeomorphic to (—1,1). Hence X islocally Euclidean. By construction, the two origins [(0, 0)]
and [(0, 1)] cannot be separated by disjoint open sets, so X is not (T2).

® For any z = (a,t) € Q x (0,1], take z = (a,%) and y = (b,1) with a < b. (Since Q is the
smallest uncountable well-ordered set, such b exists.) Then z € (x,y), so the intervals (z,y)
cover L. For any two intervals (z1,y1) and (z2, y2), if they intersect, then (z1,y1) N (z2,y2) is

still an interval. Therefore the intervals (x,y) form a basis for a topology on L.

@ Let us denote the successor of a € Q by a™. (Note that there is no maximal element in (2, and
then the set {b € 2 : a < b} is nonempty and has a least element by well-order.) For any two

distinct points = (a,t) and y = (b, s) in L, without loss of generality assume a < bor a = b.

o If a < b, the disjoint open sets ((a, %), (™, %)) and ((a™, §), (b",1)) separate z and y.
o If a = b, we may assume ¢ < s. Then ((a, %), (¢, 5%)) and ((a, £2), (a™, 1)) are disjoint

open sets separating = and y.
Hence Lis (T2). Forany a € {2, consider the map ¢, from the openset {a} x (0, 1Ju{a™}x (0, 1)
to (—1,1) defined by
pala,t) =t—1 and @, (a* 1) =1t
Note that this is a homeomorphism, so L is locally Euclidean. Since {{a} x (0,1) : a € Q} is
an uncountable collection of disjoint open sets, L admits no countable basis so is not (A2). O
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PSet 10, Part 1

Problem 73 (Connectedness) Clarify whether the following spaces are connected, totally disconnected
or neither.

(1) (X> f%oﬁnite)'
(2) ({0,1},7), where 7 = {@,{1},{0,1}}.

(3) (X,d), where d is an ultrametric, i.e., the triangle inequality in Definition 1.1.1 is strengthened to
d(z, z) < max{d(z,y),d(y, z)}. The p-adic numbers (Example 1.1.6 (8)) form an ultrametric space.

(4) (RN, %mform) (see Problem 20).

Solution (1) If X is finite, then (X, Zofinite) is discrete, so X is totally disconnected. If X is infinite,
then any two nonempty open sets must intersect, so X is connected.

(2) ({0,1},7) is connected since the only two nonempty open sets intersect.

(3) Any open ball B(z,r) in (X, d) is clopen. Indeed, for any y € B(z,r) and any z € B(y,r), we have
d(z,z) < d(y,z) <r,soy € B(y,r) C B(z,r). Let S be any subset of X that contains more than
one point, say « and y, set 7 = d(z,y). Then S is covered by two disjoint open sets B(x,r) and
B(z, )¢ both having nonempty intersection with S. Hence S is disconnected. Thus (X, d) is totally
disconnected.

(4) (]RN, %niform) is neither connected nor totally disconnected. See Problem 79 (1) @ for a classifica-

tion of its connected components. O

Problem 74 (Connectedness of subspaces) Let (X, .7)be a topological space, and Y C X a subspace.
Which of the following statements are equivalent to the fact that Y is disconnected? Prove the correct
ones and give counterexamples for the wrong ones.

(1) There exist nonempty sets A, B C X with AN B = AN B = g, such that Y = AU B, where the
closures are taken in X.

(2) There exist disjoint open sets A, Bin X with ANY # @, BNY # &,suchthatY C AUB.
(3) There exist disjoint closed sets A, Bin X with ANY # @, BNY # &, such thatY C AU B.
(4) There exists a clopenset Ain X suchthat ANY #@and ANY #Y.

(5) There is a surjective continuous map f : Y — {0,1}.

Solution (1) By Problem 29 (2), AN B =An (BNY) =(ANY)NB = AN B, and similarly
A" N B = AnN B. Hence the conditions are equivalent to Y being disconnected.

(2) Consider R where the open sets are @ and all subsets that contain 0. Then R \ {0} is discrete,
so it is disconnected. However, any two nonempty open sets in R intersect.

(3) Consider R where the open sets are R and all subsets that does not contain 0. Then R \ {0} is

discrete, so it is disconnected. However, any two nonempty closed sets in R intersect.

(4) E Consider the example in (2), where @ and R are the only clopen sets.
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This is Proposition 3.1.2 (5). O

Problem 75 (Connected components) Let X be a topological space. The connected component contain-

ing € X is defined to be the maximal connected subsets of X containing .

(1)

(2)
3)
(4)

(5)

(6)

Prove: the connected component containing x is the union of all connected subsets of X that con-

tain z.
Prove: each connected component is a closed subset.
Give an example showing that the connected component need not be open.

Prove: if f : X — Y is continuous, then for any subset A of X, the cardinality of connected
components of f(A) is no more than the cardinality of connected components of A.

Denote the connected component of X, containing z,, to be C(z,). Prove: the connected compo-

nent of H X, containing the point (z,) is H C(xa)-

Let X be a compact Hausdorff space. Prove: for any z, the connected component C(z) is the

intersection of all clopen sets that contain «.

Proof (1) By Proposition 3.1.14, the union of all connected subsets of X containing x is connected

(2)

(3)

(6)

and contains x. Its maximality is clear.

Let C be a connected component of X. Then C is connected by Proposition 3.1.12. The maximality
of C implies C = C, so C is closed.

By Problem 79 (1) @, each point on the Sorgenfrey line is a connected component, while it is not

open.

The image of any connected component of A under f is connected, so the cardinality of connected
components of f(A) is no more than that of A.

Denote by C' the connected component of H X, containing (x,). Then each 7, (C) is connected
and contains z,,, 50 7, (C) C C(z,) and C' C H T (C) C H C(z4)- On the other hand, by Propo-

sition 3.1.18, H C(z4) is connected and contains (z4), so H C(zy) C C. Hence C = H C(za).

Let A(x) be the intersection of all clopen sets that contain x.

C(z) C A(z) | Any clopen set containing x also contains C(z), for otherwise C(x) would be dis-

connected by this clopen set and its complement.

A(x) C C(x) | It suffices to show that A(x) is connected, and we prove this by contradiction. If A
is disconnected, then there exist disjoint nonempty closed sets E, F'in A(z) such that A(z) =
EUF. Since A(x) is the intersection of closed sets, it is closed. Hence both F and F' are closed
in X. Since X is compact Hausdorff, X is normal, so there exist disjoint open sets U, V in X
such that E C U and F' C V. Note that (U UV)¢ is closed and then compact for X is compact,

and it is covered by the open sets

F = {F : F®is a clopen set containing z }.
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Hence there exist finitely many Fi, ..., F, € F such that (UUV)® C F;U---UF,, or equiva-
lently,
K=Fn -NFcUUV

We can assume = € U. Note that K is clopen, and K NU = K \ V since K C U UV and
UNV = o. It follows that K N U is clopen and contains z, but it does not contain all of A(z)
for U does not contain all of A(z). This contradicts the definition of A(x), so A(z) is connected
and then A(x) C C(z). O

Problem 76 (Non-products)

(1) Let X, Y be topological spaces, and A C X, B C Y. Prove: if X,Y are connected, sois (X x Y \
(A x B).

(2) Suppose R ~ X x Y. Prove: either X or Y is a single point set.

(3) Prove the same conclusion for S*.

Proof (1) Suppose f: (X xY)\(Ax B) — {0, 1} is continuous. Fix some zp € X\ Aand yo € Y'\ B.
For any (z,y) € (X xY) \ (A x B), without loss of generality, assume = ¢ A. Then {z} x Y is
homeomorphic to Y and contained in (X x Y') \ (A x B), so the restriction f|;,}xy is constant.

Similarly, f|x x{y,} is constant. Hence

f(z,y) = f(x,90) = f(20,Y0)-

Thus f is constant, and by Proposition 3.1.2 (5), (X x Y') \ (4 x B) is connected.

(2) Since R is connected, both X and Y are connected. If both X and Y contain more than one point,
then forany x € X and y € Y theset (X xY)\ {(z,y)} is connected by (1). However, R would no
longer be connected if we remove some point from it (if it misses r, then R \ {r} can be covered by
(—o0,r) and (7, +00)), a contradiction.

(3) Suppose S' ~ X x Y. Since S' is connected, both X and Y are connected. Suppose |X| > 2 and
|Y'| > 2. The bijection between S' and X x Y implies that either | X| > 3 or |Y| > 3. Without loss
of generality, assume | X | > 3. Then we can pick two distinct points 21,2, € X and y € Y. The set
(X x Y)\{(z1,9), (x2,y)} is connected by (1), but S' minus two points is disconnected (S' minus
one point is homeomorphic to R, and R minus one point is disconnected), a contradiction. O

PSet 10, Part 2

Problem 77 (Path-connectedness: examples)
(1) Although looks quite non-obvious, the set R? \ Q? is path-connected. We give two proofs here:

First proof Since Q” is a countable set, for any » € R? \ Q?, there exist uncountably many lines
such that
relcR?\ Q%

Now for = # y € R? \ Q?, pick two such lines, one contains z and the other contains ¥, such
that they are not parallel. Now you can connect z to the intersection point through the first
line, then to y through the second line.
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Second proof Suppose (z1,y1), (22,y2) € R*\ Q% If 21,25 € R\ Q, then we pick yp € R\ Q, and
connect (x1, y1) to (z1,yo) through the line = = x;, and connect (x1, yo) to (22, yo) through the
line y = yo, and finally connect (x2, yo) to (x2, y2) through the line x = 5. Similar arguments
hold if z1,y2 € R\ Qoryi,ys € R\ Qorzy,y; € R\ Q.

It turns out that each proof can be extended to prove a more general result on path-connectedness:

Proposition 1 Let S be ... then R™ \ S is path-connected.

Proposition 2 Let X, Y be path-connected, and ...
Complete the full statements and prove.
(2) Show that the topological space (X = {v,s}, 7 = {@,{s},{v, s}}) is path-connected.

Proof (1) @ Let S bea countable subset of R"™ (n > 2). Then R™ \ S is path-connected.

Proof Since S is countable, for any = € R™ \ S, there exist uncountably many lines ! such
thatz € [ C R™\ S. Now for z # y € R™\ S, pick two such lines, one contains = and the other
contains y, such that they intersect at a point z. Then we can connect « to z through the first
line, then to y through the second line.

@ Let X,Y be path-connected, then forany U C X and V C Y, theset (U x Y) U (X x V) is path-
connected.

Proof Suppose (z1,y1), (z2,y2) € (UXY)U(X x V). If 21,22 € U, then we pick yo € V, and
connect (x1, y1) to (z1,yo) through the line = = z1, and connect (x1, yo) to (22, yo) through the
line y = yo, and finally connect (x2, yo) to (x2, y2) through the line x = 5. Similar arguments
holdifx1 € U,y € Voryi,yo € Vorazs € Uy, € V.

(2) It suffices to construct a path from v to s:

v:[0,1] = X, tr—>{

Problem 78 (Local connectedness)

(1) Define the concept of local connectedness:

Definition We say a topological space X is locally connected if ...
(2) Is (R, Zzocountable) connected /locally connected /path-connected/locally path-connected?

(3) For simplicity, let us denote

C = connected, LC = locally connected,

PC = path-connected, LPC = locally path-connected.
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Give examples for regions @ to ® in the following picture:

c 4 H

LC

@
PC

) i
@ 1

LPC,

(4) Prove: if X is compact and locally connected, then X has finitely many connected components.

Can we remove the local connectedness condition?

(5) Prove: X is locally connected if and only if for any open set U in X, any connected component of

U is open. In particular, any connected component of a locally connected space is open.

(6) Suppose X is locally connected, f : X — Y is continuous. Prove: if f is either open or closed, then

f(X) is locally connected. Can we remove the assumption “f is either open or closed”?

Proof

consisting of open connected sets. In other words, for any z € X, every neighborhood of = contains

(2)

(3)

(1) A topological space X is locally connected if every point admits a neighbourhood basis

a connected open neighborhood of z.

@

@

Q ® @ ® ® ® ©

Since R is uncountable, there are no disjoint non-empty open subsets in (R, Jzocountable), SO it
is connected.

For any open neighbourhood U of z and any two open sets A, B C Rsuchthat U N A # @
andUNB # @,wehave UN A, UN B € ocountable- Hence ANBNU = (UNA)N(UNB)is
the intersection of two nonempty open sets, which is nonempty for the same reason as in @.
Therefore any open neighbourhood of z is connected, so (R, Zcocountable) is locally connected.

For any f € C([0,1], (R, Zocountable)), f ([0, 1]) is compact. However, as we have shown in the
proof of Problem 58 (4), compact sets in (R, Zzocountable) Must be finite. Since the topology on
any finite set in (R, Zocountable) is discrete, f([0, 1]) would be totally disconnected if it has more
than one point. But now it is the continuous image of [0, 1], so f([0, 1]) must be a singleton.
Therefore f must be constant, which means (R, Zzocountable) is Not path-connected.

Since (R, Jeocountable) is connected but not path-connected, it is not locally path-connected by
Proposition 3.2.10.

Q is neither C nor LC.

R is both PC and LPC.

The topologist’s sine curve is C but neither PC nor LC.

The topologist’s sine curve with an additional path from (0, 0) to (1, 0) is PC but not LC.

(R, Zeocountable) is C and LC but not PC, as shown in (2).

(0,1) U (1,2) is LPC but not PC.

Let L™ be the one-point compactification of the Long line L defined similarly as in Problem
72 (4) with (0, 1] replaced by [0, 1). Equivalently, L* is the space 2 x [0,1) U {(w1,0)} with the
lexicographic order topology, where 2 = [0, w; ) is the minimal uncountable well-ordered set.
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Denote by C the quotient of L™ identifying its initial point (0, 0) and final point (w;,0). Then
C'is PC, LC, but not LPC. (It is not locally path-connected at [(w1, 0)].)

The disjoint union of two copies of ®-type space is LC but neither C nor LPC.

(4) Since X is compact and locally connected, it can be covered by finitely many connected open sets.
Therefore X has finitely many connected components. The local connectedness condition is neces-

sary. For example, the Cantor set is compact, but it has uncountably many connected components.

(5) (=) Let C be a connected component of U. Since any point in C' has a connected open neighbour-
hood, which must lie in C, C'is open.

(<) For any z € X and any neighbourhood V of =, V' contains an open neighbourhood U of z.
Then the connected component of U containing « is the desired connected open neighbour-
hood of  which is contained in V.

(6) We shall use the characterization of local connectedness in (5). By Problem 23 (1), f : X — f(X)
is a quotient map. Let VV be an open setin f(X) and C be a connected component of V. We want to
show that C' is open, i.e., f'(C) is open in X. For any x € f~*(C), we have z € f~'(V), which is
openin X. Since X is locally connected, there exists a connected open neighbourhood U of x such
that U ¢ f~'(V). Then f(U) is also connected and f(U)NC > f(x),so f(U)UC is connected and
contained in V. Since C is a connected component of V', we must have f(U)UC = C, ie., f(U) C C.
Therefore z € U C f~!(C), which implies f~*(C) is open. It follows that C' is connected and by
(5) we see that f(X) is locally connected.

The assumption “ f is either open or closed” is necessary. Let (X, 7x ) be any non-locally connected
space. Then (X, Jgiscrete) is locally connected and the identity map Idx : (X, Jgiscrete) = (X, Ix)
is continuous. However, the image is not locally connected. O

Problem 79 (Components and path components)
(1) Find the components and path components for the following space:

® The Sorgenfrey line.

@ (Rv zocountable)~
® (R", Zunitorm) (see Problem 20).

(2) Prove Proposition 3.2.22 and Proposition 3.2.23 (my and 7. are functors).

Proof (1) ®© We have shown in Example 3.1.4 (4) that the Sorgenfrey line is totally disconnected.
Therefore each point is a component and a path component.

@ By Problem 78 (2), (R, Zzocountable) is connected. In part @ of the proof of Problem 78 (2), we
have seen that only singletons are path-connected. Therefore each point is a path component.

® Consider the equivalence relation ~ on X:
(xn) ~ (yn) < the sequence (z, — y,) is bounded.

We shall show that the (path) component of (z,,) € X is [,] = {(yn) € X : (yn) ~ (zn)},
and it suffices to prove that each such [z,,] is clopen and path-connected.
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¢ For any (y,) € [z,], we have B((y,), 1) C [x,], so [z,] is open. The complement of [z,,] is
the union of all other equivalence classes, which is open as well. Therefore [x,,] is clopen.

o For any (y,), (zn) € [zn), there exists M > 0 such that |y,, — z,| < M for all n. Consider
70,1 5 RY ts ((t)) = (t2n + (1= t)yn).

Then v(0) = (y,) and v(1) = (z,). We are left to show that v is continuous. It suffices

to show that the preimage of any basic open set B((wy),¢) (0 < € < 1) is open. Suppose

t € v 1 (B((wn),€)). Then § := sup |y, (t) — (w,)| < e. Note that each v, is linear, hence
neN

e—9
h/ﬂ(t/)*’yn(t)':pn*yn'|t/7t|<Mm<€f§

forallt’ € B(t, 532) and n € N. It follows that
d(y(t), (wn)) < d(y(t),7(t)) + d(¥(t), (wn)) < (e —8) +d =e.

Therefore t € B(t,552) C 7 ' (B((wn),¢)). This shows that 7 is continuous, so [z,,] is

path-connected.

(2)

7e(f) € C(me(X), m(Y)) ‘ Let V be open in 7.(Y). Then 7, (V) is open in Y. Since f is con-
tinuous, f~' (. *(V)) is open in X. Note that f~"'(x_'(V)) is the union of all connected
-1

components of X whose images under f are contained in 7, ' (V), hence m.(f ! (7 '(V))) =

7.(f)"1 (V) is open in 7. (X). Therefore m.(f) is continuous.

me(Idx) = Id,_(x) ‘ The identity map preserves connected components.

me(go f) = m(g) ome(f) ‘ Suppose 7.(f)([u]) = [v] and 7.(¢9)([v]) = [w]. Then there exist con-
nected componentsU C X,V C Yand W C Z,suchthatu e U,v € V,w € Wand f(U) CV,
g(V) C W. Since g(f(U)) C g(V)) € W, we have m(g o f)([u]) = [w] = 7c(g) o me(f)([u])-

‘ mo(ldx) = Id~y(x) ‘ The identity map preserves path components.

‘Wo(go f) =mo(g) o mo(f) | Suppose m.(f)([u]) = [v] and 7.(g)([v]) = [w]. Then there exist path
components U € X,V C Y, W C Z,suchthatu € U,v € V,w € Wand f(U) CV,
g(V) c W. Since g(f(U)) C g(V) C W, we have m.(g o f)([u]) = [w] = 7e(g) o me(f)([u]). O

Problem 80 (Divisible properties) We say a topological property (P) is a divisible property if
X satisfies (P), Y is a quotient of X = Y satisfies (P).
(1) Prove: compactness, connectedness, path-connectedness are divisible.
(2) Is (T1), (T2), (T3), (T4) divisible? Is local compactness divisible?
(3) Is (A1), (A2) divisible? Is separability, Lindel6f property divisible?

Proof (1) Quotient maps are continuous, hence they preserve compactness / connectedness / path-
connectedness.
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(2) Consider the map

0, ifz=0,
p: X=1[0,2—=Y={0,1,2}, z—(1, if0<z<?2,
2, ifx=2.

Endow Y with the quotient topology induced by p so that

Fy = {2,{0,1}, {1}, {1,2},{0,1,2}}.

‘ Y isnot (T1)/(T2) ‘ Consider the points 1 and 2. Any open neighbourhood of 2 must contain 1,
so Y isnot (T1) and then not (T2).

Y isnot (T3) | Y is the only open set containing {0, 2}, so {0,2} and 1 cannot be separated by

disjoint open sets.
Y isnot (T4) | The closed sets {0} and {2} cannot be separated by disjoint open sets.

‘ Local compactness is not divisible ‘ Consider the map

Q, ifreQqQ,

g: X=R—->Y=R\Q)U{Q}, :L'+—>{ .
z, ifzx ¢ Q.

Endow Y with the quotient topology induced by g. We shall show that the point () € Y has no
compact neighbourhood. Let U be any open set containing ). Then (U \ {Q}) U Q is open in X.
Let K be any compact set containing U. Since (K \ {Q}) U Q contains the unbounded open set

(U\{Q})UQ, we can choose an increasing sequence (x,,) in (K \ {Q}) U Q consisting of irrational

numbers that tends to infinity. For each n € N, let U, = R\ U {zx}. Then U, is open and
k=n

contains Q, so ¢(U,,) isopenin Y. Now {¢q(U, )}~ is an open cover of K with no finite subcover
for (K \ {Q}) U Q cannot be covered by finitely many U,,. This contradicts the assumption that
is compact. Therefore () has no compact neighbourhood and Y is not locally compact.

(3) ‘ (A1)/(A2) is not divisible ‘ Let X = R and consider the equivalence relation ~ defined by

r~yYy < rz=yorz,y € Z.

Denote by ¢ the quotient map X — Y. We shall show that the quotient space Y = X/ ~is
admits no countable neighbourhood basis at ¢(0). Let {U,,}.2; be a countable collection of
open neighbourhoods of ¢(0). For each n, ¢~ *(U,,) is open in R and contains Z, so there exists
{en.k ez C (0,1) such that

Up D q(U B(k,sn,k))

kEZ

Let 0;, = %Ek,k for each k € Z and consider

V:q<U ]B(kz,ék))

keZ
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Then V is an open neighborhood of ¢(0) by the construction of g. Moreover, U,, ¢ V for all n
since ¢(n + d,,) € Uy, \ V. Therefore any countable collection of open neighbourhoods of ¢(0)
cannot form a neighbourhood basis, so Y is not (A1) and then not (A2).

‘ Separability is divisible ‘ It suffices to show that the continuous image of a separable space is sep-
arable. Let X be separable and A be a countable dense subset of X. For any continuous map
f:+X =Y, by Proposition 1.6.23,

f(A) > f(A) = f(X).

Therefore f(A) is a countable dense subset of f(X) and f(X) is separable.

Lindelof property is divisible ‘ By Proposition 2.7.15 (2), the continuous image of a Lindeltf space
is Lindelof. O

PSet 11, Part 1

Problem 81 (Constructing homotopies)
(1) Prove Proposition 3.3.3:

@ IffieCX,Y), g€CY,Z)(i=0,1),and fo ~ f1, go ~ g1, then go o fo ~ g1 © f1.
@ Ifp € C(Xo,X1), fi € €(X1,Y) (i=0,1),and fo ~ fu, then fo o ~ f1 0.
&) If?/) € e(}/oyyl)/ fl c G(Xv%) (Z = Oa1>/ and fO ~ fl/ th€”¢of0 ~ ¢0f1-

(2) Prove that “homotopy equivalence between topological spaces” is an equivalence relation.

Proof (1) @ Take F € €([0,1] x X,Y) and G € €([0, 1] x Y, Z) such that
F(0,z) = fo(z), F(l,z)=fi(z), G0O,y)=g0(y), G(Ly)=g(y)
Then H(t,z) € €([0,1] x X, Z) defined by H(t,z) = G(t, F(t,)) satisfies
H(0,z) = G(0, F(0,z)) = go(fo(z)), H(1,2) = gi(fi(z)).

@ Since ¢ ~ ¢, this follows directly from ®©.
® Since 9 ~ 1), this follows directly from @.

(2) (Reflexivity) The identity map gives the homotopy equivalence.
(Symmetry) This follows from the definition of homotopy equivalence.

(Transitivity) Suppose f € C(X,Y), g€ C(Y,X), he C(Y,Z)and k € C(Z,Y) satisfy
gof~Idx, fog~Idy, koh~Idy, hok~Idg.
Then by @ and @ of (1),

gokohof~goldyof=gof~Idy,
hofogok~holdyok=hok~1dyz. O
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Problem 82 (Homotopy v.s. subspace/product)
(1) Prove: if foy, f1 € €(X,Y) are homotopic, and A C X, then fy|4, fi|la € €(A4,Y) are homotopic.
(2) LetY = H Y,. Prove: fy, fi € C(X,Y) are homotopic if and only if for each «, the maps 7, o
fo,Ta 0 f1 ae C(X,Y,) are homotopic.
Proof (1) If F'is a homotopy between fy and fi, then F|(y 1]« 4 is a homotopy between f;|4 and fi .
(2) By the universal mapping property of the product topology, we have

(=) If F is a homotopy between f; and f, then F,(t,z) = m, o F(t,z) is a homotopy between
Tq © foand m, o fi.

(<) If F, is a homotopy between 7, o fy and 7, o f; for each o, then F(t,x) = (F,(t,x))q is a
homotopy between f; and f;. O

Problem 83 (Maps to S™)
(1) Prove: any non-surjective continuous map f : X — S" is null-homotopic.

(2) Let f,g: X — S™ be continuous maps. Suppose they are never anti-podal, i.e., g(x) # — f(z) holds
for all «. Prove: f is homotopic to g.

(3) Prove: f € C(X,Y) is null-homotopic if and only if f has a continuous extension F' € ¢(C(X),Y),
where C(X) is the cone over X.

(4) Let D"*" be the closed unit ball in R"*'. Prove: there exists a retraction f € €(D""',S") if and
only if Idg» is null-homotopic.

Proof (1) Without loss of generality, assume N = (0,---,0,1) ¢ f(X) and consider the stereo-
graphic projection

1

OSn\{N}%Rna (xla"'axn-l-l)'_> —
1_1'n+1

(1, ,xn).
It is a homeomorphism with inverse

ol R? = S"\{N}, (u1, - ,un) (2u1,--- 2, [ul? — 1).

P+t
Then F(t,x) = o~ *((1 — t)o(f(z))) is a homotopy from f to the constant map = + (0, ,0, —1).

(2) Since f(x)and g(z) are never anti-podal, their convex combination (1 —t) f(z) +tg(z) is never zero.
(1= )f(x) +tg(x)
11 =) f () + tg(z)|
(3) For convenience, let C(X) = ([0,1] x X)/({1} x X).

Thus the map H(t,z) =

is well-defined and is a homotopy from f to g.

(=) Let H : [0,1] x X — Y be a homotopy from f to a constant map c¢,,, for some yo € Y. Then
H(0,z) = f(z)and H(1,z) = ¢y, forall z € X. Since H is constant on the subspace {1} x X,
it induces a continuous map H : C(X) — Y which agrees with f on {0} x X. Thus H is an
extension of f to C(X).

(<) Suppose F € C(C(X),Y) is an extension of f. Then H : [0,1] x X — Y defined by H(¢,z) =
F([(t,z)]) is a homotopy from f to the constant map = — F([(1,z)]).
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(4) (=) Suppose f € (D" S") is a retraction. Then F : [0,1] x S — S” defined by F(t,z) =
f((1 —t)z) is a homotopy from Idg~ to the constant map = — f(0) € S™.

(<) Suppose F : [0,1] x S* — S™ is a homotopy from Ids~ to a constant map. Fix any point
po €S™. Then f € C(D"*",S™) defined by

F(l,po), xr = 07
fo) = )
is a retraction. It is continuous since F'(1, z) is constant for all z € S™. O

Problem 84 (Relative homotopy) Let X, Y be topological spaces, and A C X. Let fi, fo € C(X,Y) be
continuous maps such that f; = f> on A. We say fi, f» are homotopic relative to A, denoted as f; 2 fo, if
there exists a continuous map F : [0,1] x X — Y such that

F0,2) = fi(x), FQ,z)= fa(x), VrelX,
F(t,z) = f(z), Yz € A.

(1) Prove: relative homotopy is an equivalence relation.

(2) Let X,Y, Z be topological spaces, A C X, f1, f2 € C(X,Y) and g1, 92 € C(Y, Z). Prove: if f; 2 fa
f1(4) A
and g1 '~ g, then g; o f1 ~ g2 0 fo.

(3) Define “pull-back” and “push-forward” for relative homotopy classes, and check the well-definedness.

Proof (1) (Reflexivity) The identity map gives the relative homotopy.

(Symmetry) If F(¢,z) is a relative homotopy from f; to f2, then F'(1 — ¢, x) is a relative homotopy
from f5 to fi.

(Transitivity) Suppose f1 2 fo and fo 2 fs. If G(t,z) is a relative homotopy from f; to f2, and
H(t, z) is a relative homotopy from f, to f3, then

F:0,1]x X =Y, (t,w)H{

is a relative homotopy from f; to fs.

(2) Suppose F(t,z) and G(¢,y) are the corresponding relative homotopies for f; A fyand gy By 92

Then G(t, F'(t,x)) is a homotopy from g; o f1 to g2 o f relative to A.

(3) Any map ¢ € C(Xy, X1) induces a pull-back defined by
" [X1,Y]a = [Xo, Y]p-1a), [fl = [fogl
Any map ¢ € C(Yp, Y1) induces a push-forward defined by
Pu: [X,Y0la = [X,V1]a,  [f] = [0 f].

For the well-definedness, as in the proof of Proposition 3.3.3 / Problem 81 (1), we only need to
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verify that if f; € C(X,Y), gi € €(Y, Z) (i = 1,2), and for A € X, f1 2 fa, 91 " g, then

A
gio fi ~gzo fa

This is exactly the statement in (2). O

PSet 11, Part 2

Problem 85 (Simple connectedness)
(1) Let X be path-connected. Prove that the following statements are equivalent:
@ X is simply connected, i.e., 71 (X) = {e}.
@ Any loop in X can be continuously deformed to a point in X.

® For any zg, 1 € X, any paths v1,v2 € Q(X; xo, z1) are path-homotopic.

(2) Show that “simple connectedness” is a topological property. Is it multiplicative / preserved under
continuous maps / hereditary?

Proof (1) For any loop in X, fix a point x¢ on it. Since m(Q(X, z¢)) = m1(X, zo) = {e}, this
loop can be continuously deformed to z in X.

Since y; * 72 € Q(X, xo), it can be continuously deformed to x, i.e., 71 * 72 ~ 7s,. Then
P

Y1~ YRR kY2 N Vg ¥ Y2 ™ V2.
P p p

Take ro =21, then ’/Tl(X, ZL'()) = Q(X, IIJ())/ "; = {6}

(2) @ Suppose f: X1 — X5 is a homeomorphism and H : [0, 1] x [0, 1] — X; is a path-homotopy.
Then f o H is continuous and thus a path-homotopy in X,. Therefore, any loop in X, with
base point f(z) (Where zy € X;) are path-homotopic, and X is simply connected.

@ Suppose X, is simply connected for each o and let X = H Xo. Then for any v € Q(X, (za)),
«
T O Yo is a loop in X, for each a. Since X,, is simply connected, 7o, © 74 ~ 75,. By Problem
p
82 (2),7 ~ Y(x.)- Thus X is simply connected. Hence simple connectedness is multiplicative.
p
® Simple connectedness may not be preserved under continuous maps. For example, the map

f:[0,1] = S* € C, t ~ e*™ turns a simply connected space into a non-simply connected
one.

@ Simple connectedness is not hereditary. For example, R? is simply connected, but the punc-

tured plane R* \ {0} is not simply connected. O

Problem 86 (Fundamental group of a product space)

(1) Prove: m1(X XY, (z0,40)) =~ m1(X,z9) X 71 (Y, y0).

(2) Write down a formula for the fundamental group of an arbitrary product, m; (H X, (xa)> , and

e
prove your formula.
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Proof We shall prove
™ (H Xa, (%)) ~ Q) ™1 (Xa Ta)-

Let p, denote projection on the a-th factor so as not to create confusion with the notation m; for the

fundamental group. Choosing base points z, € X,, we get maps

Pay * T1 (HXOH (:)Sa)> — Wl(XawTa)'

Putting these together, we define a map

P:m <H Xa, (1‘@) — ®7T1(Xa7$a)7 V] = (Pax[V]) o

This is a well-defined map by Problem 82 (2), and we claim it is an isomorphism.

Suppose v is a loop in H X such that P[y] is the identity element of ® 1 (Xa, Ta)-

[e3% [e3%
Writing v in terms of its component functions as v(t) = (7a(t))a, the assumption means that
Yaolp = PaxlV]p = [Pa ©V]p = [Valp for each a. If we choose homotopies Hy, : Vo ~ 7z, , it follows
p

that the map
H:[0,1]x[0,1] = [[ X0, (t2) = (Ha(t, 2))a

is a homotopy from  to the constant loop 7(,,,)-

Let [valp € m1(Xa,zo) be arbitrary for each a. By the universal mapping property of

the product space, we can define a loop 7 in H Xao by ¥(t) = (7a(t))a- Then

P['Y]p = (pa*['Y]p)a = ([pa © 'ﬂp)a = (['Va]p)a'

‘ P is a group homomorphism ‘ For any [y1]p, [v2]p € m1 (H Xa, (xa)> , we have

P([mlp * [v2lp) = (Pas([1]p * ['72]17))@ = ([Pa© (11 *72)]p)a = (1,0lp * V2.alp)a = PInilpPhalp-
O

Problem 87 (Base point change isomorphism) Let X be path-connected, ¢, z1 € X. We have seen
in Proposition 3.4.9 that any path A from z( to z; induces a group isomorphism I'y : (X, z¢) —
™1 (X, 1'1).

(1) Suppose A; is a path from 1z to 21, and A, is a path from z; to xo. Prove: I'y,.x, = I'x, o Iy, .
(2) Prove: (X, o) is abelian if and only if for any two paths Ay, Az from xg to 1, we have I'y, =T'y,.

(3) Suppose X,Y are path-connected, and f € C(X,Y). I have a vague intuition that “the group
homomorphism f, : m1(X,z9) — (Y, f(x0)) is independent of the choice of z,”. Please write

down an explicit formula/rigorous statement and prove it.

Proof (1) 'y, ([]p) = [)\1 * Ao kY % A % /\2]p = [/\72*/\71* v ¥ Ak /\2]p =Ty, o ([7]p)-
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(2) (=) If there exist two paths A1, A2 from z¢ to z1 such that 'y, ([v]p) # I'x,([7]p) for some [y], €
(X, @), e, [A xy * /\1]p # [Agxy* /\g}p, then [A; * A; * ’y]p # [y x Ao % )\71]17- This shows

that [A2 * A;] P [7]p € m (X, x0) do not commute, a contradiction.

(«<=) For any two loops 71,y based at =, by assumption I, ([2]) = I'5, ([72]p), that is,

(1 % v2 * ml, = (72 % 72 * 2], = [elp-

Then [v2], * [v1]p = [71]p * [v2]p, 50 m1 (X, 20) is abelian.

(3) Suppose A is a path from z to ;. Then the following diagram commutes:

(X, 20) —22 (Y, f(20)

JFA Jr‘fo)\

7T1(X,£C1) % Wl(Yaf(Il))

Proof Note that fo)wk(foy)*(fo)\)]p_[fo(X*'y*)\)]pforanyloop'yinXbasedatxo,so

(fag)«

[V + [forlp
JFA lr‘fox
en =2, 5 [ro (e o), 5

Let (G, @) be a path-connected topological

Problem 88 (Fundamental group of topological groups)
group. We want to prove that 7 (G, e) is an abelian group. Let 71, v2 be two loops in G based at e.

(1) (First proof) Denote by ~. the constant loop at e. Check:
F(s,t) = (71 % 7.)(max{0,t — £ }) & (ye *72) (min{1,t + £})
is a path-homotopy between ~; * 2 and s * 1, where o is the group multiplication.
(2) (Second proof) Construct explicit path-homotopies to verify
@ 71(t) @ 72(t) ~ 72(t) @ 71 (6)-

@ (71 *72)(t) ~ 71(t) @ 2(?).

(3) (Third proof, the Eckmann-Hilton argument)

® Let S be a set on which there are two “semigroup with unitary” structures, (5,0, 1,) and

(S, e,1,). Moreover, suppose

(goh)e (g oh’)=(geg)o(hel), Vg hh'eSs.

Prove: 1, = 1,,geh=goh,and goh = hog.
@ Define [11], ® [12]p = [71 ® 72]p- Show that e is well-defined on 71 (G, e).

® Use @ to prove that 7 (G) is abelian.
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Proof (1) Clearly F(s,t) € C([0,1] x [0, 1], G). When s = 0, we have

F(0,t) = (71 % 7e)(t) ® (e * 72)(t)

71(2t) @ 7e(2t) = 71 (2t), 0<t< g,
Ve(2t —1) @ 7(2t = 1) = (2t — 1), <t <1,

=71 *72(t).

When s = 1, we have

F(1,t) = (1 *fye)(max{o,t — }) (Ve * 72 (mm{l t+ 2})

_ ) e e)(0) @ (e x 1) (t 4 5) = 2(20),
(M1 *7e) (t— %) ® (ye x72) (1) =1 (2t — 1),

)

o= O
—_ N

St
<t<

)

=72 %7 (1).
(2) @ Consider F(s,t) = (y1(ts)) ™" @ v1(t) ® v2(t) ® 71 (ts). We have
F(0,8) = y(t) e 72(t),  F(1,t) =2(t) e 71 (t).
@ Consider F(s,t) = (71 #7e) (t(1 = 5)) ® (e * 72) (t(1 = §) + 3). We have

F(0,£) = (11 % 76)() » (76 72)(£) —= 7 % 2(0).
F(LE) = (72 %7) (£) ® (e % 72) (552) = 71 (1) ® ().

(3) © The units of the two operations coincide:
lo=1loolo=(leels)o(loely) =(leol,)e(lool,) =101 =1,.
For any g, h € S, we have

\goh\*(log)o(hol):(loh)o(gol)*\hog\

[ — -

:(hol)o(log):(hol)o(log):Lii?gj.

@ Suppose v; (i =1,2,3,4) are loops in G based at e such that y; ~ 72 and 3 ~ 74. Let F, G be
p p
their respective path-homotopies. Then F' e H is a path-homotopy between ~y; ®y3 and vy @ 4.

® Now (m1(G,e),*,7.) and (m1(G,e),»,7.) are two “semigroup with unitary” structures on
71 (G, e). Moreover, for any [v;], € m1(G,e) (¢ =1,2,3,4), we have

(e * [ralp) @ (Mslp * [alp) = (Inlp @ [13lp) * (1r2]p © [7alp)-

By @, m1(G) ~ (m1(G, ), *, 7e) is abelian. O
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PSet 12, Part 1

Problem 89 (Fundamental group of T? = S' x S') Repeat the proof of m; (S',20) ~ Z to show that

m1(T?, 20) ~ Z x Z, and explicitly write down the generators.

Proof Fix zy = (1,1) € T2. For m,n € Z, consider the loop

2mimt 27rint)

Yommy 0 [0,1] = T2, ¢t (e e

Define the map
S:Z X1 — ™1 (T2; xo)a (m7n) = [ry(m,n)]p

Note that T? ~ R?/Z?, where the quotient map is given by
p: R T2 (z,y) — (277, e*™).

The lifted map Y, is a path 5, 1y : [0, 1] — R? with Y(m.n)(0) = (0,0) such that the following diagram

commutes (i.e., P © Ym,n) = Vm,n)):

R2
~ 2
Y(m,n -7
L J
- 'Y(nl,n)
[0,1] T?

Comparing the expressions of (,,, ) and p, we see that ¥, ,,)(t) = (mt, nt).

® is a group homomorphism | By defintion, ®((m1,n1) 4+ (m2,n2)) is represented by the loop

7(7711 +ma,n1+n2) (t) = (eQWi(m1+m2)t7 e2ﬂi(nl+n2)t) .

To relate the lifting of v, 1m0, +n,) With the liftings of v(,,, »,) and Y, n,), we introduce the
translation map
Tinym) : R 2 R% - (2,9) = (2 +ma,y +na).

Then the paths Y, +ms,n1+ns) A0 Ymy 1) * (Timany) © V(ma.ne)) are path-homotopic since R is
simply connected. It follows that

7(m1+7rL2,n1+n2) = p © ﬁ('rnl—i-mg,nl—&-ng) r}\)/ p © (i(ml,nl) * (T(ml,nl) © ?(mg,ng))) = 7(m1,7L1) * ,‘Y(TI’LQ,TLQ)'
In other words,

B((mam1) + (m2,12)) = Pmatmamtna)]y = Domnn) * Ymann)], = Dmann ], - [omzna ],
= ®((m1,n1)) - 2((m2,n2)).

® is surjective | Let v : [0, 1] — T2 be any loop with 7(0) = v(1) = (1, 1). We need the following lemma.

(Path lifting) For any path v : [0,1] — T? with v(0) = (1, 1), there exists a unique path
3 : [0,1] — R? with 5(0) = (0,0) such that po 7 = 7.
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Assume the lemma for now. Then the fact that (1,1) = (1) = p o 3(1) implies 5(1) € Z?. In other
words, there exist m,n € Z such that

%(0) = (0,0), %(17 1) = (mvn)

Since R” is conctractible, we must have 5 ~ ¥, ,,)- Let F :[0,1] x [0,1] = R? be a path-homotopy
p

connecting ¥ and ¥, ). Then
F=poF:[0,1] x[0,1] = T?

is a path-homotopy connecting v and ¥(,5,.n)- S0 [V]p = [Yom.m)] = ®((m,n)).

)=
Suppose &((m1,n1)) = ®((m2,n2)), i.e., there exists a path-homotopy F : [0,1] x [0, 1] —
T* connecting Y, n,) and Y(im, n,)- We need the following lemma.

(Homotopy lifting) For any homotopy F : [0,1] x [0,1] — T? with fixed starting point
F(s,0) = (1, 1), there exists a unique homotopy F : [0,1] x [0, 1] — R? with fixed starting point
F(s,0) = (0,0) such that po F' = F. If further F is a path-homotopy, i.e., it has a fixed end point
F(s,1) = (zo,y0) € T2, then F is also a path-homotopy, i.e., there exists (z,y) € p~*((x0, yo))
such that F(s,1) = (z,y).

Assume the lemma for now. Then there exists a homotopy F : [0,1] x [0,1] — R? such that
po F = F. It follows that

pOF(O7t) :V(ml,nl)(t% pOF(]_,t) :’V(mg,nz)(t)'

Since F(0,0) = (0,0) = F(1,0), by uniqueness of path lifting above, we must have

F(Ovt) = 5(m1,n1)(t)7 F(lat) = :Y/(mmnz)(t)'

So by the second part of the homotopy lifting lemma, we have

(mhnl) = 7(m1,n1)(1) = F(O> 1) = F(17 1) = ﬁ(mz,m)(l) = (m27n2)'

The proof is complete, and we see that the generators of m; (T, z) are [v(1,0)], and [v(0,1))p- O

Problem 90 (Fundamental group of X = U U V) Suppose U, V are open subsets of X and X = U U
V. Suppose U NV is path-connected and zp € UNV. Let¢: U — X and j: V — X be inclusion maps.
Prove: m1(X, z¢) is generated by Im(¢, : w1 (U, zo) — m1 (X, 20)) and Im(g. : m1(V, zo) = m1(X, 20)). (We
don't require U or V' to be path-connected.)

Proof We begin by showing that there is a subdivision ag < a; < --- < a, of [0,1] such that vy(a;) €
UNV and y([a;—1, a;]) is contained either in U or in V, for each i. First, choose a subdivision bg, - - - , by,
of [0, 1] such that for each 4, the set y([b;—1, b;]) is contained in either U or V. (Use the Lebesgue number
lemma, as in the proof of Proposition 3.5.1.) If v(b;) belongs to U NV for each i, we are finished. If not,
let i be an index such that v(b;) ¢ U N V. Each of the sets y([b;—1, b;]), ¥([bs, bi11]) lies either in U or in
V. If v(b;) € U, then both of these sets must lie in U; and if y(b;) € V, both of them must lie in V. In
either case, we may delete b;, obtaining a new subdivision ¢, - - - , ¢;,—1 that still satisfies the condition
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that y([c;—1, ¢;]) is contained either in U or V, for each i. A finite number of repetitions of this process
leads to the desired subdivision.
Given any loop v in X based at xo, let ag, - - - , a, be the subdivision constructed above. Define
~v; = f o k;, where
ki 2 [0,1] = [ai—1,ai], t= (a;—a;—1)t +ai-1.

Then ~; is a path that lies either in U or in V, and

Vp = lp * [valp * - * [ynlp-

For each i, since U NV is path-connected, we can choose a path A\; in U NV from zg to y(a;). Since
’Y(GO) = ’Y(Gn) = xp, we can set A\g = A\, = Vz,-
Now we set
Bi= (N1 % %) * A

for each i. Then f; is a loop in X based at x, whose image lies either in U or in V. Direct computation
shows that

(Balp * [Balp -+ * [Bulp = [1]p * [alp * -+ - * [nlp-

This shows that any loop in X based at x( is path-homotopic to a product of the form 5y * B2 * - - - % (3,
where each j; is aloop in X based at z( that lies either in U orin V. This leads to the desired conclusion.r

Problem 91 (Induced group homomorphisms) For each of the following maps, compute f, on the cor-
responding fundamental groups (with base points 1 or (1,1)).

(1) f:St =S 2 2™
(2) f:St =St xS 2 (2™, 27).
(3) f:S' xS = S, (21, 20) > 220

Solution (1) m(S',1) = Z is generated by [y1], where y; : [0,1] — S', t =+ €*™, and

felnlp) = [f o mly,

which is represented by the loop 7, : [0,1] — S', t + ™. When considering the group Z, this
shows f, is multiplication by n, i.e., f. : Z — Z, k — nk.

(2) Similar to (1), we have f, : Z — Z x Z, k — (mk, nk).

(3) InProblem 89 we showed that ; (S' x S', (1,1)) = Z x Z is generated by [y(1,0)], and [(0,1)]p- The
map f, take them to [y,,], and [v,],, respectively. Hence f, : Z x Z — Z, (k,1) — mk + nl. O

Problem 92 (Not-so-fundamental group) Let X be a path-connected topological space, and zp € X
be a base point. Given any two loops o, v1 based at =, we define a pseudo-homotopy between vy and ~;
to be a map (not necessarily continuous) F': [0,1] x [0, 1] — X such that

o For any fixed t, the map 7:(s) := F(t, s) is continuous in s.
o For any fixed s, the map A4 (t) := F'(t, s) is continuous in ¢.

o Forany s, F(0,s) = vo(s), F(1,8) = 71(s).
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o Forany ¢, F'(t,0) = F(t,1) = xo.
We define the “NOT-SO-Fundamental group” of X at z to be the pseudo-homotopy classes.
(1) Show that the “NOT-SO-Fundamental group” of S' is the trivial group {e}.

(2) Show that the “NOT-SO-Fundamental group” is not so interesting, since it is always the trivial
group {e}.
(3) In proving 7 (S") ~ Z, where did we use the continuity of the homotopy?
Proof (1) Fixxzg =1 € S'. Since 71 (S', z9) = Z is generated by the loop 7 : [0,1] — S', ¢ = e*™, it

suffices to show that ~; is pseudo-homotopic to the constant loop ,,. Consider the map

4t (Sl_t)a <t75) # (170>7

(92-1)
1, (t,s) = (1,0).

F:[0,1] x [0,1] — S, (ts)H{

Then F'(¢, s) is continuous in s for any fixed ¢, continuous in ¢ for any fixed s, and satisfies

F(0,8) =m(s),  F(1,8) =71(1) = Yao (s)-
Hence 7, is pseudo-homotopic to 7, .

(2) For any loop v in X based at g, the F' defined in (92-1) (replace S' with X and v; with 7) is

always a pseudo-homotopy between v and the constant loop v,.

(3) The continuity of F'is crucial in the proof of the lifting lemma (Lemma 3.5.8). O

PSet 12, Part 2

Problem 93 (More fundamental groups) Find the fundamental groups of the following spaces:
(1) R\ R x {(0, -+ ,0)}) (k > 2).
(2) R3\ Z3.
(3) S?v§s?
(4) Stvs2
(5) {(z,y,0): 2,y e R}U{(0,y,2) : y* + 2> =1,z > 0}.
(6) R*\ ({(0,0,2) : z € R} U {(2,9,0) : 2> + y* = 1}).
(7) R¥\ {(2,9,0) : 2® +y* = 1}.
(8) R¥\ ({(0,0,0)} U{(1,1,2) : s € R}).
Solution Let X denote the space in question.

(1) Let A= ({0,---,0} x R*) \ {0}. Consider the map

F:0,1]xX =X, (z,t)= (=021, , (1 =8)Tn, Toi1, " > Tnik)-



(2)

3)

(4)
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We have
F0,z) =z, F(l,x)e A, VreX

and
F(t,a) =a, Yac€ A,Vte]l0,1].

That is, A is a strong deformation retract of X. So X ~ A ~ R*\ {0} ~ §*~*. Thus

Z, k=2,

T ~ . (SF71) ~
0 ( ) {{e}, k> 3.

We first show that R? minus finitely many (say, ) points is simply connected. When n = 1, this
follows from R? \ {0} ~ S%. Assume the statement holds for n — 1. For Y = R*\ {zy,--- ,2,},
without loss of generality, assume the third coordinates of these n points are not all equal, and let

M—m - (), and let

m denote the smallest and M the largest. Take ¢ = =

U={(z,y,2) €Y :z>m+¢e}, V={(z,y,2) €Y :2<M—¢}.

Then U NV is path-connected, and U, V' are both simply connected by induction. HenceY = UUV
is simply connected by Proposition 3.5.1.

Now for any loop v : [0,1] — X, since ([0, 1]) is compact in R?, there exists R > 0 such that
7([0,1]) € B(0, R)\Z>. Note that only finitely many points are removed from B(0, R), so B(0, R)\Z*
is homeomorphic to R® minus finitely many points, which is simply connected. Thus v is path-
homotopic to a constant loop, and 71 (X) = {e}.

Regard X as 0B((0,0,1),1) UdB((0,0,—1),1) and let

U={(xy2)eX:2z>1},
V:{(xayaz) GXZ—% < z< %}7
W={(z,y,2) € X:2<—1}.

Both U and V' are homeomorphic to the open disk, hence simply connected. Note that {0} is the
strong deformation retract of V, so V' is also simply connected. Since U NV is homeomorphic to a
ring, which is path-connected, by Proposition 3.5.1, U UV is simply connected. Now (UUV)NW
is again path-connected, by the same proposition, X = U UV U W is simply connected. Hence
™ (X) = {e}.

Regard X as 0B((0,0,-1),1) U {(0,y,2) € R® : y* + (z — 1)®> = 1} and let
U=X\{(0,0,2)}, V=x\{0,0,-2)}.

Then both U and V are open in X, and U NV is path-connected. Since 0 € U NV, by Problem 90,
any loop in X based at 0 is path-homotopic to a product of the form v, * - - - x y,, where each ~;
is a loop in X based at 0 that lies either in U or in V. Note that S* is a strong deformation retract
of U and S' is a strong deformation retract of V, and since m; (SZ) ~ {e}, the loop 71 * - -+ * 7y, is
path-homotopic to aloop in S' = {(0,4,2) € R* : y* + (2 — 1)®> = 1}. Hence m; (X) ~ Z.
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(5) Let A= {(0,y,2) € R*:¢y* + 22 =1,2 > 0} U {(0,4,0) € R* : —1 < y < 1}. Consider the map

F: [Oa 1] X X — Xv (taxayvz) = ((1 - t)l‘, (1 - t)y +Sgn(y)tmln{|y|7 1}72)
We have
F(0,2,y,2) = (2,y,2), F(l,z,y,2) = (0,sgn(y) min{|y|,1},2) € A, V(z,y,2) € X

and
F(t,0,y,2) = (0,(1 = t)y +sgn(y)tlyl, z) = (0,y,2), V(0,y,2) € A.
That is, A is a strong deformation retract of X. So X ~ A ~ S'. Thus m(X) ~ Z.

(6) Consider R? minus the z-axis in cylindrical coordinates (p, ¢, z) where

¢ pis the Euclidean distance from the z-axis to the point,

o ¢ is the angle between the x direction and the line from the origin to the projection of the
point on the z-y plane,

o z1is the signed distance from the z-y plane to the point.

Then X = R*\ ({(1,¢,0) : ¢ € [0,27)} U{(0,0, 2) : z € R}). Define the map

. X z — z pil i
F:0,1xX =X, (p9,2) = (1—1)(p e, )+t<1+2\/(p_1)2+22,<p,2\/(p_1)2+Z2>.

Then we have
F(0,p,0,2) = (p,0,2), F(Lp,p.2) €T V(p,p,2) €X

and
F(t,p,p,2) = (L=t)(p,p,2) + t(1+ (p—1),0,2) = (p, 0, 2),  V(p,¢p,2) € T?,
where the 2-torus is represented by
T ={(p.p.2) €X : (p—1)° +2° = 1}.
That is, T? is a strong deformation retract of X. Thus m(X) ~ m (Tz) ~ 7 X 7.

(7) Let A= {(z,y,0): 2> +y* =1}.

NN

Figure 5: S? U {diameter} and S' v §?

As shown in the first picture of Figure 5, R® \ A deformation retracts onto the union of S* with
a diameter, where points outside S? deformation retract onto S?, and points inside S? and not in
A can be pushed away from A toward S? or the diameter. Then we can gradually move the two
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endpoints of the diameter toward each other along the equator until they coincide, forming S' vS?,
as shown in the second picture. Thus by (4), 1 (X) ~ m (Sl \Y, SQ) ~ 7.

(8) Let
U= {(a:,y,z) eR3:z > %}, V= {(x,y,z) eER?:z < %}

Then both U and V are open in X, and U NV is path-connected. Let p = {(1,0,0)} € UNV. By
Problem 90, any loop in X based at p is path-homotopic to a product of the form ~; *- - - ¥, where
each v, is a loop in X based at p that lies either in U or in V. Note that S' is a strong deformation
retractof U and S? is a strong deformation retract of V, and since m; (82) ~ {e}, theloop 1 *- - %7,
is path-homotopic to a loop in U. Hence m; (X) ~ m; (U) ~ m (S') ~ Z. O

Problem 94 (Maps with trivial induced homomorphism)

(1) Suppose h : S' — X is a continuous map. Prove that the following are equivalent.

@ The induced homomorphism h, : 71 (S', 1) — 71 (X, k(1)) is the trivial homomorphism.
@ h is null-homotopic.

® h can be extended to a continuous map H : D? — X.
(2) Now suppose X = S'. Prove: ®-® are equivalent to
@ h can be lifted to a continuous map 4 : S' — R so that po h = h.

Proof (1) Denote v; : [0,1] — S, ¢ s e*™. By @, the loop & o 7; is path-homotopic to
the constant loop at i(1), so there exists a path-homotopy F' : [0,1] x [0,1] — X such that
F(0,t) = hov(t) and F(1,t) = h(1). Then

G:0,1] xS" = X, (s7e2”it) — F(s,t)

is a homotopy from £ to the constant map h(1). It is well-defined since F'(s,0) = F(s, 1).
Suppose F': [0,1] x S' — X is a homotopy from h to a constant map. Then

H:D* - X, ré?— F(1-re")

is a continuous extension of h. It is well-defined at 0 € D? since F(l, ew) is constant.

Denote 7; : [0,1] — S, t = e*™*. Then

F:[0,1] x[0,1] = X, (s,t)— H((1—15)e*" +5)

is a path-homotopy from h o 77 to the constant loop at h(1), i.e., h.([11]p) = e. Since [11], is
the generator of 7 (S', 1), h. is the trivial homomorphism.

(2) Suppose F' : [0,1] xS' — X = S' is a homotopy from a constant map to k. Since F|{g} x5!
is constant, it lifts to a continuous map Fy: {0} x S' = Rsuch thatpo Fy = F l{oyxst- By the
lifting lemma (Lemma 3.5.8), there is a lifting F:[0,1] x S! = R of F such that po F = F.
Then & : S* — R defined by h(z) := F(1, ) satisfies p o h(x) = po F(1,z) = F(1,z) = h(z).
If h : S — R satisfies p o h = h, then F(t,z) = p((l - t)iz(a:)) is a homotopy from h to
the constant map p(0) = 1. O
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Problem 95 (Degree of maps between circles) For any continuous map f : S' — S', there exists
n € Z such that f.([n1]p) = [Ynlp- The integer n is called the degree of the map f, and is denoted by
deg(f)-

(1) Prove: if f € C(S",S') is not surjective, then deg( f) = 0.

(2) Prove: if f,g € €(S',S'), then deg(f o g) = deg(f) deg(g).

(3) Prove: fis homotopic to g if and only if deg(f) = deg(g).

(4) Read the following paragraph which gives a descriptive definition of the winding number.

Suppose v : S* — R? is a continuous map and p ¢ Im(~y). The winding number W (v, p) of
the closed curve y around the point p is defined to be the integer representing the total

number of times that curve travels counterclockwise around the point.
Use the language of mapping degree to give a rigorous definition of winding number W (v, p).

Proof (1) Iff e @(Sl, Sl) is not surjective, then so is f o v : [0,1] — S*. By Problem 83 (1), f o7, is
null-homotopic, so deg(f) = 0.

(2) We have
(f © g)*(h’l]p) = fso g*(hl]p) = f*(hdeg(g)]p) = f*(deg<g)[71]p) = deg(g)f*([’yl]p)
= deg(g) [vaeg(r)], = deg(f) deg(9)[v1]p = [Vaeg(sr) deg(o)] -
Hence deg(f o g) = deg(f) deg(g).
(3) (=) Suppose F : [0,1] x S' — S is a homotopy from f to g. Then
H:[0,1] x [0,1] = S, (s,t) = F(s,71(t))

is a homotopy from f o+, to g o 1. Hence deg(f) = deg(g).

(«) Ifdeg(f) = deg(g), then f o1 ~ g o ~;. By rotation we can assume f o+, ~ g o~. Suppose
P
F :[0,1] x [0,1] — S' is a path-homotopy from f o v, to g 0 y;. Then

H:[0,1] xS' =S, (s,e>™) — F(s,1)

is a homotopy from f to g. It is well-defined since F'(s,0) = F'(s,1) for all s € [0, 1].

(4) Consider the map

T —p
T:RQ\{p}—)aB(p,l), T—p+ Tk

Then we can define W (v, p) := deg(r o ). O

Problem 96 (Equivalent statements of Borsuk—Ulam) Prove the equivalent statements stated in Re-
mark 3.5.19:

(1) There exists no antipodal-preserving continuous map f : S™ — S" 1.

(2) For any antipodal-preserving continuous map f : S™ — R", there exists xo € S" such that f(xzo) = 0.
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(3) There exists no continuous map f : D™ — S™~' such that the restriction to the boundary of f, f|sn—1 :
S"~t — S, is antipodal-preserving.

(4) Let F,- - , Fy 41 beacovering of S™ by closed sets, then there exists 1 < i < n+1such that F;N(—F;) # @.
(5) LetUy,--- ,Upt1 beacovering of S™ by open sets, then there exists 1 < i < n+1such that U;N(=U;) # @.
(B-U) <= (2)
Proof We prove by the implications H II
(5) (4) (1) 3)

(B-U) = (2) | If f € €(S™,R") is antipodal-preserving, then by the Borsuk-Ulam theorem, there exists
xo € S™ such that f(zg) = f(—x0) = —f(x0), so f(xzo) = 0.

(2) = (B-U) | Apply (2) to the antipodal-preserving map given by g(z) = f(x) — f(—z).

(2) = (1) | An antipodal-preserving map S™ — S™ ! is also a nowhere zero antipodal-preserving map
S™ — R™.

(1) = (2) | Assume that f € C(S", R") is nowhere zero and antipodal-preserving. Then the antipodal-

preserving map g: Sn N Sn_l glVen by g(l‘) — ||;Ei; ||

(1) & (8) | Note that the projection 7 : (z1, -+ ,Zp41) — (21, -+ , ) is a homomorphism of the upper

closed hemisphere U of S™ with D". An antipodal-preserving map f : S” — S"~! asin (1) would
yield a map g : D" — S"~! antipodal on 9D" = S™ ! by g(z) = f(7 ().

contradicts (1).

Conversely, for g : D" — S"! as in (3) we can define f(z) = g(n(z)) and f(—z) = —g(n(x)) for
x € U. This specifies f on the whole of S”; it is consistent because g is antipodal on the equator of
S™. The resulting f is continuous by Problem 16 (1).

(B-U) = (4) | For a closed cover Fi,--- , F,,11 of S”, we define f € ¢(S",R") by

f(z) = (dist(z, F1), - - -, dist(z, F},)).

By the Borsuk-Ulam theorem, there exists « € S" with f(z) = f(—z) = y. If the i-th coordinate
of y is 0, then by Problem 7 (2), both z and —z are in F;. If all coordinates of y are nonzero, then

both x and —z lie in Fj, 4.

(4) = (1) | Consider an n-simplex in R" containing 0 in its interior, and we project the facets centrally
from 0 on S"~!. Then we obtain a covering of sn-t by closed sets Fi,- - -, Fj, 41 such that no F;

contains a pair of antipodal points. Then if a continuous antipodal-preserving map f : " — S"~*
exists, the closed cover f~(Fy),---, f 1 (F,41) of S” would contradict (4).

(4) = (5) | Given any open cover Uy, --- ,U,41 of S”, since S™ is a topological manifold, by Lemma
2.10.12, there exists a closed cover Fi,--- , F, 41 of S™ such that F; C U;. Then the existence of i

such that F; N (—F;) # @ implies U; N (=U;) # @.

(5) = (4) | Suppose Fi,--- , F,11 form a closed cover of S" with F; N (—F;) = @ for all 4. Since each
F; is compact and every two points of it have distance strictly smaller than 2, there exists ¢ > 0
such that all the F; have diameter at most 2 — . Then the open cover Flg7 I Ff 1, Where Fi% =
{z € S" : dist(z, F;) < £}, contradicts (5). O
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PSet 13, Part 1

Problem 97 (Smallest normal subgroup) Let G be a group and S C G be a subset.

(1) Show that the smallest normal subgroup of G containing S is

Ng = ﬂ H.

H is a normal subgroup of G and SC H
(2) Prove: Ng is generated by all conjugates of elements of Sin G, i.e.,

Ns={c1--cp:n>0,c =g;s;g; forsomeg; € G, s; € SUS™'}.

Proof (1) It suffices to show that the intersection of normal subgroups is normal. First, Ng is a sub-
group of G since it is an intersection of subgroups. For any g € G and any normal subgroup H of
G, gNgg~ ! Cc gHg ' = H. Hence gNsg~* C Ng and gNg C Ngg. Similarly, from g 'Ngg C Ng
we deduce Ngg C gNg. Therefore gNg = Ngg, and Ng is normal.

(2) By definition, RHS C Ng. Since it is clear that RHS is a subgroup of G and g(RHS)g~* C RHS for
all g € G, we have RHS O Ng. Thus the equality holds. O

Problem 98 (Abelianization) Let G be a group.

(1) Let [G, G| be the subgroup of G that is generated by all elements of the form zyz~'y~! for all
z,y € G. Prove: [G, G] is a normal subgroup of G.

(2) Prove: the group Ab(G) = G/[G, G] is abelian (called the abelianization of G).
(3) Prove: the abelianization defines a functor from Grp to Ab.

(4) What is the abelianization of Z * - - - x Z?

(5) Prove: Ab({a1,b1, -, an, by |arbray by " - apbpay oyt = 1)) = 22"

(6) Prove: Ab((ay, - ,an |al---al =1)) =Z""" x Zs.

Proof (1) Foranyu € [G,G] and g € G, we have gug™" = u(u‘lgug_l) € [G,G]. Thus ¢g[G,Glg™* C
[G, G] and |G, G] is normal.

(2) since [g][n][g] ' [h] " = [ghg™"h™'] = [e], we have [g][h] = [A][g] for all [g], [] € Ab(G).

(3) @ By (2), Ab associates each object G in Grp to an object Ab(G) in Ab.
@ For any group homomorphism f : G — H, define Ab(f) : Ab(G) — Ab(H) by Ab(f)([g]) =

[f(9)]- If g1, 92 € G satisfy [g1] = [g2], then glggl = H xkykx,zly,gl for some z;,y; € G and
k=1

Flan) Fg2) " = TT £ ) Fon) Fan)~ Flu) ™" € [H, H].
k=1

So [f(91)] = [f(92)], and Ab(f) : Ab(G) — Ab(H) is a well-defined morphism in Ab.
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® Ab(Idg) = Idap(q) for every G € Grp, and Ab(g o f) = Ab(g) o Ab(f) for all morphisms
f:G— Handg: H— K in Grp.

(4) Ab(Z*---xZ) = (a1, - ,an|aia; = aja;, 1 <i<j<n)=2"

(5) Ab({a1,b1, -+, an, by |arbiay ‘b7t - anbya, 'byt = 1)) = Ab({ay, by, , an, bn)) = Z*".
(6) Ab((a1, -+ ,an|ai - a2 =1)) = Z"/{(2,---,2)). Since the Smith normal form of the matrix
2 0 --- 0
Lo is diag(2,0,--- ,0), we have
——
2.0 - 0 n1

Zr (2, ,2)) ~ (22 % OZ x -+ x 0Z) =~ (Z/2L) x (Z/{0}) x - - x (Z/{0}) ~ Zy x Z"1,

n—1 n—1

Problem 99 (Wedge sum of circles)
(1) (Finite wedge sum and applications)

@ Prove: 1 (S'VS' V- S ~ZxZx - x L.

@ What is the fundamental group of R? \ {finitely many points}?

® What is the fundamental group of R? \ Z*?

@ Find the fundamental group of R* \ {finitely many lines passing 0}.

® A group is called finitely presented if it has a presentation G = (.S | R) where both S and R are
finite sets. Prove: any finitely presented group is the fundamental group of some compact
Hausdorff space.

(2) (Infinite wedge sum)

@ LetX = U C,., where C,, is the circle in R? of radius n centered at (n,0). Compute 7 (X).
n>1

@ LetY = {(z,0) : x € R} U U C,,, where C,, is the circle in R? of radius 3 centered at (n, 3).
n>1
Compute 7 (Y). Are X and Y homeomorphic?

Proof (1) @ View \/ S! as a connected graph with 1 vertex and n edges. By Example 3.6.13,

n=1

o0
7r1<\/ Sl> ~Zk---%x7.
n=1

n—1+1=n

® R?\ {n points} is homotopy equivalent to the connected graph O~ 3~~~ with 2n — 2
vertices and 3n — 3 edges. By Example 3.6.13, its fundamental groupis  Zx---xZ
—_—
(3n—3)—(2n—2)+1=n
® R?\ Z? is homotopy equivalent to an “infinite grid” (the union of all lines z = m and y = n,
m,n € Z), which admits a maximal subtree consisting of all lines x = m (m € Z) together
with y = 0. The entire grid has countably many edges and the maximal subtree misses in-
finitely many edges. By Example 3.6.13, its fundamental group is *,cnZ.
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@ R3\ {n lines passing 0} is homotopy equivalent to S* \ {2n points}, which is homeomorphic

to R?\ {(2n — 1) points}. By (2), its fundamental group is Z * - - - x Z.
2n—1

® By (1), we can first construct a wedge sum of S' with fundamental group (S), where the
circle C; corresponds to the generator s; € S. For each relation si' - - - s'» = 1, take a 2-cell
and attach its boundary to the loop that goes around C; for ¢; times, ..., and around C,, for
t,, times. Do this for all relations. The resulting space is a compact Hausdorff space with
fundamental group (S| R).

(2) @ LetU be an open ball centred at (0, 0) with radius less than 1. Then V' := X NU is contractible.
Let A, = VU (C, \ {0}). Then A, is open in X since it is the union of two open sets, and
A,,NA, =V fordistinct m,n. Now X = U Ay, where each A,, is a path-connected open set,

n=1
and AxNA,,NA, is path-connected for all k, m, n. By van Kampen’s theorem, 71 (X) ~ %, enZ.
@ Y isastrong deformation retract of R*\ { (n, 1) : n > 1}, and the latter is homotopy equivalent
to the graph {(x,0) : ¢ > 0} U {(z,1) : ¢ > 0} U {(m,y) : m € NU{0},0 < y < 1}, which
admits a maximal subtree consisting of all the two horizontal rays together with {0} x [0, 1].
The entire graph has countably many edges and the maximal subtree misses infinitely many
edges. By Example 3.6.13, its fundamental group is *,enZ. However, X\ {(0,0) } has infinitely
many path components, while ¥ minus a point has at most 3 path components. Therefore X
and Y are not homeomorphic. O

Problem 100 (Application of van Kampen) Use van Kampen'’s theorem to compute the fundamental
group of the following spaces.

(1) RP?
(2) The Klein bottle.

(3) ¥, =T #T2
N———
g

(4) The n-fold dunce cap. [Split the boundary circle of a closed disk into n parts (by n red dots), and
identify the boundary segments according to the picture below (but keep the interior of the disk
unchanged).]

b a
a a
a a
a a
b a
The Klein bottle The n-fold dunce cap

(5) The surface X obtained by gluing the sides of a star as shown below (a “letter edge” is glued
counterclockwise, and an “inverse letter edge” is glued clockwise).
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RP?# . . . #RP.

Solution (1) If we form RP? by identifying antipodal points of S?, and obtain a hemisphere with

(2)

antipodal points on the equator identified, then it reduces to the case in (4) where n = 2. So
2
st (R]P) ) ~ ZQ.

We first write the Klein bottle K as the union of two open sets U; = K \ D and Uy = 13, where D
is a small disc and D is a small disc containing D. Since
b b
Ui~ a a ~ a a >~ a (X) b
b b

we have
T (U1) =1 (S'ASY) 2 Z+Z = (a,b).

Since U is contractible, and U; N U, is an annulus, which is homotopy equivalent to St, we have
m(Uz2) ~{e} and m(UiNUs) ~m(S') ~Z.
Consider the inclusion-induced group homomorphism
ts : m (U NU) = 1 (Uy).

The generator of 71 (U; N Us), that is, the circle, can be deformed inside U; to the boundary loop
baba~!. In other words,
1.(1) = baba™*.

Hence by van Kampen’s theorem,

m(K) ~ (Z+7Z) %z {e} = <a,b|baba*1 =1).

Consider the polygonal presentation of ¥ : ---

We first write 3, as the union of two open sets U; = £, \ D and Uy = 5, where D is a small disc
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and D is a small disc containing D. Since

a;l b1 afl b1
bt a1 bt a1 29
Uy ~ ~ e ~ \/ st
g b, ! g byt k=1
= =
by ay by ~ay

we have

29
7T1(U1):7r1<\/ Sl> ~Zx---x7="{a1,bi, - ,a4,bg).

k=1 2g

Since U, is contractible, and U; N U, is an annulus, which is homotopy equivalent to St, we have
m(Uz2) ~{e} and m(UiNUs) ~m(S') ~Z.
Consider the inclusion-induced group homomorphism
ts : m (U NU) = w1 (Uy).

The generator of 71 (U; N Us), that is, the circle, can be deformed inside U; to the boundary loop

alblal_lbl Lo agbgag’lbg’l. In other words,
(1) = arbray oyt - agbgaglbgl.
Hence by van Kampen’s theorem,

m(By) = (Z*---xZL)xz {e} = <a1,b1, o ag, by | alblaflbfl . -agbgag_lbg_1 = 1>.
29

(4) This is exactly the way we used to construct a presentation complex in Problem 99 (1) ®, so the
fundamental group of the n-fold dunce cap is (a|a”™ = 1) ~ Z,.

(5) We first write X as the union of two open sets Uy = X \ D and Uz = D, where D is a small disc
and D is a small disc containing D. Since

a d b ¢
a d
b c_l b c_l
Lﬁ ~ ~ c
a p1 a pt
C d b d
b d
b
o~ c ~
b d c

1

d
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we have

iy=n(®) zrzvz= (o= (Jo ()

by Example 3.6.13, for the last graph has 2 vertices and 4 edges.
Since U is contractible, and U; N U is an annulus, which is homotopy equivalent to S!, we have
m(Uz) ~{e} and m(UiNUs) =m(S') ~Z.
Consider the inclusion-induced group homomorphism
ts : (U NU2) = 71 (U1).

The generator of 71 (U1 N Us), that is, the circle, can be deformed inside U; to the boundary loop

1

dabacdb™'c™*, which is represented by the loop a3yaB3~ 'y~ ! in the last graph. In other words,

1(1) = afyas iy,

Hence by van Kampen’s theorem,
(X))~ (Z+Z*Z)*z {e} = <a’5’fy | aﬁyaﬁflfyfl = ]_>

a2 ai

ag a1
Consider the polygonal presentation of RP*# - - - #RP?:
—_—

n " Qnp

an

We first write RP?#- - - #RP? as the union of two open sets U; = RP%# . . - #RP? \D and Uy = ﬁ,
——— —_——
n n

where D is a small disc and D is a small disc containing D. Since

a2 ai a2 a1
az ai ag ai n
Uy ~ ~ ~\/ s
" Gnp, o an, k=1
LT ap LT an

7r1(U1):7T1<\/Sl> ~Zx--xZ="_ar, - ,an).
k=1 n

we have

Since U is contractible, and U; N U, is an annulus, which is homotopy equivalent to St we have
m(Uz2) =~ {e} and m(UiNUs)=m(S') ~Z.
Consider the inclusion-induced group homomorphism

Ly - 7T1(U1 N U2) — 7T1(U1).
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The generator of 71 (U1 N Us), that is, the circle, can be deformed inside U; to the boundary loop

ata3---a?. In other words,

2

1o(1) = a%a3---a?.

Hence by van Kampen’s theorem,

! <RPZ#--~#RP2> ~ (Zx---x7) x5 {e} = (ar, - ,a,|aja3---al =1). -

n

PSet 13, Part 2

Problem 101 (Products of coverings)

(1) Prove: if X is connected, X # @, then p is surjective, and the cardinality of p~!(z) is independent

of x.

(2) Prove: ifp: X — X andp' : X' — X' are covering maps, so is their product p x p’ : X x X' —
X x X'

(3) Constructa coveringmap p : H = {x +yi:y > 0} — C* = C\ {0} by identifying C* with S' x R
(via polar coordinates).

(4) Letp: R — S* be the standard covering map. Prove: the infinite product H p: H R — H Stis

neN neN neN
not a covering map.

Proof (1) Anyz € X hasan open neighborhood U, homeomorphic to an open neighborhood V,, in X

and p(V,) = U,. Hence p is surjective. Note that for any y € U,, we have [p~'(y)| = |[p~"(2)|, since
p~ ' (y)NU, contains exactly one point. Now fixzg € X andletA = {z € X : [p~'(z)| = [p™" (w0)|}
The above remark shows that both A and A€ are open. Since X is connected and A # @, we must

have A = X, i.e., the cardinality of p~!(x) is constant.

(2) For any (z,2') € X x X', let U be an open neighborhood of z in X such that p~!(U) is a disjoint
union of open sets V, in X and plv,, : Vo = U is a homeomorphism for each «. Similarly, let U’ be
an open neighborhood of z’ in X’ such that p'~*(U’) is a disjoint union of open sets Vj in X’ and
p'|V[; : V., = U’ is a homeomorphism for each 3. Then U x U’ is an open neighborhood of (z, ")
in X x X', and (p x p') " (U x U') = p~"(U) x p'~*(U’) is a disjoint union of open sets V,, x V} in
X x X'. Also, (p x p')

Vaxvy = (plv,) % (p’|vé) is a homeomorphism for all «, 5.

(3) Consider
p:H—C*, z+yir ye”.

For any z = rge'’ € C*, consider the open neighborhood
Uzz{rew:%’<r<2r0,90—1<9<90+1}.
Then p~!(U.) is a disjoint union of open sets Vj, (k € Z) in H where

Vk = (9()—1+2kﬂ'79()+1+2kﬂ') X (%),27’()),
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and p|y, : Vi — U, is a homeomorphism for all & € Z.

(4) Ifit were a covering map, then some open neighborhood U of (0,0, - - - ) in H R would be mapped
neN
homeomorphically to some neighborhood V of (1,1,---) in H S’. By restricting we can assume

neN
that U = (—aj,a1) X -+ X (—ag,ar) X R x R x ---. Note that this U is contractible, and p(U) has

infinitely many S' factors. By Problem 86 (2), 71 (U) ~ 7 (p(U)) is nontrivial, a contradiction. [J

Problem 102 (Covering over subspace)

(1) Letp: X — X bea covering map, and A C X a subset. Denote A =p~'(A). Show that p, = Pl
A— Aisa covering map.

(2) Recall that S' v S' (the figure 8) can be realized as the subspace (S' x {ag}) U ({ao} x S') in T*.
What is the restricted covering of “the standard covering p : R* — T?” to S' v §'?

Proof (1) By Problem 13 (4) and (5), the map pa = p| 5 : A — A'is continuous. For anya € A, letU
be an open neighborhood of @ in X such that p~!(U) is a disjoint union of open sets V,, in X and

p
and pgl(U NA)= p_l(U) NAisa disjoint union of open sets V,, N Ain /T, and pA|VamZ =Dy.ni

v, : Vo = U is a homeomorphism for each a. Then U N A is an open neighborhood of a in A4,

is a homeomorphism from V, N Ato U N A for each a.

2) For the standard covering p : R? — T2, (z,7) — (e2™%,e?™¥), the preimage of S' v S! is given b
g P g g y

Z:pfl((Sl x {ao}) U ({ao} xS")) =p~*(S" x {ao}) Up~ " ({ao} x S")
=Rx{sargag+k:keZ})U({Largao+k:keZ} xR).

Sop|z: A — S' AS! C T? is the restricted covering of p. O

Problem 103 (Fundamental groups of covering spaces) Suppose X, X are path-connected, p : X —
X is a covering map, and p(Zo) = zo.

(1) Prove: the index of the subgroup p. (7T1 ()N(, 5:0)) in 71 (X, wo) is the cardinality of p~! (o).
(2) Prove: if the base space X is simply connected, then p is a homeomorphism.

(3) Suppose Z; € p~!(x0). Prove: as subgroups of 7 (X, x¢), the two groups p. (771 ()?, 5:0)) and
D (771 ()} , 501)) are conjugate to each other.

Proof (1) Letp !(x9) = {4 : @ € A}. For each a € A, choose a path 7, in X from 7 to z,. We
shall show that {[p(74)], : @ € A} is a set of representatives for the right coset of p. (711 ()? ) jo)) in
1 (X, 1’0).

o If [p(Fa)]p and [p(33)], are in the same right coset, then there exists o € Q(X,zg) such
that o * p(7.) is path-homotopic to p(73). By homotopy lifting property (Corollary 3.7.10),
p (70 * p(3a)) and p~ (p(73)) are path-homotopic in X, which requires o = .

o For any v € Q(X,z), suppose its lifting ¥ ends at z,. Then 5 x5, € Q()?, :EO). Hence

Fp * Fal, ' € m ()}, 5:0) and then [1], * [p(3a)], " € px (7r1 ()?,5:0>), ie., [v]p is in the right
coset with representative [p(¥a)]p-
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Therefore, the index of p. (m ()N(, 530)) in 71 (X, x0) is |A|, the cardinality of p~*(z).

(2) Since m1(X,z0) = {e}, by (1),
definition of a covering map, p is a local homeomorphism, in particular, p~* is continuous at each

p~'(z0)| = 1. And since € X is arbitrary, p is bijective. By the

point. Hence p is a homeomorphism.

(3) Let 41 be a path in X from Z; to #;. The same argument as in (1) shows that p, (7r1 ()2'7 jo)) *
[p(71)]p is the class of all loops in X based at x, whose liftings are from Z, to #;, and it is the same
for [p(F1)]p * D« (7T1 ()? , jl) ) Thus these two cosets are the same, and it follows that

pe(m (Xod0) ) = )]y * pe (71 (X, 21) ) + G
Therefore, the two subgroups p, (m ()Z’ , i())) and p, (7r1 ()Z' , i1)> are conjugate. O

Problem 104 (Covering of topological groups)

(1) Let G be a topological group which is path-connected and locally path-connected, and p : G — G
be a covering map. Suppose Gis path-connected and fix & € p~*(e). Prove: there exists a unique
group structure on G with é its identity element, such that p is a group homomorphism.

(2) Suppose G and G are connected topological groups, and suppose p : G— Gisa covering map.
Moreover, suppose p is also a group homomorphism. Prove: G is abelian if and only if G is abelian.

Proof (1) Consider the map
p:GxG—=G, (i1,5) — p(G)p(G2)-
We want to lift this map to a map f : G x G — G such that the following diagram commutes:

» (G.¢)

o J,, (104-1)

Observe that

o Since G is path-connected, so is G xG.

o Since G is locally path-connected, so is G x G. And since p x p is a local homeomorphism
from G x G to G x G, G x @ is also locally path-connected.

By Theorem 3.7.14, the lift in (104-1) exists if and only if
I (7r1 (é x G, (e, é))) C p« (71'1 (é, é)). (104-2)
To prove (104-2), first note that images of paths in {2 (é x G, (e, é)) under p are of the form 7, - o,

where 71,72 € Q(G, e) and - denotes the multiplication in G. By Problem 88 (2) @, v; - 7, is path-
homotopic to v, * 72, thus

e (m(6 6,@.0)) =2 (71(G:2)) e (6:7)) =2 (m(:2)).
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where the last equality follows since p, (7r1 (é , é)) is a subgroup of 71 (G, €). Hence (104-2) holds,

and the lift i exists. With i as the multiplication map on G, let us verify the group axioms:

(Associativity) Consider the maps

a:GxGExGE— Ga (.617@27.&3) = [L(ﬂ(glagb)ag:i)a
ﬁ:GXGXG_)Ga (§1a§2a§3)Hﬂ(ﬁhﬂ(@%ﬁs))

Using the commutativity in (104-1), we have

and similarly

p(B(g1, G2, 93)) = p(g1)p(G2)p(g3)-

So we obtain po«a = po 8. As before, GxGxGis path-connected, and po (¢, €, €) = p(é)® =

¢® = e. The diagram

(é x G x G, (é,é,é)) i SN e

together with the uniqueness of lifting with base point (Proposition 3.7.13) implies o = §3.

(Identity element) Define the maps f1, f2 : G—G by f1(§) = g and f2(g) = [i(é, §). Then
p(f2(9)) = p(f(€,9)) = n(€,g) = p(€)p(9) = ep(3) = p(9) = p(f1(9))-

So we obtain p o f; = po fo. Since po f1(€) = p(€) = e and Gis path-connected, the diagram

. (&Q

p
J2

(é,é) L LI TS

together with the uniqueness of lifting with base point (Proposition 3.7.13) implies f; = fa.
Hence ég = g forall g € G. Similarly, gé = g forall § € G.

(Inverse element) Consider the map

i:G—G, g
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We want to lift this map to amap i : G — G such that the following diagram commutes:

(@)
‘ lp (104-3)

(é, é) i (Ge)

Since G is path-connected and locally path-connected, by Theorem 3.7.14, the lift in (104-3)

io(m(G.2)) cp.(m(Goe)). (104-4)

By the definition of i, we have

(5(60)) (e (@) =n(n(0:)

where the last equality follows since p (771 (é , é)) is a subgroup of 71 (G, e). Hence (104—4)

exists if and only if

holds, and the lift 7 exists. By Proposition 3.7.13, 7 is unique, so we can define the inverse of
any € G as i(§). Now define the maps ¢1, ¢ : G — G by £1(3) = i(i(), ) and £5(3) = é.
Then

p(t1(3)) = p(a(i(3),9)) = 1(i(3),9) = p(i(3))p(@) = i(9)p(@) = p(7)~'p(G)

So we obtain p o ¢1 = p o {5. Since p o £2(¢€) = e and Gis path-connected, the diagram
. (G, e)

L

(é, é) “pohiEpole ()

together with the uniqueness of lifting with base point (Proposition 3.7.13) implies ¢; = /o.
Hence /i(i(g),§) = éforall j € G. Similarly, fi(3,i(g)) = éforall g € G.

Therefore, G admits a group structure with ¢ as the identity element. The fact that p is a group
homomorphism is just the commutativity in (104-1), i.e., p(i(g1,G2)) = p(g1,92) = p(g1)p(g2)-
The uniqueness of the group structure follows from the uniqueness of the lift in (104-1).

(2) (=) Consider the map
d:GxG =G, (J1,92) = 919297 G2 -
If G is abelian, then p(d(§1, §2)) = ec, which means that the image of d is contained in p~* (eg).

Since p is a covering, p~!(e¢) is discrete. Since d is continuous and G x G is connected, the
image of d must be connected. Thus d(é X @) =d(eg,eq) =eg ie, G is abelian.

(<) Since G is connected, by Problem 101 (1), p is a surjective group homomorphism. Hence G
is abelian whenever G is abelian. O
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PSet 14, Part 1

Problem 105 (Properly discontinuous action)

(1) Let G = (a,b|a""bab =1). Consider the action of G on R* generated by

a~(x,y) = (—x,y—l), b'(xvy):(x+1ay)-

@ Show that this action is properly discontinuous, and the quotient space is the Klein bottle.
What is the fundamental group of the Klein bottle?

® Also check that the quotient space in Example 3.7.6 is the Klein bottle, and thus T? is a double
covering of the Klein bottle.

(2) Suppose group G acts on X. We say the action is free if
for any g # e and any x Ei,g-x;&x.

Prove: if X is Hausdorff, G is a finite group, and the G-action on X is free, then the action is
properly discontinuous.

(3) More generally, let X be a LCH space. Suppose the G-action on X is free, and satisfies the following
condition (known as proper action):

for any compact subset C' C X, theset {ge G :g-CNC # o} is finite.

Prove: the G-action is properly discontinuous, and X/GisalCH space.

Proof (1) @ Forany (z,y) € R? choose U =B ((z,y), 1), theng-UNU = @ forany g € G\ {e}.
Thus the action is properly discontinuous. For any (z,y) € R?, firstapply aora™! tomakey €
[0,1), then apply b or b~* to make x € [0,1). Thus [0, 1) x [0, 1) is a fundamental domain. The
identifications on its boundary are (0,y) ~ (1,y) fory € [0,1) and (z,1) ~ (—z,0) ~ (1 —z,0)
for z € [0,1). Thus the quotient space is the Klein bottle. Since R? is simply connected, by
Proposition 3.7.20 (3), the fundamental group of the Klein bottle is G.

® Regard T? as [0, 27] x [0, 2] with identifications (0,y) ~ (27,y) and (z,0) ~ (z,27). The
G-action further identifies (z, y) with (2 — z,y + 7), which gives the Klein bottle.

(2) Suppose G = {e,g1, -+ ,gn}. Forany & € X, ;i # #. Since X is Hausdorff, there exist open
neighborhoods U; of  and V; of g;% such that U; N V; = @. Then U = ﬂ U;N gi_1 (V;) is an open

i=1

neighborhood of & such that g;-UNU = @ for 1 < i < n. Thus the action is properly discontinuous.

(3) ‘ G-action is properly discontinuous ‘ For any i € X, since X is LCH, there exists a precompact

open neighborhood U of Z. Since the action is proper, theset {g € G : g- U N U # @} is finite,
and thus theset {g € G : g- UNU # &} is finite. Let g1, - , g, be the elements in this set
that are not identity (if this set contains more than one element). Since the action is free, the
same argument as in (2) shows that the action is properly discontinuous.
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X /@ is locally compact | Let p : X — X /G be the covering map. For any 2 € X /G, choose an

open neighborhood U of = such that p~(U) = U Va is a disjoint union of open sets V,, and
«
plv, : Vo — U is a homeomorphism. Fix any # € p~'(x) and suppose & € Vj. Since X is

LCH, by Proposition 2.4.16, we can find a compact neighborhood K of Z that is contained in
V. Then p(K) is a compact neighborhood of z.

)Z'/G is Hausdorff | For any z,y € )NC/G with x # y, fix 2 € p~*(z) and § € p~'(y). Since X
is LCH, there exist precompact open neighborhoods U, of # and U, of §. Since U, U U, is

compact, from the proper action condition, there are only finitely many ¢ € G such that
g- (U, uUy) N (U, UU,) # @. 1t follows that there are only finitely many g € G such that

g-U,NU, # 2.

Call these exceptional elements g1, -, g,. Foreach j = 1,.-- n, since X is Hausdorff and
x # y (which means  # g¢;7), there exist disjoint open neighborhoods Vj’ of  and Wj’ of g;7.
LetV; = V/NU, and W; = g;' - W;NU,. Then forall 1 < j < n, the sets V; and W) are open,
zeV; CUy,yeW; CUy,and V;Nyg; - W; = @. Define

Now z € V and y € W. By construction, for any g € G, we have V N g- W = & and then

vnlJgw=u2.
geG

Thus for any h € G we have

g=h- (vn Ug.W) =(h-V)n (h- Ug-W) =(h-V)nlJg-W.

9geG geG geG

(heugh-v> n (QEJGyW) =o.

Let V = U h-Vand W = U g-W. Then V and W are disjoint open neighborhoods of =

heG geG
and y, and

Hence

p_l(p(V)) =V, p_l(p(W)> =W.

Hence p(V) and p(W) are disjoint open neighborhoods of = and y, and X /G is Hausdorff. [J

Problem 106 (SU(2) and SO(3)) LetSU(2) be the special unitary group, i.e., the group of 2 x 2 uni-
tary matrices with determinant 1, and SO(3) the special orthogonal group, i.e., the group of 3 x 3 or-
thogonal matrices with determinant 1.

(1) Prove: SU(2) is homeomorphic to S* (and thus simply connected).

(2) Prove: SU(2) is a double covering of SO(3) (and thus SO(3) ~ RP?).
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(3) Find the fundamental group of SO(3). (Try to find a video on Dirac’s belt trick from internet and
try to understand it.)

Proof (1) Elements in SU(2) are of the form ( i w) , where |z|* 4+ |w|* = 1. Thus the map
z

z

£:SU@2) —» S% c €2, ( . w>'—>(z,w)
—Ww z

is well-defined and is clearly a homeomorphism.

(2) There is a group isomorphism f : SU(2) — {unit quaternions}, generated by

1 0 0 —i ) 0 -1 ) —-i 0
( )r—>1, ( ) )r—n, ( >+—>], ( _>P—>k.
01 —-i 0 1 0 0 i

Now identify R® with the space of pure quaternions {bi + ¢j + dk : b,c,d € R}. For any unit
quaternion g, observe that

q(bi+ ¢ + dk)G = qbi + ¢j + dkg = —q(bi + ¢j + dk)q,

so q(bi + ¢ + dk)q is also a pure quaternion. Thus we can consider the group action of SU(2) on
R? ~ Ri & Rj & Rk defined by

A~ (bi+ ¢ + dk) = F(A)(bi+ ¢ + dk) F(A).

If f(A) = e2(ituitu=k) — cos 8 4 sin & (u,i + uyj + u.k), then the action of A on R? is in fact
a rotation of angle § around the axis defined by the unit vector u,i + u,j + u.k, which can be
represented by an element in SO(3). Thus we obtain a covering map SU(2) — SO(3), and since
the actions of f(A) and f(—A) = — f(A) on R? are the same, this is a double covering.

(3) By (1), 71(SU(2)) = {e}. By (2) and Problem 103 (1), the index of the subgroup p.. (71 (SU(2), Zo)) =
{e} in m1(SO(3), zo) is 2. Thus 71 (SO(3)) has order 2, which implies 71 (SO(3)) =~ Z,. O

Problem 107 (Covering of covering spaces) LetX,Y, Z be path-connected and locally path-connected
spaces,and f : X =Y, g: Y — Z be continuous maps.

(1) Suppose both g and g o f are covering maps. Prove: f is a covering map.
(2) Suppose both f and g o f are covering maps. Prove: g is a covering map.
(3) Suppose f is a covering, and g is a finite covering. Prove: g o f is a covering,.

(4) Suppose f and g are coverings, and suppose Z is semi-locally simply connected. Prove: g o f is a
covering.

(5) Let X be the second space below, Y be the first space below, and Z be the Hawaiian earring.
Construct a natural covering map g : ¥ — Z, and a natural double covering map f : X — YV
(as a double covering), so that the composition g o f is not a covering map. (So in general the
composition of covering maps may fail to be a covering map.)


https://www.youtube.com/watch?v=EgsUDby0X1M
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T311

N
NCAD

Proof (1) Fixzp € X and set yo = f(x0), 20 = g(yo). We first show that f is surjective. Giveny € Y,

)

3)

(4)

(5)

choose a path @ in Y from g to y. Then a = goa is a path in Z beginning at . Let & be a lifting of
o to a path in X beginning at zy. Then f o is a lifting of @ to Y that begins at yo. By uniqueness of
path liftings, @ = foa. Then f maps the end point of & to the end point y of &. Thus f is surjective.
Given y € Y, we find an open neighborhood of y that is evenly covered by f. Let z = g(y). Since
go f and g are covering maps, and Z is locally path-connected, we can find a path-connected open
neighborhood U of z that is evenly covered by both g o f and g. Let V be the slice of g 1 (U) that
contains the point y; we show V is evenly covered by f. Let {U,} be the collection of slices of
(go f)~*(U). Now f maps each set U, into the set g~ (U); because U, is connected, it must be
mapped by f into a single one of the slices of g~*(U). Therefore, f~*(V) equals the union of those
slices U, that are mapped by f into V. Let fy = flv., 9o = g|v, and h = (g o f)|v,,. Since hy and
go are homeomorphisms, so is fo = g, Lo hy.

Since g o f is surjective, g is also surjective. Given z € Z, let U be a path-connected open neigh-
borhood of z that is evenly covered by g o f. We show that U is also evenly covered by g. Let {Vs}
be the collection of path components of g~ 1(U); these sets are disjoint and openinY (see remarks
on page 181). We show that for each 3, the map g carries V3 homeomorphically onto U. Let {U,}
be the collection of slices of (g o f)~*(U); they are disjoint, open, and path-connected, so they are
the path-components of (g o f)~*(U). Now f maps each U, into the set g~ *(U); because U, is
connected, it must be mapped by f into one of the sets V3. Therefore f~*(V;3) equals the union of
a subcollection of the collection {U,}. By Remark 3.7.2, for each ¢, since U,, is a path component
of ¢7*(V3), the map fy : U, — Vj obtained by restricting f is a covering map. In particular, f,
is surjective. Hence fy is a homeomorphism, being continuous, open, and injective as well. Let
9o = glv, and hg = h|y,. Then both hg and f; are homeomorphisms, so is go = hg © f L

Suppose g : Y — Z is an n-sheeted covering map. Given z € Z, let W be an open neighborhood of
z that is evenly covered by g and let {Vi, - - -, V},} be the slices of g~*(W). For each 1 < k < n, find
yr € Vi such that g(yx) = 2. Let V}/ C Vj be an open neighborhood of yj, that is evenly covered by
n
f- Then W’ := ﬂ g(V}) is an open neighborhood of z that is evenly covered by g o f.
k=1

Since Z is path-connected, locally path-connected and semi-locally simply connected, it admits a
universal covering space Z. Suppose pz : 7 — Z is the covering map. By Theorem 3.8.9, there
exists a covering map py : Z — Y such that pz = g o py. It follows that there exists a covering
map px : Z — X such that py = fopx. Now pz = go f opx and px are both covering maps, by

(2), g o f is a covering map.

® Wrapping the horizontal line around the outermost circle of the Hawaiian earring gives a

natural coveringmap g : Y — Z.
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@ By gluing the two horizontal lines of X in the same direction, we obtain a double of Y (note
that those curves connecting the two horizontal lines will become cicrles).

® Any openneighborhood of the intersection point of the Hawaiian earring contains some small
circle, whose preimage under g o f is a curve connecting the two horizontal lines. Thus there
is a slice of the preimage that is not homeomorphic to the given open neighborhood. O

Problem 108 (Covering of topological manifolds) Let A be a connected topological manifold.

(1)
(2)
(3)

Prove: any topological manifold admits a universal covering.
Prove: the fundamental group of any topological manifold is countable.

Prove: any covering space of a topological manifold is still a topological manifold.

Proof (1) Since M islocally Euclidean, it is also locally path-connected and semi-locally simply con-

(2)

nected. By Theorem 3.8.3, M/ admits a universal covering space.

By Proposition 2.7.14 / Problem 58 (1), any second countable space is Lindel6f. So we can take
a countable cover U of M by coordinate balls. For each U, U’ € U, the intersection U N U’ has at
most countably many path components, since M is separable. Choose a point in each such path
component and let X denote the (countable) set consisting of all the chosen points as U, U’ range
over all the sets in /. Foreach U € U and z, 2’ € X such thatz,z’ € U, choose a definite path Vg, -

from z to 2’ in U.

Now choose any point p € X as base point. Let us say that a loop based at p is special if it is a
finite product of paths of the form wg »- Because both U and X are countable sets, there are only
countably many special loops. Each special loop determines an element of 7 (M, p). If we can
show that every element of 71 (1, p) is obtained in this way, we are done, because we will have
exibited a surjective map from a countable set onto 7 (M, p).

So suppose 7 is any loop based at p. By the Lebesgue number lemma there is an integer n such
that v maps each subinterval [, £] into one of the balls in I/; call this ball Uy Let v, = 7| [E=1 4]
reparametrized on the unit interval, so that [], = [y1]p * - - - * [yn]p-

Foreachk =1,--- ,n — 1, the point 'y(%) lies in Uy, N Uy 1. Therefore, there is some x5, € X that
lies in the same path component of U, N Uy as 'y(;’j) Choose a path d;, in Uy, N Up41 from zj, to
v(£), and set % = 61 * vk * 6, (taking z;, = p and §; = v, when k = 0 or n). It is immediate
that [7], = [J1]p * - - - * [Yn]p, because all the d;’s cancel out. But for each k, 7, is a path in Uy, from
Zi—1 to xy, and since Uy, is simply connected, 7y, is path-homotopic to 'Vgil,x .- This shows that v

is path-homotopic to a special loop and completes the proof.

Let M be a path-connected covering space of M and let p : M — M be the covering map.

‘Locally Euclidean‘ Since every point £ € M has an open neighborhood homeomorphic to an

open neighborhood of p(Z), and p(Z) has an open neighborhood homeomorphic to an open
subset in R" (for some n), it follows by restriction that  has an open neighborhood homeo-
morphic to an open subset in R".

(T2) | For any distinct Z,§ € M, if p z) = p(g), then choose an open neighborhood U of p(z) that
is evenly covered by p. Then p~!(U) is a disjoint union of open sets, and two of them contain
Z and g, respectively. If p(Z) # p(7), then we can find disjoint open neighborhoods U and V/
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of p(#) and p(§), respectively. Then p~!(U) and p~' (V') are disjoint open neighborhoods of &
and g, respectively.

For each « € M, choose an open neighborhood U, of z that is evenly covered by p. Since
M is (A2), itis Lindelof, so we can take a countable subcover {U,, }32 ; of {U, : x € M}. Since
M is path-connected, by Proposition 3.7.16, the degree of the covering is not greater than the
cardinality of 71 (M), which is countable by (2). Thus M is a countable union of open sets
Vi, each of which is homeomorphic to U,, for some n. Since M is (A2) and by Problem 59
(1) (A2) is hereditary, Vj, is (A2) as well. For each k, let B be a countable basis for V. Then

U B;. is a countable basis for M since each Vi is open in M and M = U V. O
k=1 k=1

PSet 14, Part 2

Problem 109 (Applications of Brouwer’s fixed point theorem)

(1) (A special case of Poincaré—Hopf theorem, proved by Hadamard) Let f : D" — R" be a continu-
ous map (i.e., f is a vector field on D") such that x - f(x) > 0 for allz € S*~! = 9D". Prove: there
exists z € B" such that f(x) = 0.

(2) (Poincaré-Bohl) Let f : D" — R" be a continuous map such that f(z) ¢ {az : a« > 0} for any
x € S"~1. Prove: there exists + € D" such that f(x) = 0.

(3) (Perron-Frobenius) Any n x n real matrix with positive entries has a positive eigenvalue, and the

corresponding eigenvector can be chosen to have strictly positive entries.

(4) (Kuratowski-Steinhaus) Let f : D" — D" be a continuous map such that f (S”_l) c S"!, and
suppose for any z € S"™!, f(z) # x. Prove: f(D") = D".

Proof (1) If f(x) # O for all x € B", then let g(z) = — ”ﬁg” € ¢(D",S""). By Brouwer’s fixed
point theorem, there exists 7o € S"~' such that g(zg) = o, i.e., f(z0) = —| f(20)|xo. Then
xo - f(zo) = —||f(z0)]] <0, a contradiction.

f(x)

(2) If f(z) # O for all z € D", then let g(x) = € ¢(D",S""). By Brouwer’s fixed point

I @)

theorem, there exists zo € S”~! such that g(xo) = 2o, i.e., f(20) = || f(x0)||w0, a contradiction.

(3) Let K = {x € R™: ||z|| = 1, ; > 0, Vi}. Then by Problem 110 (1), K ~ D"~ ! has the fixed point
Az

|| Az||
map from K to K, so it has a fixed point z, i.e., Az = ||Azo||zo. To see that zg ¢ JK, just notice

property. Since all entries of A are positive, the map f(z) = is a well-defined continuous

that all components of Ax are strictly positive for any « € K.

(4) For any = € B", we show that there is a homeomorphism : ¢, : D" — D" with ¢, (z) = 0 and
©glsn-1 = Idgn-1. First, consider the homeomorphism

¥ B" — R, x»—>x~arctan%.

Then define
a, ae S,

P D", =D a— .
1/)7 o Tw(w),O o d)(a)v ac an
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where Ty(;),0 : R" — R"™ denotes the translation from 1(z) to 0. It is easy to check that ¢, is a
homeomorphism (via sequential continuity), as desired. Now apply (2) to ¢, o f, we see that there
exists xp € D" such that ¢, (f(x0)) = 0, and since ¢, is a homeomorphism, this implies f(xo) = x.
Since x € B" is arbitrary, we obtain B" C f(D"). Finally, since f(D") is compact, we must have
f(D") =D™. O

Problem 110 (Fixed point property) We say a topological space X has the fixed point property if for
every continuous map f : X — X, there exists p € X such that f(p) = p.

(1) Show that the fixed point property is a topological property.
(2) Prove: if X is disconnected, then X cannot have the fixed point property.
(3) Suppose X,Y have the fixed point property. Prove: X V Y has the fixed point property.

(4) Prove: if X x Y has the fixed point property, then X and Y have the fixed point property. (There
exist complicated examples: X, Y have the fixed point property, while X x Y does not.)

(5) Prove: if X has the fixed point property, and A C X is a retract of X, then A has the fixed point
property.

(6) Let X be the subset of R? that consists of the union of the line segment from (0,0) to (1,0) and all
line segments from (%,0) to (1,1). Show that X has the fixed point property. (As a result, X has
the fixed point property does not imply X is compact.)

Proof (1) Suppose X has the fixed point property, and i : X — Y is a homeomorphism. Then for
any continuous map f : Y — Y, the composition h ' o fo h : X — X has a fixed point p € X, i.e.,
f(h(p)) = h(p), so h(p) € Y is a fixed point of f. Therefore, Y has the fixed point property.

(2) If X is disconnected, then X can be written as the disjoint union of two nonempty open sets U and
V. Fixu € U and v € V, then the map

v, zelU,

u, zeV

X=X, x»—>{

is continuous and has no fixed point.

(3) Suppose f : X VY — X VY is continuous and let p denote the intersection. Without loss of
generality, assume f(p) € X. Let g be the natural map X — X VY, and consider the map

z, z € X,
h:XUY - X, zm—

px, Z2€Y.

Here px is the base point for X. The map h descends to a continuous map h:XVY = X , thus
we get a continuous map by the composition

fz), if f(z) € X,

, )
XS5XVvYy S XvYy Dy, 2o
2 if f(z) ¢ X.
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(6)
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By assumption, there exists o € X such that f(z¢) = x¢, which implies f(z¢) = 2o € X or
f(zo) ¢ X and x¢ = p. But the latter is impossible since we assumed f(p) € X. Hence x is a fixed
point of f.

If f: X — X is continuous, then the map
g: X XY = XXV, (z,y) = (f(2),y)

is continuous. By assumption, there exists (zg,y0) € X x Y such that g(zo, yo) = (20, ¥0), which
implies f(zo) = x¢. Similarly, we can show that Y has the fixed point property.

By Problem 67 (2), any continuous map f : A — A has an extension f : X — A. By assumption,
there exists p € X such that f (p) = p, which implies p € A and then f(p) = p.

Let f : X — X be an arbitrary continuous map. Let I = [0, 1] x {0} be the bottom interval and let
7 : X — I be the projection 7(z, y) = (x,0). The map 7 o f maps I to I, so it has a fixed pointin I.
Hence, there exist 2 and yo such that f(zg,0) = (x0,y0). If yo = 0 then we are done. Otherwise,
0 < yo < 1, then by the continuity of f, there exists ¢ > 0 such that {z¢} x [0, €] is mapped into
{zo} x [0,1]. Thus, we define

yr = max{y € [0,1] : f({zo} x [0,9]) C {wo} x [0,1]} > & > 0,

If y; = 1, then f maps {xo} x [0, 1] to itself, so it has a fixed point. Now assume 0 < yo < 1 and
consider the retraction

ri{zo} x 0,1 = {zo} x [0,51], (w0, 9) = (w0, min{y, y1}).

Since r o f maps {zo} X [0,y1] to itself, it has a fixed point (x¢, y.) in {zo} % [0, y1]. If y. < 31, then
we are done. Otherwise, y. = y1, and r(f(xo,y1)) = (x0,y1) implies f(zo,y1) € {xo} % [v1,1].
But then, by the continuity of f, there exists § > 0 such that {x¢} x [y1 — J,y1 + 6] is mapped into
{zo} x [0,1]. This contradicts the maximality of y; and completes the proof. O

Problem 111 (Brouwer’s fixed point theorem, the second version) Let K C R" be any nonempty

compact convex set.

(M
(2)

3)

Suppose K has nonempty interior. Prove: K is homeomorphic to D".

Prove: K has nonempty interior if and only if K is not contained in a proper hyperplane (i.e., a set
of the form z¢ + V, where V' C R" is a linear subspace).

Prove Theorem 4.1.8:

Let K C R" be nonempty, compact and convex. Then any continuous map f : K — K has a
fixed point.

Proof (1) By translation we may assume 0 € Int K. Since K C R" is compact, we can define

p:R" = [0, 4+00), x»—)inf{)\>0:§€K}.

It is easy to check that
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o plz +y) <plx) +py), Ve, y € R
o p(Ax) = Ap(z), VA > 0,V € R".
o p(z) = 0if and only if z = 0.

Therefore, there exist C, Co > 0 such that

Cillz]l < p(z) < Cofjzf], Ve € R,

where || - || denotes the Euclidean norm. Now define
p: K —-D" =z~ [zl
0, z=0.

Since 0 € Int K, there exists > 0 such that B(0,r) C K. Then

rxr
T K, VzeR"\{0}
2|z
2|z
T

for all z € R™. Hence

It follows that p(x) <

2
Ip(z) — p(y)| < max{p(xz —y),py —z)} < “le—yll, Va,y e R,

which implies that ¢ is uniformly continuous. Thus ¢ is a continuous bijection from the compact
set K to the Hausdorff space D", so it is a homeomorphism.

(2) The “only if” part is trivial. For the “if” part, first assume 0 € K. By assumption, K contains a

1 n
basis {e1, - ,en} of R™. Now the point pg := o E e must lie in Int K, since pg € K and
n
k=1

= 1
{po—l—Z/\kek : |)\k:‘ < 271} C K.

k=1

(3) By lowering the dimension, we may assume K C R™ (m < n) and K is not contained in a proper
hyperplane of R™. By (2), K has nonempty interior in R™. Then by (1), K is homeomorphic to
D™. By Problem 110 (1), K has the fixed point property. O

Problem 112 (A proof or not?) Here is a proof of two-dimensional Brouwer’s fixed point theorem:

Proof We first observe (by the intermediate value theorem) that
Lemma Any continuous map h : [0,1] — [0, 1] has a fixed point.

Now write F' = (f, g), where both f and g are continuous functions from [0, 1] to [0, 1]. For
each y € [0,1], we define a function f, : [0,1] — [0,1] by f,(z) = f(z,y). According to
the lemma above, there exists a(y) € [0, 1] such that f,(a(y)) = a(y), i.e., f(a(y),y) = a(y)
for any y € [0, 1]. Using the function a(y) we can define another function g : [0,1] — [0,1]
by g(y) = g(a(y),y). Again according to the lemma above, we can find b € [0, 1] such that
g(b) = b, ie., g(a(b),b) = b. It follows that F'(a(b),b) = (a(b),b). In other words, the point
(a(b), b) is a fixed point of F'.
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Question Is this proof correct or wrong? If you think this is correct, then generalize this proof to give
a proof of the Brouwer’s fixed point theorem for n-dimensional cubes; if you think this is wrong, then

point out the mistake in the proof and also provide a counterexample for which the proof fails.

Solution This proof is wrong since the continuity of the function a(y) is not guaranteed. In general,
a(y) cannot be chosen to be continuous. A counterexample is given by the function

2xy, ify <
L_2(1—a)(1-y), ify>

)

f:10, 1]2 = [0,1], (z,y) —

N= N[

Then following the “proof”, we find

0, ify<4i,
a(y) = :
1, 1fy> 2

andwheny = 3, allz € [0, 1] are fixed points of £, In this case, a(y) cannot be chosen to be continuous.[J

PSet 15, Part 1

Problem 113 (Continuity and injectivity does not imply homeomorphism)

(1) Suppose U C R" is open, and f : U — R" is continuous and injective. Prove: f : U — f(U)isa

homeomorphism.

(2) Construct a continuous and injective map f : R — R? such that f : R — f(R) is not a homeomor-
phism.

Proof (1) By Brouwer’s invariance of domain theorem, f is an open map. So f : U — f(U) is a

continuous open bijection, hence a homeomorphism.

(2) Consider the curve 3 : (—7,7) — R? defined by 3(t) = (sin 2t,sint). Its image is a set that looks
like a figure-eight in the plane (Figure 6). It is easy to see that 3 is continuous and injective.

Figure 6: The figure-eight curve

Consider the homeomorphism « : R — (—m, 7) given by a(z) = 2arctan z. Since (—x, ) is non-
compact, but the image 3((—m, 7)) is compact, the map S is not a homeomorphism. It follows that
f = Boa:R — R?is continuous and injective, but f : R — f(R) is not a homeomorphism. O

Problem 114 (Applications of Brouwer’s invariance of domain theorem)

(1) Suppose M and N are n-dimensional topological manifolds, and f : M — N is continuous and

locally injective (what is a reasonable definition of “locally injective”?). Prove: f is an open map.



(2)
(3)
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Prove: there is no injective continuous map f : S" — R".

Show that there is no proper subset of S" that is homeomorphic to S™ itself.

Proof (1) A function M — N is said to be locally injective at p € M if there exists an open neigh-

(2)

(3)

borhood U of p in M such that f|y is injective, and f is said to be locally injective if it is locally
injective at every point in M. Suppose f : M — N is continuous and locally injective. For any
p € M, we can find a local chart (U, ) around p and a local chart (V, ') around f(p). By restricting
U if necessary, we can assume that f| is injective and f maps U into V. Then the composition
Yo fopt:p(U)— (V)isan injective continuous map between open subsets of R". Since ¢ (U)
is open, by Brouwer’s invariance of domain theorem, 1) o f o ™! is an open map. It follows that f
is a locally open map and hence an open map.

If there exists an injective continuous map f : S" — R", thenby (1), f isan open map. In particular,
f(S™) is open in R™. But f(S™) is compact in R", which means f(S") is bounded and closed in R".
Since R" is connected, there is no nonempty subset of R™ that is bounded and clopen. This is a
contradiction.

If Aisapropersubset of S”, then A misses at least one point of S, which means A is homeomorphic
to a subset of R". By (2), there is no injective continuous map from S" to A4, so A cannot be
homeomorphic to S™. O

Problem 115 (Manifolds with boundary)

(1)

(2)

(3)

(4)

Show that the concept of the boundary point is well-defined in the definition of “topological man-
ifold with boundary”.

Prove: if X is an n-dimensional topological manifold with boundary, then its boundary 0X is an
(n — 1)-dimensional topological manifold (without boundary).

Let f : M — N be a homeomorphism, where M, N are topological manifolds of dimension n.
Show that f : 9M — ON is a homeomorphism.

Show that [0, 1] x R is not homeomorphic to [0, c0) x R.

Proof (1) Let M be an n-manifold with boundary and denote H" = {(z1, - ,z,) € R" : z,, > 0}.

(2)

(3)
(4)

If p € M is a boundary point via a chart (U, ¢) and also an interior point via a chart (V, ), then
consider an open neighborhood W C U NV of p such that (W) = B(¢(p), r) NH" for some r > 0
and (W) is an open subset of R™. Now @ o ¢~ : (W) — (W) is a homeomorphism. Let
¢+ (W) < R™ be the inclusion map. Then ¢ o @ 09y~ : (W) — R™ is a continuous injection,
which is impossible by Brouwer’s invariance of domain theorem, for ¢ o (W) is not open in R™.

By Problem 59, both (A2) and (T2) are hereditary properties. If p € 0X and (U, ¢) is a Icoal chart
around p in X, then ¢|y7nas is a homeomorphism from U N9M to an open subset of R™ ! x {0} ~
R™~!. Hence 0X is an (n — 1)-manifold without boundary.

By (1), f(OM) = ON. So by restricting f to M, we get a homeomorphism f : 0M — ON.

If [0,1] x R is homeomorphic to [0, 00) x R (as 2-manifolds), then by (3), their boundaries ({0} x
R) U ({1} x R) and {0} x R are homeomorphic. However, the former is disconnected while the
latter is connected, a contradiction. O
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Problem 116 (Invariance of domain via Borsuk—-Ulam) Assume the following version of Borsuk-Ulam

theorem:

(Borsuk-Ulam) There does not exist any continuous map f : D" — S™~' such that f

sn—1
preserves antipodal points (i.e., f(—x) = —f(z)).

Prove the invariance of domain theorem.

Proof In Problem 96, we have shown that the Borsuk-Ulam theorem is equivalent to the following
statement:

There exists no continuous map f : D™ — S"! such that the restriction to the boundary of f,
flsn—r : "7t — S"1 is antipodal-preserving.

And recall from Problem 83 (3) that

f € C(X,Y) is null-homotopic if and only if f has a continuous extension F' € C(C(X),Y), where
C(X) is the cone over X.

Note that the cone over S”~! is homeomorphic to D". Thus the above statements together imply that
There exists no continuous map f : S"~ — S"~! that is null-homotopic and antipodal-preserving.

To prove the invariance of domain theorem, it suffices to prove its local version (Theorem 4.1.14):
Let f: D™ — R"™ be continuous and injective. Then f(0) € Int f(D").

Suppose to the contrary that f(0) ¢ Int f(D"). Since f is injective, f(0) ¢ f(S™™'), so there exists & > 0
scuh that B(f(0),e) C R™\f(S""'). Andsince f(0) ¢ Int f(D"), we canfind ¢ € B(f(0),)N(R™\ f(D")).
Now consider the map

_ _ f(s)—c
g:S"h sl s
|f(s) = ¢l
and the constant map
- _ f0)—c
go: STt ST s ol
’ [£(0) =
Also, define
f(ts) —c

Hi:0,1] xSt 8" (t,8) — ot

Since ¢ ¢ f(D"), these maps are all well-defined, and H; is a homotopy from g¢ to g. On the other hand,

consider the antipodal-preserving map

.qn—1 n—1 s f(s)_f(_s)
h:S"0 = 8", H—|f(s)—f(—s)|’

which is well-defined and continuous since f is injective. Define the map

- _ f(s) = f(0)
. §n 1 sn 1
S N O 0]
and choose a path A(t) from c to f(0) in B(f(0), ). Then the map
fs) = AD)

Hy:[0,1] xS"™" = S", (t,8)— O]
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is a homotopy from g to ho. This map is well-defined since B(f(0),e) N f(S" ') = @. At the same time,

the map
£(s) — f(—st)
T () — f(=st)]

is a homotopy from hg to h. This map is well-defined since f is injective. Thus h ~ hy ~ g ~ go, which

Hs:[0,1] xS" ' = s"1 (t,s)

means h : S”~' — S"! is null-homotopic and antipodal-preserving, a contradiction. O

PSet 15, Part 2

Problem 117 (Poincaré—Miranda theorem) The following theorem was first announced by H. Poincaré
in 1883, which can be viewed as a higher dimensional generalization of the intermediate value theorem.
Miranda showed in 1940 that the theorem was equivalent to Brouwer’s fixed point theorem.

(Poincaré-Miranda) Let f = (f1,---,fn) : [0,1]" — R"™ be continuous. Suppose for any
1 <7 < n, we have

Then there exists p € [0, 1]" such that f(p) = 0.
(1) Prove the Poincaré-Miranda theorem via Brouwer’s fixed point theorem.
(2) Prove Brouwer’s fixed point theorem via the Poincaré-Miranda theorem.

Proof (1) Letry:R — [0, 1] be the retraction with r¢((—o0,0)) = {0}, 7o((1, +00)) = {1}, and define
r:R" = [0,1]", (z1, - ,2n) = (ro(z1), - ,70(xn))-

Consider the map h(z) = r(z) — f(r(x)). Since f is continuous and [0, 1]" is compact, f([0,1]") is
bounded, and thus the image of h is also bounded. Since r is a retraction, the image of h is the
same as that of h[[,1». So we can choose R > 0 such that h(R™)U[0, 1]" C B(0, R), and this implies

h(IB(O, R)) C B(0, R). By Brouwer’s fixed point theorem, there exists z = (z1,--- ,z,) € B(0, R)
such that h(z) = «.

o If z; <0, then ro(z;) = 0 and the i-th component of h(x) is ro(z;) — fi(r(z)) = —fi(r(z)) =0,
which contradicts h(z) = x.

o Ifz; > 1, thenry(z;) = 1 and the i-th component of h(z) is o (z;) — fi(r(z)) = 1— fi(r(z)) < 1,
which contradicts h(z) = z.

Therefore z; € [0,1]foralll < i < nandz € [0,1]". Sox = r(z)— f(r(x)) = x— f(x),ie., f(x) = 0.

(2) Since [0, 1]" is homeomorphic to D", it suffices to show that [0, 1]" has the fixed point property. Let
g :[0,1]" — [0, 1]" be a continuous map and let f(z) =  — g(z). Then forany 1 < i < n,

filz) = z; — gi(z) = —gi(x) <0, Vae{ze0,1]":z; =0},
file)=z; —gi(z) =1—gi(z) 20, Vexe{rel0,1]":x; =1}

By the Poincaré—Miranda theorem, there exists p € [0, 1]" such that f(p) =0, i.e., g(p) = p. O
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Problem 118 (Connectedness of the complement of a Jordan curve) Let M be a surface, and J a
Jordan curve in M. Can we conclude that M \ J is disconnected? If yes, prove it; if no, give a coun-

terexample.
(1) M =S'xR.
(2) M=%, (g>1).
(3) M =Mobius strip.
(4) M = RP?.

Solution (1) [¢|The map
f:S!XxR =S xRsg, (5,t)— (s,et)

is a homeomorphism. Also note that S' x R is homeomorphic to R? \ {0} via polar coordinates.
Therefore S* x R is homeomorphic to R?\ {0}, and by the Jordan curve theorem for R? we see that
M \ J is disconnected.

(2) The complement of a meridian is connected.
(3) Cutting a Mobius strip along the middle line gives a single loop, which is still connected.

b

(4) If we remove the Jordan curve ab from a a , we end up with only one connected

component homeomorphic to an open ball. O

Problem 119 (Brouwer’s invariance of domain theorem revisited)

(1) (Higher dimensional analogue of “arc non-separation” theorem) Prove: if K C R" is compact
and is a retract of R", then R" \ K is connected.

(2) Use the Jordan curve theorem to prove: if f : D* — R? is continuous and injective, then f(B(0, 1))
is the interior of the Jordan curve f (Sl) (i-e., the bounded component).

(3) Assume the Jordan-Brouwer separation theorem holds. State a higher dimensional analogue of
(2) and prove it.

Proof (1) Suppose to the contrary that R"\ K is disconnected. Since K is compact, R\ K has at least
one bounded connected component A. Take any 2y € A and choose R > 0 such that K’ C B(zg, R).
Since K is a retract of R", there exists a retraction r : B(xg, R) — K. Define the map

r(z), z €A,

h:B(zg, R) = B(zo, R), x+— -

x, x € A°NB(xp, R).
Since K is closed, if z ¢ K, then there exists € > 0 such that B(z, ¢) is contained in a connected
component of R™ \ K. Then z ¢ 0A and we get 0A C K. Since zy € A, we have A C B(zo, R), thus

An (AC ﬂIB%(xO,R)) = 9ANB(z0, R) = A C K,
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on which r(z) = z. Then by Problem 16 (1), h is continuous on B(z, R) (note that A is open by
the remarks on page 181). Moreover, since =y ¢ K and z¢ € A, we have

Zo ¢ h(Z) and ty) ¢ h(AC ﬂB(aﬁo,R)) C AS.

So h is in fact a continuous map into B(zg, R) \ {zo}. Composing h with the retraction

hi : B(zo, R) \ {zo} — 0B(x0, R), > 20 +Rﬁ,
— 40

we obtain a continuous map
h:=hy oh:B(xg, R) — IB(x0, R)

which is a retraction since for z € 9B(xo, R) we have h(z) = z and thus h(z) = z. This is a
contradiction since there is no retraction from D" to S" .

(2) The map f : D* — f(D?) is a continuous bijection from a compact space to a Hausdorff space,
hence a homeomorphism. By Remark 2.9.7, we can extend f~" : f(D?) — D? to a continuous
map ¢ : R? — R?. Let r be the retraction from R? to D?. Then f o r o ¢ is a retraction from R?
to f(D?). By the Jordan curve theorem, R? \ f(S') consists of exactly two connected components.
Since f(B(0,1)) is connected, it suffices to show that the bounded component of R? \ f(S') is
contained in f(B(0,1)). Suppose to the contrary that there exists x( in the bounded component of
R?\ f(S') but notin f(B(0, 1)). Then there is a retraction from f(D*) to f(S'). It follows that there
is a retraction from R? to f(S'), which is a contradiction.

(3) If f : D™ — R™ is continuous and injective, then f(B(0,1)) is the bounded component of R™ \ f(S™~1).
Similar to (2), we can show that f(D") is a retract of R". By the Jordan-Brouwer separation theo-
rem, if f(B(0,1)) is not the bounded component of R™\ f(S™ '), then there exists a retraction from
f(D") to f£(S" '), and thus one gets a retraction from R" to f(S™ '), which is a contradiction. [J

Problem 120 (Application to the square peg problem) Let.J C R? be aJordan curve that is symmet-
ric about the origin (i.e., P € J if and only if —P € J). Moreover, assume the origin O lies in the
bounded connected component of R? \ .J. Prove: J has an inscribed square, i.e., there exist four points
on J that are the vertices of a square.

Proof Rotate the curve J by 7 and denote the rotated curve by .Jy. If we can show that J N Jy is
nonempty, then by symmetry there exist four points (+z, +y) on J that are the vertices of a square. For
this, we need the following lemma.
Lemma If Ji, Js are two Jordan curves in R? such that J, N Jy = & and Jy is contained in the bounded
connected component of R* \ Jo (denoted by As), then the bounded connected component of R? \ J; (denoted by
Ay) is contained in As.
Proof Suppose to the contrary that there exists xy € A; N AS. Since A3 is the closure of the unbounded
connected component of R? \ J2, by Proposition 3.1.12, A5 is connected, unbounded, and does not in-
tersect J;. Thus the connected component of R?\ .J; in which z( lies must contain A$, a contradiction
to the assumption that A; is bounded.

Now we show that JNJj is nonempty. If they are disjoint, then by the Jordan curve theorem, J, must
be entirely contained in the interior or exterior of J. Without loss of generality, assume Jj is contained
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in the interior of J (otherwise .J is contained in the interior of .Jy). Then rotate .J, by 7 again to get J;.
By symmetry, J; is contained in the interior of Jy, and the lemma above implies that .J; is contained in
the bounded connected component of R? \ .J. However, since J is symmetric about the origin, we have
J1 = J, which is a contradiction. Therefore J N Jy is nonempty, and the proof is complete. O
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