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PSet 1, Part 1

Problem 1 (Fixed point theorems) Let f : [a, b] → R be continuous.

(1) Prove: if f([a, b]) ⊂ [a, b], then there exists p ∈ [a, b] such that f(p) = p.

(2) Prove: if f([a, b]) ⊃ [a, b], then there exists p ∈ [a, b] such that f(p) = p.

(3) What if f : D2 → R2 is continuous with f
(
D2
)
⊃ D2?

Proof (1) Let g(x) = f(x) − x ∈ C([a, b]), then g(a) ⩾ 0 and g(b) ⩽ 0. By the intermediate value
theorem, there exists p ∈ [a, b] such that g(p) = 0, i.e., f(p) = p.

(2) Let h(x) = f(x)− x ∈ C([a, b]). Suppose to the contrary that h(x) 6= 0 for all x ∈ [a, b].

� If h(a) > 0, then f(a) > a and there exists x0 ∈ (a, b] such that f(x0) = a. Hence h(x0) =

a− x0 < 0 and h has a zero in (a, x0) by the intermediate value theorem, a contradiction.

� If h(b) < 0, then f(b) < b and there exists x1 ∈ [a, b) such that f(x1) = b. Hence h(x1) =

b− x1 > 0 and h has a zero in (x1, b) by the intermediate value theorem, a contradiction.

Therefore we have h(a) < 0 and h(b) > 0. Again the intermediate value theorem leads to a contra-
diction, so there exists p ∈ [a, b] such that f(p) = p.

(3) In this case we don’t have a fixed point theorem. A map without a fixed point is given in Figure 1.

A B

C D
B′, D′A′, C ′f

Figure 1: Attaching arc BA to arc DC

Here the upper third of the disk ismapped to the lower half, the lower third ismapped to the upper
half, and the middle third is mapped to a band outside the disk that connects the two halves.

Problem 2 (Escape) Look at Figure 2. Explain how.

Figure 2: Two rings Figure 3: Undoing handcuffs

Solution Shown in Figure 3.
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Problem 3 (Inscribed square problem: a simple case) Let f : [0, 1] → R be a continuous function
with f(0) = f(1) = 0. Consider the simple closed curve C that consists of the graph of f and the line
segment of the x-axis from x = 0 to x = 1. Prove: one can find four points on C that are the vertices of
a square.

Proof We may assume f(x) > 0 for x ∈ (0, 1), since otherwise (as long as f is not identically zero)
we can find two consecutive zeros of f such that f or −f is positive in between, and then scale up this
subgraph. By the extreme value theorem, there exist x1 ∈ (0, 1) such that f(x) ⩽ f(x1) for x ∈ [0, 1].
Now let g(x) = x+ f(x), then g(0) = 0 and g(1) = 1. Since x1 ∈ (0, 1), there exists some x2 ∈ (0, 1) such
that g(x2) = x1 by the intermediate value theorem. Next we consider another function h defined by

h(x) = f(x)− f(g(x)).

For this function to be well-defined, we set f(x) = 0 for all x /∈ [0, 1]. Then

h(x1) = f(x1)− f(g(x1)) ⩾ 0,

h(x2) = f(x2)− f(g(x2)) = f(x2)− f(x1) ⩽ 0.

By the intermediate value theorem, there is some x0 between x1 and x2 such that h(x0) = 0, namely

f(x0) = f(x0 + f(x0)).

Therefore, the points x0 and x0 + f(x0) on the x-axis are the base corners of the inscribed square, as
illustrated in Figure 4.

x0 x0 + f(x0)

Figure 4: Inscribed square

Problem 4 (Weierstrass’s counterexample to Dirichlet principle) For any u in

A =
{
u ∈ C1([−1, 1]) : u(−1) = 0, u(1) = 1

}
,

define
F (u) =

∫ 1

−1

|xu′(x)|2 dx.
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(1) Prove: for each n ∈ N, the function

un(x) :=
(
sin nπx

2

)2
χ[0,1/n](x) + χ(1/n,1](x)

is an element in A.

(2) Prove: lim
n→∞

F (un) = 0.

(3) Prove: there is no function u ∈ A that attains the minimum of F .

Proof (1) First rewrite un(x) as

un(x) =


0, −1 ⩽ x < 0,(
sin nπx

2

)2
, 0 ⩽ x ⩽ 1

n
,

1,
1

n
< x ⩽ 1.

Since

lim
x→0+

un(x)− un(0)

x− 0
= lim
x→0

(
sin nπx

2

)2
x

= 0 = lim
x→0−

un(x)− un(0)

x− 0

and similarly

lim
x→( 1

n )
−

un(x)− un
(
1
n

)
x− 1

n

= lim
x→ 1

n

nπ

2
sin(nπx) = 0 = lim

x→( 1
n )

+

un(x)− un
(
1
n

)
x− 1

n

,

we see the derivative of un is

u′n(x) =


nπ

2
sin(nπx), 0 ⩽ x ⩽ 1

n
,

0, else.
(4–1)

From this we conclude that un ∈ C1([−1, 1]), hence un ∈ A.

(2) By (4–1) we have

F (un) =

∫ 1

−1

|xu′n(x)|
2 dx =

n2π2

4

∫ 1
n

0

x2 sin2(nπx)dx =
2π2 − 3

48n

n→∞
0.

(3) If u ∈ A satisfies F (u) = 0, then from xu′(x) ∈ C([−1, 1])we get xu′(x) = 0 for all x ∈ [−1, 1]. Since
u′(x) ∈ C([−1, 1]), we find u′(x) = 0 for all x ∈ [−1, 1], which is impossible for u is not constant.
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PSet 1, Part 2

Problem 5 (Examples of metrics) Check that the following are metrics.

(1) Let G be a group and S be a generating set, then the word metric

dS(g1, g2) = min
{
n : ∃ s1, · · · , sn ∈ S ∪ S−1 s.t. g1s1 · · · sn = g2

}
is a metric on G. Moreover, if G is finitely generated and S1, S2 are two finite generating sets of G,
then there exists L1, L2 > 0 so that

L1dS1
(g1, g2) ⩽ dS2

(g1, g2) ⩽ L2dS1
(g1, g2).

(2) The Hausdorff metric on X = {all bounded closed subsets in Rn} given by

dH(A,B) = inf{ε ⩾ 0 : A ⊂ Bε andB ⊂ Aε}

is a metric on X , where Aε =
⋃
x∈A

B(x, ε). Moreover, describe the open ball centered at “A = the

closed unit disk” and with radius 1
2 .

Proof (1) First, the map dS : G×G→ R⩾0 is well-defined, since S is a generating set for G.

� Clearly dS(g1, g2) ⩾ 0 and dS(g1, g2) = 0 if and only if g1 = g2.

� Let g, h ∈ G and dS(g, h) = n. Furthermore, let s1, · · · , sn ∈ S ∪ S−1 be such that g−1h =

s1 · · · sn. By taking inverses, we have h−1g = s−1
n · · · s−1

1 , so dS(h, g) ⩽ n = dS(g, h). Switch-
ing the roles of g and h in the above, we obtain the converse inequality, and hence equality.

� If g−1h = s1 · · · sn and h−1k = r1 · · · rm, then

g−1k =
(
g−1h

)(
h−1k

)
= s1 · · · snr1 · · · rm.

It follows that dS(g, k) ⩽ dS(g, h) + dS(h, k).

If G is finitely generated and S1, S2 are two finite generating sets of G, then any s2 ∈ S2 ∪ S−1
2 can

be written as
s2 = s1,1s1,2 · · · s1,ms2

,

where each s1,i ∈ S1 ∪ S−1
1 . Since S2 is finite, we can define

M2 := max
s2∈S2∪S−1

2

mk.

Similarly, for each s1 ∈ S1 ∪ S−1
1 , we can write

s1 = s2,1s2,2 · · · s2,ns1
,

where each s2,i ∈ S2 ∪ S−1
2 . Since S1 is finite, we can define

M1 := max
s1∈S1∪S−1

1

nk.
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Thus, each generator in S1 can be expressed as a product of at most L1 generators in S2, and each
generator in S2 can be expressed as a product of atmostL2 generators in S1. The desired inequality
follows by setting L1 := 1

M2
and L2 :=M1.

(2) The map dH : X ×X → R⩾0 is well-defined by the definition of X .

¬ Clearly dH(A,B) ⩾ 0 and dH(A,B) = 0
⋆⇐⇒ A ⊂ B andB ⊂ A ⇐⇒ A = B. (The assumption

that A,B are bounded closed subsets in Rn is used in “ ⋆⇐⇒”.)

 dH(A,B) = dH(B,A) is immediate from the definition of dH.

® Suppose A,B,C ∈ X satisfy

A ⊂ Bε1 , B ⊂ Aε1 , B ⊂ Cε2 , C ⊂ Bε2 .

If x ∈ Bε1 , then there exists b ∈ B such that d(x, b) < ε1. Since b ∈ B ⊂ Cε2 , there exists c ∈ C

such that d(b, c) < ε2. Then

d(x, c) ⩽ d(x, b) + d(b, c) < ε1 + ε2

and then A ⊂ Bε1 ⊂ Cε1+ε2 . The same argument shows that C ⊂ Aε1+ε2 . Hence

dH(A,C) ⩽ ε1 + ε2.

Taking the infimum over all such ε1 and ε2 gives

dH(A,C) ⩽ dH(A,B) + dH(B,C).

Using the assumption that A,B are bounded and closed, one can show that

A ⊂ Bε, ∀ ε >
1

2
⇐⇒ A ⊂

⋂
ε> 1

2

Bε = B 1
2
,

and similarly
B ⊂ Aε, ∀ ε >

1

2
⇐⇒ B ⊂ A 1

2
= B

(
0, 32

)
.

Hence, the open ball centered at “A = the closed unit disk” and with radius 1
2 can be expressed as

BdH

(
A, 12

)
=
{
B ∈ X : A ⊂ B 1

2
andB ⊂ B

(
0, 32

)}
.

Problem 6 (Metric-preserving functions) Let f : [0,+∞) → [0,+∞) be a function (which need not be
continuous). We say f is ametric-preserving function if for anymetric space (X, d), themap d̃ : X×X → R
defined by d̃(x, y) := f(d(x, y)) is a metric on X .

(1) Prove: f(t) = t
1+t is a metric-preserving function.

(2) Prove: if f is a metric-preserving function, then f−1({0}) = {0} and f is sub-additive:

f(α+ β) ⩽ f(α) + f(β), ∀α, β ∈ [0,+∞).
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(3) Prove: a function f : [0,+∞) → [0,+∞) satisfying f−1({0}) = {0} is metric-preserving if any one
of the following conditions holds:

¬ f is non-decreasing and sub-additive.

 f is concave.

® There exists a constant c > 0 so that for any x > 0, f(x) ∈ [c, 2c].

Proof (1) ¬ Clearly f(d(x, y)) ⩾ 0 and f(d(x, y)) = 0 ⇐⇒ d(x, y) = 0 ⇐⇒ x = y.

 d(x, y) = d(y, x) implies f(d(x, y)) = f(d(y, x)).

® Since the function f(t) = t
1+t is increasing on [0,+∞), we have

f(d(x, z)) ⩽ f(d(x, y) + d(y, z)) =
d(x, y) + d(y, z)

1 + d(x, y) + d(y, z)

⩽ d(x, y)

1 + d(x, y) + d(y, z)
+

d(y, z)

1 + d(x, y) + d(y, z)

⩽ d(x, y)

1 + d(x, y)
+

d(y, z)

1 + d(y, z)
= f(d(x, y)) + f(d(y, z)).

(2) Consider R endowed with the standard metric d(x, y) = |x − y|. Clearly f(0) = 0, and if there
exists x > 0 such that f(x) = 0, then f(d(x, 0)) = f(x) = 0, which is impossible since x 6= 0. Thus
f−1({0}) = {0}. For any α, β ∈ [0,+∞), we have

f(α+ β) = f(d(α,−β)) ⩽ f(d(α, 0)) + f(d(0,−β)) = f(α) + f(β).

(3) In each case we only need to show that f ◦ d satisfies the triangle inequality. Let x, y, z ∈ X .

¬ f(d(x, z)) ⩽ f(d(x, y) + d(y, z)) ⩽ f(d(x, y)) + f(d(y, z)).

 We first show that f is sub-additive. Suppose 0 ⩽ r ⩽ s and t = r + s. Let p > 0 be such that

s = pt+ (1− p)r,

then
r = (1− p)s.

By the concavity of f , we have

f(s) ⩾ pf(t) + (1− p)f(r),

f(t) ⩾ (1− p)f(s).

Adding the above inequalities gives

f(r) + f(s) ⩾ pf(t) + (1− p)[f(r) + f(s)],

or equivalently
f(r + s) = f(t) ⩽ f(r) + f(s).

Next we shall show that f is non-decreasing. Suppose to the contrary that there exist r < s
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such that f(r) > f(s) (it follows that r > 0). Let

q =
f(s)

f(r)
∈ (0, 1), u =

sf(r)− rf(s)

f(r)− f(s)
> 0, v = r > 0,

then
s = (1− q)u+ qv.

Since f is concave, we have

f(s) ⩾ (1− q)f(u) + qf(v) = (1− q)f(u) + f(s),

which implies f(u) ⩽ 0 and then f(u) = 0, a contradiction. Thus f is non-decreasing and
sub-additive, and by ¬ it is metric-preserving.

® Without loss of generality, we may assume x, y, z are distinct. Then

f(d(x, z)) ⩽ 2c = c+ c ⩽ f(d(x, y)) + f(d(y, z)).

Problem 7 (Urysohn’s lemma) Let (X, d) be a metric space. For any subset A ⊂ X , define

dA : X → [0,+∞), x 7→ dA(x) = inf
a∈A

d(x, a).

Prove:

(1) dA is a continuous function on X .

(2) A is closed if and only if dA(x) = 0 implies x ∈ A.

(3) (Urysohn’s lemma formetric spaces) IfA andB are closed subsets in (X, d) andA∩B = ∅. Then
there exists a continuous function f : X → [0, 1] such that

f ≡ 0 onA and f ≡ 1 onB.

Proof (1) For any x1, x2 ∈ X and a ∈ A, we have

dA(x1) ⩽ d(x1, a) ⩽ d(x1, x2) + d(x2, a).

Taking the infimum over a ∈ A gives

dA(x1) ⩽ d(x1, x2) + dA(x2).

Switching the roles of x1 and x2 in the above gives

dA(x2) ⩽ d(x1, x2) + dA(x1).

Hence
|dA(x1)− dA(x2)| ⩽ d(x1, x2),

which shows that dA is Lipschitz continuous.
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(2) (⇐) Suppose {xn}∞n=1 is a sequence in A that converges to x ∈ X . Then lim
n→∞

d(xn, x) = 0, thus
dA(x) = 0. By assumption, x ∈ A, hence A is closed.

(⇒) If A is closed and dA(x) = 0, then for any n ∈ N there exists an ∈ A such that d(x, an) < 1
n .

Now an → x, and since A is closed, x ∈ A.

(3) Consider
f : X → [0, 1], x 7→ dA(x)

dA(x) + dB(x)
.

This function is well-defined since if the denominator dA(x)+dB(x) is zero, then dA(x) = dB(x) =

0, which by (2) implies x ∈ A∩B = ∅ as A and B are closed. It is clear that f ≡ 0 on A and f ≡ 1

on B, and by (1) f is continuous.

Problem 8 (Uniform convergence as a metric convergence) LetX be a set, (Y, dY ) be a metric space,
fn : X → (Y, dY ) (n ∈ N) and f : X → (Y, dY ) be maps.

(1) Define “uniform convergence”: fn converge uniformly to f on X if...

(2) On the set Y X = {f : X → Y : f is any map}, define

d̄(f, g) := sup
x∈X

dY (f(x), g(x))

1 + dY (f(x), g(x))
.

¬ Prove: d̄ is a metric on Y X .

 Prove: fn converge to f uniformly if and only if as elements in the metric space
(
Y X , d̄

)
, fn

converge to f .

(3) Suppose (X, dX) is also a metric space, and fn are continuous maps that converge to f uniformly.
Prove: f is continuous.

Proof (1) A sequence of functions (fn) converges uniformly to a limiting function f on X if given
any arbitrarily small positive number ε, a number N can be found such that each of the functions
fN , fN+1, fN+2, · · · differs from f by less than ε at every point x ∈ X , namely

dY (fk(x), f(x)) < ε, ∀k ⩾ N, x ∈ X.

(2) ¬ d̄ is a metric on Y X since

� d̄(f, g) ⩾ 0 and d̄(f, g) = 0 ⇐⇒ dY (f(x), g(x)) = 0 for all x ∈ X ⇐⇒ f = g.
� d̄(f, g) = d̄(g, f) since dY (f(x), g(x)) = dY (g(x), f(x)) for all x ∈ X .
� Since ϕ(t) = t

1+t is a metric-preserving function by Problem 6 (1), we have

dY (f(x), h(x))

1 + dY (f(x), h(x))
⩽ dY (f(x), g(x))

1 + dY (f(x), g(x))
+

dY (g(x), h(x))

1 + dY (g(x), h(x))

for all x ∈ X . Taking the supremum over x ∈ X gives

d̄(f, h) ⩽ sup
x∈X

(
dY (f(x), g(x))

1 + dY (f(x), g(x))
+

dY (g(x), h(x))

1 + dY (g(x), h(x))

)
⩽ d̄(f, g) + d̄(g, h).
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 (⇒) If fn ⇒ f , then for any ε > 0 there exists N ∈ N such that

sup
x∈X

dY (fn(x), f(x)) <
ε

2
, ∀n > N.

Since the function ϕ(t) = t
1+t is increasing on [0,+∞), we have

dY (fn(x), f(x))

1 + dY (fn(x), f(x))
⩽

ε
2

1 + ε
2

<
ε

2
, ∀n > N

for all x ∈ X . Then d̄(fn, f) ⩽ ε
2 < ε for all n > N , hence fn → f in

(
Y X , d̄

)
.

(⇐) If fn → f in
(
Y X , d̄

)
, then for any ε ∈ (0, 1) there exists N ∈ N such that

d̄(fn, f) <
ε

2
, ∀n > N.

Therefore
dY (fn(x), f(x))

1 + dY (fn(x), f(x))
<
ε

2

for all x ∈ X and n > N , which implies

dY (fn(x), f(x)) <
ε
2

1− ε
2

<
ε
2

1− 1
2

= ε

for all x ∈ X and n > N . Hence fn ⇒ f on X .

(3) For any ε > 0, since the sequence of functions (fn) converges uniformly to f , there exists N ∈ N
such that

dY (fN (t), f(t)) <
ε

3
, ∀t ∈ X.

Moreover, since fN is continuous onX , for every x ∈ X there exists an open neighborhood U such
that

dY (fN (x), fN (y)) <
ε

3
, ∀y ∈ U.

Now the triangle inequality gives

dY (f(x), f(y)) ⩽ dY (f(x), fN (x)) + dY (fN (x), fN (y)) + dY (fN (y), f(y))

<
ε

3
+
ε

3
+
ε

3
= ε, ∀y ∈ U.

Hence f is continuous at every point x ∈ X .

PSet 2, Part 1

Problem 9 (The Sorgenfrey line) On the set X = R, define

TSorgenfrey = {U ⊂ R : ∀x ∈ U, ∃ ε > 0 s.t. [x, x+ ε) ⊂ U}.

(1) Check: TSorgenfrey is a topology.

(2) Prove: every left-closed-right-open interval [a, b) is both open and closed.
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(3) Prove: every open interval (a, b) is still open with respect to TSorgenfrey.

(4) Show that there is no metric d on R such that TSorgenfrey is the metric topology Td.

Proof (1) ¬ Clearly ∅,R ∈ TSorgenfrey.

 If {Uα : α ∈ Λ} ⊂ TSorgenfrey, then for any x ∈
⋃
α∈Λ

Uα, there exists λ ∈ Λ such that x ∈ Uλ, and

hence there exists ε > 0 such that [x, x+ ε) ⊂ Uλ ⊂
⋃
α∈Λ

Uα. Therefore
⋃
α∈Λ

Uα ∈ TSorgenfrey.

® If U1, U2 ∈ TSorgenfrey, then for any x ∈ U1 ∩U2, there exist ε1, ε2 > 0 such that [x, x+ ε1) ⊂ U1

and [x, x+ ε2) ⊂ U2. Let ε = min{ε1, ε2} > 0, then [x, x+ ε) ⊂ U1 ∩ U2. Therefore U1 ∩ U2 ∈
TSorgenfrey.

(2) ¬ For any x ∈ [a, b), since ε = b− x > 0 satisfies [x, x+ ε) ⊂ [a, b), we see that [a, b) is open.

 For any x /∈ [a, b), if x < a, then ε = a − x > 0 satisfies [x, x + ε) ∩ [a, b) = ∅; if x ⩾ b, then
ε = 1 > 0 satisfies [x, x+ ε) ∩ [a, b) = ∅. Therefore [a, b) is closed.

(3) For any x ∈ (a, b), since ε = b− x > 0 satisfies [x, x+ ε) ⊂ (a, b), we see that (a, b) is open.

(4) Suppose that
(
R,TSorgenfrey

)
is a metrizable space and let d be a metric on R inducing the topology

TSorgenfrey. For each x ∈ R, since the interval [x, x + 1) is open by (2), we can choose εx > 0 such
that Bd(x, εx) ⊂ [x, x+1). For each n ∈ N, letMn =

{
x ∈ R : εx ⩾ 1

n

}
. For distinct x, y ∈Mn with

x < y, we have
Bd
(
y, 1

n

)
⊂ Bd(y, εy) ⊂ [y, y + 1),

and since x /∈ [y, y + 1), we get x /∈ Bd
(
y, 1

n

)
. Thus

d(x, y) ⩾ 1

n
. (9–1)

On the other hand, by the definition of TSorgenfrey, for each x ∈ Mn, there exists η > 0 such that
[x, x+ η) ⊂ Bd

(
x, 1

2n

)
. Let rx ∈ Q ∩ [x, x+ η), then

d(x, rx) <
1

2n
. (9–2)

From (9–1) and (9–2), we see that for distinct x, y ∈ Mn, the corresponding rx, ry are distinct.
Now the coutability of Q implies that Mn is countable for each n ∈ N, and hence R =

⋃
n∈N

Mn is

countable, which is a contradiction.

Problem 10 (“Uniform continuity” is not a topological conception) Let (X, dX) and (Y, dY ) be met-
ric spaces. We say a map f : (X, dX) → (Y, dY ) is uniformly continuous if

∀ε > 0, ∃ δ > 0, s.t. dX(x1, x2) < δ =⇒ dY (f(x1), f(x2)) < ε.

(1) Prove: d0(x, y) := |arctan(x)− arctan(y)| is a metric on R.

(2) Prove: the metric d0 and the absolute value metric d(x, y) = |x− y| on R are topologically equiva-
lent. Are they strongly equivalent?
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(3) Let f : R → R be the identity map, i.e., f(x) = x. Is f : (R, d) → (R, d0) uniformly continuous? Is
f : (R, d0) → (R, d)uniformly continuous? Conclude that “uniform continuity” is not a topological
conception.

(4) Is “uniform continuity” preserved if we replace metrics dX , dY by strongly equivalent ones? Prove
your conclusion.

Proof (1) ¬ Clearly d0(x, y) ⩾ 0 for all x, y ∈ R and the injectivity of arctan : R →
(
−π

2 ,
π
2

)
implies

d0(x, y) = 0 if and only if x = y.

 For all x, y ∈ R, d0(x, y) = |arctan(x)− arctan(y)| = |arctan(y)− arctan(x)| = d0(y, x).

® For all x, y, z ∈ R,

d0(x, z) = |arctan(x)− arctan(z)| ⩽ |arctan(x)− arctan(y)|+ |arctan(y)− arctan(z)|
= d0(x, y) + d0(y, z).

(2) Since the map
arctan : R →

(
−π
2
,
π

2

)
is a homeomorphism, every open ball in (R, d0) is contained in some open ball in (R, d) and vice
versa. Therefore the metrics d0 and d are topologically equivalent. However, since d0 is bounded
and d is not, they are not strongly equivalent.

(3) The mean value theorem implies that for all x, y ∈ R,

|arctan(x)− arctan(y)| ⩽ |x− y|,

which shows that f : (R, d) → (R, d0) is uniformly continuous. On the other hand, we also have

|arctan(n+ 1)− arctan(n)| ⩽ 1

1 + n2
n→∞

0.

Hence for any δ > 0, there exists n ∈ N such that d0(n + 1, n) = |arctan(n+ 1)− arctan(n)| < δ,
but d(n + 1, n) = |(n + 1) − n| = 1. Therefore f : (R, d0) → (R, d) is not uniformly continuous.
From this fact and (2) we conclude that “uniform continuity” is not a topological conception.

(4) Suppose dX and d′X are two strongly equivalent metrics on X and dY and d′Y are two strongly
equivalent metrics on Y , namely

dX ⩽ Cd′X , d′Y ⩽ KdY .

for some C,K > 0. If f : (X, dX) → (Y, dY ) is uniformly continuous, then for any ε > 0, there
exists δ > 0 such that dX(x1, x2) < δ implies dY (f(x1), f(x2)) < ε. Now for any x1, x2 ∈ X with
d′X(x1, x2) <

δ
C , we have dX(x1, x2) ⩽ Cd′X(x1, x2) < δ, and then

d′Y (f(x1), f(x2)) ⩽ KdY (f(x1), f(x2)) < Kε.

Therefore f : (X, d′X) → (Y, d′Y ) is uniformly continuous, which shows that “uniform continuity”
is preserved by strongly equivalent metrics.
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Problem 11 (Equivalence of neighborhoods axioms and open sets axioms)

(1) Given a neighborhood structure N on X , one can define

T = {U ⊂ X : U ∈ N (x) for anyx ∈ U}.

Check: T is a topology on X , i.e., it satisfies (O1)-(O3).

(2) Given a topology T on X , one can define, for any x ∈ X ,

N (x) = {N ⊂ X : ∃U ∈ T s.t.x ∈ U andU ⊂ N}.

Check: N is a neighborhood structure on X , i.e., it satisfies (N1)-(N4).

(3) You may have noticed that in part (1), you used only (N1)-(N3). Can we conclude that the set of
axioms (N1)-(N3) is equivalent to the set of axioms (O1)-(O3)?

(4) Prove: the set of axioms (N1)-(N4) is equivalent to the set of axioms (O1)-(O3). Namely, the
processes T ⇝ N and N ⇝ T described above are inverse to each other.

Proof (1) By definition, U ⊂ X is open iff and only if U = Int(U).

(O1) The relation Int∅ ⊂ ∅ implies that Int∅ = ∅; thus ∅ ∈ T . If x ∈ X , then x has at least one
neighborhood N ; but N ⊂ X and so X is a neighborhood of x by (N2). Thus X ∈ T .

(O2) ForU, V ∈ T , ifU ∩V = ∅, then it is open. If it is not empty, let x ∈ U ∩V . ThenU and V are
both neighborhoods of x, and hence U ∩V is a neighborhood of x by (N3). Thus U ∩V ∈ T .

(O3) Suppose {Uα : α ∈ Λ} ⊂ T and let U =
⋃
α∈Λ

Uα. If U is empty, then it is open. If not, let

x ∈ U . Then x ∈ Uλ for some λ ∈ Λ, and Uλ, being open, is a neighborhood of x. But Uλ ⊂ U .
So U is also a neighborhood of x by (N2).

(2) X ∈ N (x) for all x ∈ X , hence N (x) 6= ∅.

(N1) If N ∈ N (x), then there exists U ∈ T such that x ∈ U ⊂ N .
(N2) If M ⊃ N and N ∈ N (x), then there exists U ∈ T such that x ∈ U ⊂ N ⊂ M . Thus

M ∈ N (x).
(N3) If N1, N2 ∈ N (x), then there exist U1, U2 ∈ T such that x ∈ U1 ⊂ N1 and x ∈ U2 ⊂ N2. Let

U = U1 ∩ U2, then U ∈ T by (O2) and x ∈ U ⊂ N1 ∩N2. Thus N1 ∩N2 ∈ N (x).
(N4) If N ∈ N (x), then there exists U ∈ T such that x ∈ U ⊂ N , and by definition U ∈ N (x).

Moreover, for any y ∈ U , from y ∈ U ⊂ N we see that N ∈ N (y).

(3) No, since we have not shown that the above two processes are inverse to each other. A counterex-
ample is given below. Let X = {0, 1, 2} and

N (0) = {{0, 1}, X}, N (1) = {{1, 2}, X}, N (2) = {{1, 2}, X}.

Then one can verify that (N1), (N2) and (N3) are satisfied, while (N4) is not, since {0, 1} ∈ N (0)

but there is no neighborhoodM of 0 such thatM ⊂ {0, 1} and {0, 1} ∈ N (y) for all y ∈M . In this

example, the N
(1)

T
(2)

N ′ process yields

T = {∅, {1, 2}, X},
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N ′(0) = {X}, N ′(1) = {{1, 2}, X}, N ′(2) = {{1, 2}, X}.

Clearly N ′ 6= N , and hence (N1)-(N3) are not equivalent to (O1)-(O3).

(4) ¬ Let us show first that N
(1)

T
(2)

N . Let N be a neighborhood structure on X .
� Let us prove first the inclusion N (T (N )) ⊂ N . Let V ∈ Nx(T (N )) for some x ∈ X .

By definition in (2), there exists U ∈ T (N ) such that x ∈ U ⊂ V . By definition in (1),
U ∈ N (y) for all y ∈ U . Since V ⊃ U , we have V ∈ N (y) by (N2) for each y ∈ U . In
particular, V ∈ N (x). Therefore N (T (N )) ⊂ N .

� Conversely, let V ∈ Nx for some x ∈ X . Define

U = {y ∈ X : V ∈ N (y)}.

Then x ∈ U and by (N1) U ⊂ V . By (N4) for each y ∈ U there exists a neighborhoodW
of y such that V is a neighborhood for each point ofW . HenceW ⊂ U . In other words,
each point of U has a neighborhood contained in U . Therefore U ∈ T (N ) and then
V ∈ N (T (N )). Thus N ⊂ N (T (N )).

 Now we shall show that T
(2)

N
(1)

T . Let T be a topology on X .
� Let us prove first the inclusion T ⊂ T (N (T )). Let U ∈ T , then by definition in (2)
U ∈ N (x) for all x ∈ U , which means U ∈ T (N (T )). Therefore T ⊂ T (N (T )).

� Conversely, let U ∈ T (N (T )), then U is the neighborhood of each point in N (T ). This
means that thee exists Vx ∈ T for each x ∈ U such that x ∈ Vx ⊂ U . Then U =

⋃
x∈U

Vx ∈

T by (O3). Therefore T (N (T )) ⊂ T .

Problem 12 (Furstenberg’s topological proof of the infinitude of primes) For any a, b ∈ Zwith b > 0

we define
Na,b := {a+ nb : n ∈ Z}.

(1) Define a topology on Z by

TFurs = {U ⊂ Z : eitherU = ∅, or ∀a ∈ U, ∃ b ∈ Z>0 s.t.Na,b ⊂ U}.

¬ Prove: TFurs is a topology on Z.
 Prove: each Na,b is open.
® Prove: each Na,b is closed.
¯ Let P = {2, 3, · · · } be the set of all prime numbers. Prove:

Z \ {1,−1} =
⋃
p∈P

N0,p.

° Conclude that P is not a finite set.

(2) Define a function d : Z× Z → R by

d(a, b) =

0, a = b,

2−τ(a−b), a 6= b,
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where τ(a− b) is the smallest positive integer that does not divide a− b.

¬ Prove: d is a metric on Z.
 Describe the metric balls B(a, r).
® Show that the metric topology generated by d is the topology TFurs above.

Proof (1) ¬ It is clear that ∅,Z ∈ TFurs. If U, V ∈ TFurs (we may assume both U and V are
nonempty), then for any a ∈ U ∩ V , there exist b1, b2 ∈ Z>0 such that Na,b1 ⊂ U and
Na,b2 ⊂ V . Let b = b1b2 ∈ Z>0, then Na,b ⊂ U ∩ V , which shows that U ∩ V ∈ TFurs. If
{Uα : α ∈ Λ} ⊂ TFurs, then for any a ∈

⋃
α∈Λ

Uα, there exists λ ∈ Λ such that a ∈ Uλ, and hence

there exists b ∈ Z>0 such that Na,b ⊂ Uλ ⊂
⋃
α∈Λ

Uα. Therefore
⋃
α∈Λ

Uα ∈ TFurs.

 For any a′ = a + nb ∈ Na,b, set b′ = b ∈ Z>0, then Na′,b′ = {a + nb +mb : m ∈ Z} = Na,b.
Therefore Na,b is open.

® Note that Na,b = Z \
b−1⋃
i=1

Na+i,b, then by  we see that Na,b is closed.

¯
⋃
p∈P

N0,p =
⋃
p∈P

pZ = Z \ {1,−1}.

° If P is finite, then
⋃
p∈P

N0,p is a finite union of closed sets, which is closed. Then {1,−1} =

Z \
⋃
p∈P

N0,p is open. However, for 1 ∈ {1,−1}, there exists no b ∈ Z>0 such that N1,b =

{1 + nb : n ∈ Z} ⊂ {1,−1}, which is a contradiction. Therefore P is not a finite set.

(2) ¬ It is clear that d(a, b) ⩾ 0 for all a, b ∈ Z and d(a, b) = 0 if and only if a = b. Since τ(a − b) =

τ(b−a) for any distinct a, b ∈ Z, we have d(a, b) = d(b, a) for all a, b ∈ Z. For distinct a, b, c ∈ Z,
suppose τ(a− b) = m ⩾ 2, τ(b− c) = n ⩾ 2, and let k = min{m,n} ⩾ 2. Then 1, · · · , k− 1 all
divide a− b and b− c, and hence devide a− c. Therefore τ(a− c) ⩾ k, and

d(a, c) = 2−τ(a−c) ⩽ 2−min{m,n} ⩽ 2−m + 2−n = d(a, b) + d(b, c).

 Since τ(a− b) ⩾ 2 for a 6= b, if r > 1
4 , then B(a, r) = Z; if r ⩽ 1

4 , then τ(a− b) >
log 1

r

log 2 and

B(a, r) =
{
b ∈ Z : 1, · · · ,

⌊ log 1
r

log 2

⌋
all devide a− b

}
. (12–1)

® TFurs ⊂ Td For anyU ∈ TFurs\{∅} and a ∈ U , by the definition ofTFurs, there exists b ∈ Z>0

such that Na,b ⊂ U . Let r = 2−b, then

B(a, r) = {c ∈ Z : 1, · · · , b all devide a− c}.

In particular, b | (c−a) for all c ∈ B(a, r), which impliesB(a, r) ⊂ Na,b ⊂ U . ThusU ∈ Td,
and hence TFurs ⊂ Td.

Td ⊂ TFurs For any V ∈ Td \ {∅} and a ∈ V , there exists r > 0 such that B(a, r) ⊂ V . Set

k =

⌊ log 1
r

log 2

⌋
, then from (12–1) we see that Na,k! ⊂ B(a, r) ⊂ V . Hence V ∈ TFurs, and

thus Td ⊂ TFurs.
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PSet 2, Part 2

Problem 13 (Subspace topology) Given any topological space (X, T ) and any subspaceA ⊂ X , define
the subspace topology on Y to be

TA = {U ∩A : U ∈ TX}.

Prove:

(1) TA is a topology on A.

(2) Suppose B ⊂ A ⊂ X , then “the subspace topology TB on B (view B as a subset in (X, TX))”
coincides with “the subspace topology T̃B on B (view B as a subset in (A, TA))”.

(3) The inclusion map ι : (A, TA) → (X, TX) is continuous. Moreover, the subspace topology TA is the
weakest topology on A so that the inclusion map is continuous.

(4) If f : (X, TX) → (Y, TY ) is continuous, then f |A : (A, TA) → (Y, TY ) is continuous.

(5) A map g : (Y, TY ) → (A, TA) is continuous if and only if ι ◦ g : (Y, TY ) → (X, TX) is continuous.

Proof (1) ¬ ∅ ∩A = ∅ and X ∩A = A imply ∅, A ∈ TA.

 If V1, V2 ∈ TA, let U1, U2 ∈ TX such that V1 = U1 ∩ A and V2 = U2 ∩ A. Then U1 ∩ U2 ∈ T
implies V1 ∩ V2 = (U1 ∩A) ∩ (U2 ∩A) = (U1 ∩ U2) ∩A ∈ TA.

® If {Vα : α ∈ Λ} ⊂ TA, let {Uα : α ∈ Λ} ⊂ TX such that Vα = Uα ∩ A for each α ∈ Λ. Then⋃
α∈Λ

Uα ∈ T implies
⋃
α∈Λ

Vα =
⋃
α∈Λ

(Uα ∩A) =

(⋃
α∈Λ

Uα

)
∩A ∈ TA.

(2) TB ⊂ T̃B For any V ∈ TB , there exists U ∈ T such that V = U ∩ B. Since B ⊂ A ⊂ X , we have
V = (U ∩A) ∩B, which implies V ∈ T̃B as U ∩A ∈ TA.

T̃B ⊂ TB For anyW ∈ T̃B , there exists V ∈ TA such thatW = V ∩B. Since V = U ∩A for some
U ∈ T , we haveW = (U ∩A) ∩B = U ∩B ∈ TB .

(3) For any open set U ⊂ X , we have ι−1(U) = U ∩ A ∈ TA. Hence ι is continuous. For the inclusion
map A ↪→ X to be continuous, U ∩ A must be open in A for each U ∈ T , which means TA is the
weakest topology on A so that the inclusion map is continuous.

(4) Since f |A = f ◦ ι is the composition of continuous maps, it is continuous.

(5) (⇐) Suppose ι◦g : (Y, TY ) → (X, TX) is continuous. If U is any open subset ofA, there is an open
subset V ⊂ X such that U = A ∩ V = ι−1(V ). Thus

g−1(U) = g−1
(
ι−1(V )

)
= (ι ◦ g)−1(V ),

which is open in Y by our continuity assumption. This proves that f is continuous.

(⇒) Suppose that g : (Y, TY ) → (A, TA) is continuous. For any open subset V ⊂ X , we have

(ι ◦ g)−1(V ) = g−1
(
ι−1(V )

)
= g−1(A ∩ V ),

which is open in Y since A ∩ V is open in A, so ι ◦ g is continuous as well.
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Problem 14 (Convergence v.s. continuity) On the set N∞ = N ∪ {∞}, define

T∞ = {A : A ⊂ N orAc is a finite subset inN}.

(1) Show that T∞ is a topology on N∞.

(2) Let (xn) be a sequence in a topological space (X, T ), and x0 ∈ X . Define a map f : N∞ → X by
f(n) = xn and f(∞) = x0. Prove: xn → x0 in T if and only if f : (N∞, T∞) → (X, T ) is continuous.

Proof (1) ¬ Since ∅ ⊂ N and Nc
∞ = ∅, we have ∅,N∞ ∈ T∞.

 Suppose U, V ∈ T∞. If either U or V is a subset of N, then so is U ∩ V . Otherwise, both U c

and V c are finite subsets in N, so (U ∩ V )c = U c ∪ V c is also finite in N. In either case we have
U ∩ V ∈ T∞.

® Suppose {Uα : α ∈ Λ} ⊂ T∞. If all Uα are subsets of N, then so is their union. Otherwise,

there exists λ ∈ Λ such that U c
λ is a finite subset in N. Then

(⋃
α∈Λ

Uα

)c

⊂ U c
λ is also a finite

subset in N. In either case we have
⋃
α∈Λ

Uα ∈ T∞.

(2) (⇒) Suppose xn → x0 in T and U is any open subset of X . If x0 /∈ U , then f−1(U) ⊂ N is open
in N∞. If x0 ∈ U , from xn → x0 we know there exists N ∈ N such that xn ∈ U for all n > N .
Thus

(
f−1(U)

)c consists of at most N elements of N and is open in N∞. In either case f is
continuous.

(⇐) If f : (N∞, T∞) → (X, T ) is continuous, then for any open subset U ⊂ X containing x0 we
have f−1(U) ∈ T∞. Since ∞ ∈ f−1(U), we have f−1(U)c is a finite subset in N. This implies
that xn ∈ U for all n sufficiently large, so xn → x0.

Problem 15 (Topologies for various continuity)

(1) (Right continuity) Endow R with the Sorgenfrey topology.

¬ Explore the meaning of convergence in
(
R,TSorgenfrey

)
.

 Recall that a function f : R → R is right continuous if lim
xn→x+

0

f(xn) = f(x0). Prove: a function

f : R → R is right continuous if and only if the map f :
(
R,TSorgenfrey

)
→ (R,Tusual) is

continuous. So people also call Sorgenfrey topology the right continuous topology.

(2) (Upper semi-continuity) Let (X,T ) be any topological space. We say a function f : X → R us
upper semi-continuous at a point x0 ∈ X if for any ε > 0, there exists a neighborhood U of x0 such
that f(x) ⩽ f(x0) + ε holds for all x ∈ U , and we say f is an upper semi-continuous function if it is
upper semi-continuous everywhere.

¬ Construct a topology Tu.s.c. on R so that a function f : X → R is upper semi-continuous if
and only if f : (X,T ) → (R,Tu.s.c.) is continuous.

 For which set A ⊂ X , the characteristic function χA(x) defined by “χA(x) = 1 for x ∈ A and
χA(x) = 0 for x /∈ A” is upper semi-continuous?

® Extend Tu.s.c. to be a topology on R = R ∪ {±∞}, and prove: given any family of upper
semi-continuous functions fα, the infimum f = inf

α
fα is upper semi-continuous.
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Proof (1) ¬ By Problem 9 (2), every left-closed-right-open interval [a, b) is open with respect to
TSorgenfrey. If xn → x0 in

(
R,TSorgenfrey

)
, then for any ε > 0, since [x0, x0 + ε) is an open and

contains x0, it must contain all but finitelymany xn. Conversely, if for every ε > 0, there exists
N ∈ N such that xn ∈ [x0, x0 + ε) for all n > N , then for any open set U containing x0, by
the definition of TSorgenfrey we can choose ε0 > 0 such that [x0, x0 + ε0) ⊂ U . Thus xn ∈ U for
all sufficiently large n. Therefore a sequence {xn}∞n=1 converges to x0 in

(
R,TSorgenfrey

)
if and

only if it “approaches x0 from the right”.

 (⇒) Suppose f : R → R is right continuous and U is any open subset of (R,Tusual). For
any x0 ∈ f−1(U), since f : R → R is right continuous at x0, there exists ε > 0 such that
f(x) ∈ U for all x ∈ [x0, x0+ε), i.e., [x0, x0+ε) ⊂ f−1(U). Therefore f−1(U) ∈ TSorgenfrey,
which means f is continuous.

(⇐) Suppose the map f :
(
R,TSorgenfrey

)
→ (R,Tusual) is continuous. For any x0 ∈ R and

ε > 0, since f−1((x0 − ε, x0 + ε)) is open in
(
R,TSorgenfrey

)
, there exists δ > 0 such that

[x0, x0 + δ) ⊂ f−1((x0 − ε, x0 + ε)). Thus xn → x+0 implies f(xn) → f(x0) in (R,Tusual),
i.e., f : R → R is right continuous.

(2) ¬ Define
Tu.s.c. = {∅} ∪ {R} ∪ {(−∞, a) : a ∈ R}.

Let us check that Tu.s.c. is a topology on R:

� By definition ∅,R ∈ Tu.s.c..
� LetU, V ∈ Tu.s.c.. If one ofU, V is∅ orR, then it is clear thatU ∩V ∈ Tu.s.c.. Otherwise, let
U = (−∞, a) and V = (−∞, b) for some a, b ∈ R. Then U ∩V = (−∞,min{a, b}) ∈ Tu.s.c..

� Suppose {Uα : α ∈ Λ} ⊂ Tu.s.c.. It suffices to consider the case where all Uα are of the
form (−∞, aα) (aα ∈ R). Let a = sup{aα : α ∈ Λ}. If a = +∞, then

⋃
α∈Λ

Uα = R ∈ Tu.s.c..

If a ∈ R, then
⋃
α∈Λ

Uα = (−∞, a) ∈ Tu.s.c..

Now we shall show that a function f : X → R is upper semi-continuous if and only if f :

(X,T ) → (R,Tu.s.c.) is continuous.

(⇒) Let f : X → R be upper semi-continuous and U be any open subset of (R,Tu.s.c.). If
U = ∅ or R, then f−1(U) is open in X . Otherwise, let U = (−∞, a) for some a ∈ R.
For any x0 ∈ f−1(U), we have f(x0) < a. Since f is upper semi-continuous at x0, for
ε =

a− f(x0)

2
> 0 there exists a neighborhood V of x0 such that f(x) ⩽ f(x0) + ε < a

for all x ∈ V . Hence V ⊂ f−1(U) and then f : (X,T ) → (R,Tu.s.c.) is continuous at x0.
Therefore f : (X,T ) → (R,Tu.s.c.) is continuous.

(⇐) Suppose f : (X,T ) → (R,Tu.s.c.) is continuous. For any x0 ∈ X and ε > 0, since
f−1((−∞, f(x0)+ε)) is open inX and contains x0, it follows by definition that f is upper
semi-continuous at x0.

 Let x0 ∈ X . If x0 ∈ A, then χA(x0) = 1 and obviously f(x) ⩽ f(x0) + ε for any x ∈ X

and ε > 0, which means χA(x) is upper semi-continuous at x0. If x0 /∈ A, then χA(x0) = 0

and the upper semi-continuity of χA(x) at x0 implies that there exists a neighborhood U of
x0 such that χA(x) = 0 for all x ∈ U , i.e., U ∩ A = ∅. This shows that Ac is open, so A is
closed. Conversely, if A is closed, then the same argument shows that χA(x) is upper semi-
continuous.
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® Let
T̃u.s.c. = {A ∪B : A ∈ Tu.s.c., B = ∅, {+∞}, {−∞}, {±∞}}.

Then it is immediate that T̃u.s.c. defines a topology on R and is an extension of Tu.s.c.. For
any x0 ∈ x and ε > 0, by the definition of pointwise infimum, there exists λ ∈ Λ such that
fλ(x0) < f(x0) +

ε
2 . Since fλ is upper semi-continuous at x0, there exists a neighborhood U

of x0 such that fλ(x) ⩽ fλ(x0) + ε
2 for all x ∈ U . It follows that

f(x) ⩽ fλ(x) ⩽ fλ(x0) +
ε

2
< f(x0) +

ε

2
+
ε

2
= f(x0) + ε

for all x ∈ U . Therefore f is upper semi-continuous.

Problem 16 (Pasting lemma) Let X,Y be topological spaces. Consider a map f : X → Y .

(1) Suppose X = A ∪ B, where A,B are both closed subsets in X . Suppose f |A : A → Y and
f |B : B → Y are continuous. Prove: f : X → Y is continuous.

(2) Show that the same result fails for X =

∞⋃
n=1

An, where each An is closed in X .

(3) Let Aα be a family of closed subsets in X with X =
⋃
α

Aα, and suppose the family is locally finite,

i.e., each point p ∈ X has a neighborhood Up that intersects finitely manyAα’s. Prove: if each f |Aα

is continuous, then f is continuous.

(4) Prove: ifX =
⋃
α

Uα, where each Uα is open inX , and if each f |Uα
: Uα → Y is continuous, then f

is continuous.

Proof (1) It suffices to show that the preimage of each closed subset K ⊂ Y is closed in X . Since
f−1(K) ∩ A = (f |A)−1(K) is closed in A and f−1(K) ∩ B = (f |B)−1(K) is closed in B, and A,B
are both closed in X , these two preimages are both closed in X . It follows that

f−1(K) = f−1(K) ∩ (A ∪B) = (f |A)−1(K) ∪ (f |B)−1(K)

is closed in X . Therefore f is continuous.

(2) Consider X = {0} ∪
{

1
n : n ∈ N

}
with the subspace topology inherited from R. Let A1 = {0} and

An+1 =
{

1
n

}
for n ∈ N, then X =

∞⋃
n=1

An and each An is closed in X . Take f = χ{0}, then f is not

continuous at 0. However, f |An
is continuous for each n ∈ N ∪ {0}.

(3) Given x ∈ X there is a neighborhood Ux of x such that Ux (we can choose Ux to be open) intersects
only finitely many Aα’s, say A1, · · · , An. Note that for each i = 1, · · · , n, Ux ∩ Ai is closed in Ux.

Since Ux =

n⋃
i=1

(Ux ∩ Ai) and each f |Ux∩Ai
is continuous, an inductive version of (1) shows that

f |Ux
is continuous. ThenX =

⋃
x∈X

Ux where each Ux is open inX and each f |Ux
is continuous, so

f is continuous by (4).

(4) Let V ⊂ Y be any open subset. Any point x ∈ f−1(V ) has an open neighborhood Ux on which f
is continuous. Continuity of f |Ux implies, in particular, that (f |Ux)

−1(V ) is an open subset of Ux,
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and is therefore also an open subset of X . Then

(f |Ux
)−1(V ) = {y ∈ Ux : f(x) ∈ V } = f−1(V ) ∩ Ux

is an open neighborhood of x contained in f−1(V ), hence f−1(V ) is open in X . Therefore f is
continuous.

PSet 3, Part 1

Problem 17 (Basis v.s. subset/product topologies)

(1) Let (X, TX) be a topological space, and B a basis of T . Let A ⊂ X be a subset, with subspace
topology TA. Prove: BA := {A ∩B : B ∈ B} is a basis of TA.

(2) Let (X, TX) and (Y, TY ) be topological spaces, with basis BX and BY respectively. Prove: BX×Y =

{B1 ×B2 : B1 ∈ BX , B2 ∈ BY } is a basis for the product topology TX×Y .

(3) Let T1, T2 be topologies onX , andB1,B2 bases that generate T1, T2 respectively. Prove: T1 is weaker
than T2 if and only if for any x ∈ X and any B ∈ B1 that contains x, there exists B′ ∈ B2 such that
x ∈ B′ ⊂ B.

Proof (1) B ⊂ T implies BA ⊂ TA. For any U ∈ TA and x ∈ U , there exists V ∈ T such that
U = V ∩ A. Since x ∈ V , there exists B ∈ B such that x ∈ B ⊂ V . Then x ∈ A ∩ B ⊂ A ∩ V = U .
Therefore BA is a basis of TA.

(2) BX ⊂ TX and BY ⊂ TY imply BX×Y ⊂ TX×Y . For any U ∈ TX×Y and (x, y) ∈ U , there exists
V ∈ TX andW ∈ TY such that (x, y) ∈ V ×W ⊂ U . Since x ∈ U , there exists B1 ∈ BX such that
x ∈ B1 ⊂ V . Similarly there exists B2 ∈ BY such that y ∈ B2 ⊂ W . Then (x, y) ∈ B1 × B2 ⊂
V ×W ⊂ U . Therefore BX×Y is a basis of TX×Y .

(3) (⇐) For any U ∈ T1 and x ∈ U , there exists B ∈ B1 such that x ∈ B ⊂ U . By assumption, there
exists B′ ∈ B2 such that x ∈ B′ ⊂ B ⊂ U . Since B′ ∈ T2, U ∈ T2. Therefore T1 ⊂ T2.

(⇒) If T1 ⊂ T2, then for any x ∈ X and anyB ∈ B1 that contains x, sinceB ∈ T1 ⊂ T2, there exists
B′ ∈ B2 such that x ∈ B′ ⊂ B.

Problem 18 (Neighborhood basis) Let (X, T ) be a topological space. Like a basis, we can define a
neighborhood basis of (X, T ) as follows: a family B(x) ⊂ N (x) of neighborhoods of x is called a neighbor-
hood basis at x if for any A ∈ N (x), there exists B ∈ B(x) such that B ⊂ A.

(1) Express N (x) in terms of a neighborhood basis B(x).

(2) Show that if B is a basis of T , then B(x) = {B ∈ B : x ∈ B} is a neighborhood basis at x.

(3) Write down a theorem that characterizes the continuity of a map f at a point x via neighborhood
basis, and prove your theorem.

(4) Define the concept “neighborhood sub-basis”, and write/prove a statement that “characterizes the
continuity of a map f at a point x via neighborhood sub-basis”.

Proof (1) N (x) = {V ⊂ X : V ⊃ B for someB ∈ B(x)}.
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(2) Clearly B(x) ⊂ N (x). For any A ∈ N (x), there exists U ∈ T such that x ∈ U ⊂ A. Since B is
a basis of T , there exists B ∈ B such that x ∈ B ⊂ U ⊂ A (so B ∈ B(x)). Therefore B(x) is a
neighborhood basis at x.

(3) Theorem A map f : (X, TX) → (Y, TY ) is continuous at x ∈ X if and only if for any B ∈ B(f(x)),
f−1(B) is a neighborhood of x, where B(f(x)) is a neighborhood basis at f(x).

Proof The “only if” part is just the definition of continuity at x. For the “if” part, let N be a
neighborhood of f(x). By (1), there exists B ∈ B(f(x)) such that B ⊂ N . Then f−1(N) ⊃ f−1(B)

is a neighborhood of x by assumption. Hence f is continuous at x.

(4) A “neighborhood sub-basis” at x is a family S(x) ⊂ P(X) such that x ∈ S for all S ∈ S(x) and the
collection of all possible finite intersections of elements of S(x) forms a neighborhood basis at x,
namely

N (x) = {N : N = S1 ∩ · · · ∩ Sm for someS1, · · · , Sm ∈ S(x)}.

Theorem A map f : (X, TX) → (Y, TY ) is continuous at x ∈ X if and only if for any S ∈ S(f(x)),
f−1(S) is a neighborhood of x, where S(f(x)) is a neighborhood sub-basis at f(x).

Proof The “only if” part is trivial since S(f(x)) ⊂ N (f(x)). For the “if” part, let N be a neigh-
borhood of f(x), then N = S1 ∩ · · · ∩ Sm for some S1, · · · , Sm ∈ S(f(x)), and

f−1(N) = f−1(S1) ∩ · · · ∩ f−1(Sm),

where each f−1(Si) is a neighborhood of x by assumption. Thus f−1(N) is a neighborhood of x,
and f is continuous at x.

Problem 19 (Product topology and product metrics) Let (X, dX) and (Y, dY ) be metric spaces. En-
dow X × Y with the product metric

d
(p)
X×Y ((x1, y1), (x2, y2)) :=

[dX(x1, x2)
p + dY (y1, y2)

p]
1
p , 1 ⩽ p <∞,

max{dX(x1, x2), dY (y1, y2)}, p = ∞.

Prove:

(1) If U is open in (X, dX), V is open in (Y, dY ), then U × V is open in
(
X × Y, d

(∞)
X×Y

)
.

(2) W is an open set in
(
X × Y, d

(∞)
X×Y

)
if and only if for any (x, y) ∈ W , there exists r > 0 such that

B(x, r)× B(y, r) ⊂W .

(3) Prove the same conclusion for 1 ⩽ p <∞.

So “the metric topology of the product metric” = “the product topology of the metric topologies”.

Proof (1) For any (x, y) ∈ U × V , there exists r1 > 0 such that B(x, r1) ⊂ U and r2 > 0 such that
B(y, r2) ⊂ V . Let r = min{r1, r2}, then B(∞)

X×Y ((x, y), r) ⊂ B(x, r1) × B(y, r2) ⊂ U × V . Therefore
U × V is open in

(
X × Y, d

(∞)
X×Y

)
.

(2) It suffices to note that B(∞)
X×Y ((x, y), r) = B(x, r)× B(y, r).
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(3) ¬ Suppose U is open in (X, dX) and V is open in (Y, dY ). For any (x, y) ∈ U × V , there exists
r1 > 0 such that B(x, r1) ⊂ U and r2 > 0 such that B(y, r2) ⊂ V . Let r = min{r1, r2}, then

dX(x, x̃) ⩽ d(p)X×Y ((x, y), (x̃, ỹ)) < r ⩽ r1, dY (y, ỹ) ⩽ d(p)X×Y ((x, y), (x̃, ỹ)) < r ⩽ r2

for all (x̃, ỹ) ∈ B(p)
X×Y ((x, y), r). Hence U × V is open in

(
X × Y, d

(p)
X×Y

)
.

 IfW is open in
(
X × Y, d

(p)
X×Y

)
, then for any (x, y) ∈W , there exists r0 > 0 such that

B(p)
X×Y ((x, y), r0) ⊂W.

Choose r > 0 such that r < 2−
1
p r0, then for any (x̃, ỹ) ∈ B(x, r)× B(y, r),

[dX(x, x̃)p + dY (y, ỹ)
p]

1
p < (2rp)

1
p = 2

1
p r < r0.

Therefore B(x, r)× B(y, r) ⊂W .
® SupposeW ⊂ X×Y and for any (x, y) ∈W , there exists r > 0 such thatB(x, r)×B(y, r) ⊂W .

Then by ¬ B(x, r) × B(y, r) is an open set in
(
X × Y, d

(p)
X×Y

)
that contains (x, y), thus W is

open in
(
X × Y, d

(p)
X×Y

)
.

Problem 20 (Various topologies on RN) Consider the space of sequences of real numbers

X = RN = {(x1, x2, · · · ) : xn ∈ R}.

On X we have defined three topologies: the box topology Tbox, the product topology Tproduct, and the
“uniform topology” Tuniform induced from the uniform metric

duniform((xn), (yn)) = sup
n∈N

min{|xn − yn|, 1}.

(1) Prove: Tproduct ⊂ Tuniform ⊂ Tbox.

(2) One can also regard every element (x1, x2, · · · ) in X as a map

f : N → R, n 7→ xn

and thus identifyXwith the space ofmapsM(N,R). By thiswayweget the pointwise convergence
topology Tp.c. on X . Prove Tp.c. = Tproduct.

(3) Fix two elements (a1, a2, · · · ) and (b1, b2, · · · ) in X , and define a map

f : X → X, (x1, x2, · · · ) 7→ (a1x1 + b1, a2x2 + b2, · · · ).

Prove that if we endow X with the product topology, then f is continuous.

(4) If we endow X with the box topology, is f continuous?

Proof (1) Tproduct ⊂ Tuniform For any U ∈ Tproduct and any (xn) ∈ U , by the definition of product
topology, there exists open sets U1, · · · , Um ⊂ R such that

(xn) ∈ U1 × · · · × Um × R× R× · · · ⊂ U.
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For each Ui, there exists ri > 0 such that B(xi, ri) ⊂ Ui. Let r = min{r1, · · · , rm, 1} > 0, then

Buniform((xn), r) ⊂ U1 × · · · × Um × R× R · · · ⊂ U.

Therefore U ∈ Tuniform.

Tuniform ⊂ Tbox For any U ∈ Tuniform and (xn) ∈ U , there exists r ∈ (0, 1) such that

Buniform((xn), r) ⊂ U.

Then
Tbox 3

∏
i∈N

B
(
xi,

r
2

)
⊂ Buniform((xn), r) ⊂ U.

Hence U ∈ Tbox.

(2) Tp.c. ⊂ Tproduct For any U ∈ Tp.c. and (xn) ∈ U , by the definition of pointwise convergence
topology, there exists n1, · · · , nm ∈ N and ε > 0 such that

ω((xn);n1, · · · , nm; ε) := {(yn) ∈ X : |yni − xni | < ε, ∀1 ⩽ i ⩽ m} ⊂ U.

Now let

Uk =

B(xk, ε), if k = ni for some i ∈ {1, · · · ,m},

R, otherwise.

Then
Tproduct 3

∏
k∈N

Uk = ω((xn);n1, · · · , nm; ε) ⊂ U.

Hence U ∈ Tproduct.

Tproduct ⊂ Tp.c. For any U ∈ Tproduct and (xn) ∈ U , by the definition of product topology, there
exists open sets U1, · · · , Um ⊂ R such that

(xn) ∈ U1 × · · · × Um × R× R× · · · ⊂ U.

For each Ui, there exists ri > 0 such that B(xi, ri) ⊂ Ui. Let ε = min{r1, · · · , rm} > 0, then

ω((xn); 1, · · · ,m; ε) ⊂ U1 × · · · × Um × R× R · · · ⊂ U.

Therefore U ∈ Tp.c..

(3) For any U ∈ Tproduct and (xn) ∈ f−1(U), let (yn) := f((xn)). By (2), there exists n1, · · · , nk ∈ N
and ε > 0 such that

ω((yn);n1, · · · , nk; ε) := {(zn) ∈ X : |zni − yni | < ε, ∀i = 1, · · · , k} ⊂ U.

Let

Vk =

B
(
xni

,
ε

|ani
|

)
, if k = ni for some i ∈ {1, · · · , k} and ani

6= 0,

R, otherwise.
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Then for any (zn) ∈
∏
k∈N

Vk ∈ Tproduct, let (wn) := f((zn)), we have

|wni − yni | = |(anizni + bni)− (anixni + bni)| = |ani(zni − xni)| < ε, ∀i = 1, · · · , k.

This shows that (xn) ∈
∏
k∈N

Vk ⊂ f−1(ω((yn);n1, · · · , nk; ε)) ⊂ f−1(U). Therefore f−1(U) ∈

Tproduct, and thus f is continuous.

(4) For any U ∈ Tbox and (xn) ∈ f−1(U), there exists open sets {Un}∞n=1 in R such that

(yn) := f((xn)) ∈
∏
n∈N

Un ⊂ U.

For i ∈ N, let
fi : R → R, x 7→ aixi + bi.

Then each fi is continuous, and then f−1
i (Ui) is open in R. Hence

∏
i∈N

f−1
i (Ui) ∈ Tbox and

(xn) ∈
∏
i∈N

f−1
i (Ui) ⊂ f−1(U).

Therefore f−1(U) ∈ Tbox, and thus f is continuous.

PSet 3, Part 2

Problem 21 (Induced and co-induced topologies)

(1) Let (Z, TZ) be a topological space, and f : X → Y , g : Y → Z be maps. Let TY be the induced
topology on Y by g. Prove: the induced topology onX by f (from TY ) is the same as the induced
topology on X by g ◦ f (from TZ).

(2) State and prove a similar result on co-induced topology.

(3) Prove the universality for the co-induced topology.

Proof (1) Tg◦f =
{
(g ◦ f)−1(V ) : V ∈ TZ

}
=
{
f−1

(
g−1(V )

)
: V ∈ TZ

}
=
{
f−1(U) : U ∈ TY

}
= Tf .

(2) Proposition Let (X, TX) be a topological space, and f : X → Y , g : Y → Z be maps. Let TY be the
co-induced topology on Y by f . Prove: the co-induced topology on Z by g (from TY ) is the same as the
co-induced topology on Z by g ◦ f (from TX).

Proof Using the construction of TY we have

Tg =
{
V ∈ Z : g−1(V ) ∈ TY

}
=
{
V ∈ Z : f−1

(
g−1(V )

)
∈ TY

}
=
{
V ∈ Z : (g ◦ f)−1(V ) ∈ TX

}
= Tg◦f .

(3) Proposition Let (Xα,Tα) be a family of topological spaces, and F = {fα : Xα → Y } be a family of
maps. Endow Y with the F-induced topology. Then a map f : Y → Z is continuous if and only if each
f ◦ fα : Xα → Z is continuous. Moreover, the co-induced topology on Y induced by F is the only topology
satisfying this property.
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Proof If f is continuous then clearly all functions f ◦fα are continuous. Conversely, suppose that
all f ◦ fα are continuous. Let U ⊂ Z be an open set. Then (f ◦ fα)−1(U) = f−1

α

(
f−1(U)

)
is open in

Xα for all α, which implies that f−1(U) is open in Y . Therefore f is continuous.

Denote the co-induced topology on Y by TY . Suppose T ′
Y is another topology on Y with the same

property, we shall show that TY = T ′
Y .

TY ⊂ T ′
Y Let g : (Y, T ′

Y ) → (Y, TY ) be the identity map. Then (g ◦ fα)−1(U) = f−1
α (U) ∈ Tα for

all U ∈ TY and all α, which implies that g is continuous. Hence TY ⊂ T ′
Y .

T ′
Y ⊂ TY Let h : (Y, T ′

Y ) → (Y, T ′
Y ) be the identity map, then h is automatically continuous.

Hence h ◦ fα : (Xα,Tα) → (Y, T ′
Y ) is continuous for all α. But h ◦ fα = fα, by the definition

of the co-induced topology, T ′
Y ⊂ TY .

Problem 22 (Hawaiian earring) Prove that the Hawaiian earring

E =

∞⋃
n=1

{
(x, y) ∈ R2 :

(
x− 1

n

)2

+ y2 =

(
1

n

)2
}

is not homeomorphic to the wedge sum
∞∨
n=1

S1 of countably many circles.

Proof The Hawaiian earring is compact since it is a bounded closed subset of R2. However, the wedge
sum of countably many circles is not compact. For example, one can choose an open cover of the wedge
sumwhere each circle S1 is covered by an open set that does not include points far away from the wedge
point in other circles, then no finite number of these open sets can cover infinitely many circles.

Problem 23 (Quotient map v.s. open/closed map)

(1) Suppose p : X → Y is a surjective continuous map. Prove: if p is either open or closed, then it is a
quotient map.

(2) Construct a quotient map that is neither open nor closed.

(3) Let SO(n) be the special orthogonal group. Define a map

f : SO(n) → Sn−1, A 7→ Ae1,

where e1 = (0, · · · , 0, 1) is the “north pole vector” on Sn−1.

¬ Prove: f is surjective, continuous and open, and thus is a quotient map.

 Consider the natural (right) action of SO(n− 1) on SO(n) by

B ·A := A

(
B 0

0 1

)
, ∀B ∈ SO(n− 1), A ∈ SO(n).

Prove: the orbits of this action are the fibers of the quotient map f .

® Conclude that SO(n)/ SO(n− 1) ' Sn−1.

Proof (1) It suffices to show that “A ⊂ Y is open/closed ⇐⇒ p−1(A) is open/closed in X”.

(⇒) Use the continuity of p.
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(⇐) Since p is open/closed and surjective, A = p
(
p−1(A)

)
is open/closed whenever p−1(A) is

open/closed.

(2) Let A =
{
(x, y) ∈ R2 : x ⩾ 0 or y = 0

}
and q : A→ R be the projection on the first coordinate. We

shall show that q is a quotient map but not open nor closed.

(Quotient map) Since q is continuous, it suffices to show that C ⊂ R is closed if q−1(C) is closed
in A. Suppose q−1(C) is closed in A, and let C+ := C ∩ R⩾0, C− := C ∩ R⩽0. Then

q−1(C+) = q−1(C) ∩
{
(x, y) ∈ R2 : x ⩾ 0

}
is closed in R2, which implies that C+ is closed in R. Similarly,

q−1(C−) = q−1(C) ∩
{
(x, y) ∈ R2 : x ⩽ 0 and y = 0

}
is closed in R2, which implies that C− is closed in R. Therefore C = C+ ∪ C− is closed in R.

(Not open) Consider U =
{
(x, y) ∈ R2 : 0 ⩽ x < 1, 1 < y < 2

}
, then U is open in A but q(U) =

[0, 1) is not open in R.

(Not closed) ConsiderC =
{
(x, y) ∈ R2 : x > 0, xy = 1

}
, thenC is closed inA but q(C) = (0,+∞)

is not closed in R.

(3) ¬ For each A ∈ SO(n), Ae1 is the n-th column of A, which implies that f is continuous. Since
for any v ∈ Sn−1, there exists A ∈ SO(n) such that v is the n-th column of A, f is surjective.
For any open set U ⊂ SO(n), f(U) is just the image of U under the projection map on the n-th
column, which is open in Sn−1. Hence f is open.

 By expanding A in block form, we see that

A

(
B 0

0 1

)
:=

(
A1 a2

a3 a4

)(
B 0

0 1

)
=

(
A1B a2

a3B a4

)
,

hence the n-th column of A is preserved under the action of B ∈ SO(n − 1). Conversely, for
any Ã ∈ SO(n) with Ãe1 = Ae1, there exists B ∈ SO(n − 1) such that Ã = Adiag(B, 1).
Therefore

OA = f−1(Ae1)

for each A ∈ SO(n). In other words, the orbits of this action are the fibers of f .

® The map f : SO(n) → Sn−1 induces an equivalence relation on SO(n), where A1
f∼ A2 if and

only if f(A1) = f(A2). From the surjectivity of f , we have the bijection(
SO(n)/

f∼
)
' Im(f) = Sn−1.

But  tells us that the fibers of f are just the orbits of the action of SO(n−1) on SO(n), namely(
SO(n)/

f∼
)
' SO(n)/ SO(n− 1).

Therefore we find the bijection

ϕ : SO(n)/ SO(n− 1)
∼

Sn−1, [A] 7→ Ae1.
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Breaking the bijection into two steps:

SO(n)/ SO(n− 1)
g

SO(n)
f

Sn−1.

Since f : SO(n) → Sn−1 is continuous by ¬, the universality of the quotient topology tells us
that ϕ is continuous. Furthermore, the quotient topology on SO(n)/ SO(n− 1) implies that g
is an open map. Also f is an open map by ¬, hence ϕ = f ◦ g is an bijective continuous open
map, which is a homeomorphism.

Problem 24 (Covering space action) LetG be a group acting on a topological spaceX . Let Y = X/G

be the orbit space, and p : X → Y be the quotient map. Let U ⊂ X be an open set, such that

g · U ∩ U = ∅, ∀g 6= e ∈ G.

Prove:

(1) V := p(U) is an open set in Y .

(2) For any g ∈ G, the map pg = p ◦ τg : g−1 · U → V is a homeomorphism.

Proof (1) We need to prove that p−1(p(U)) is open in X . Note that the preimage of p(U) under p is
the union of the G-orbits of points in U :

p−1(p(U)) =
⋃
g∈G

g · U =
⋃
g∈G

τg(U).

Since for each g ∈ G, τg is a homeomorphism between U and τg(U), the right-hand side is a union
of open sets, hence open in X . Therefore V := p(U) is open in Y .

(2) (Injectivity) If pg(x) = pg(y) for some x, y ∈ U , then there exists h ∈ G such that g · x = h · (g · y).
This is equivalent to x =

(
g−1hg

)
· y, and then by our assumption g−1hg = e, i.e., hg = g and

h = e. Hence g · x = g · y, which implies x = y.

(Surjectivity) Since τg and p are both surjective, pg = p ◦ τg is surjective.

(Continuity) Since τg and p are both continuous, pg = p ◦ τg is continuous.

(Inverse continuity) For any open setW ⊂ U , τg(U) is open in X since τ−1
g = τg−1 is continuous.

Then by (1), p(τg(U)) is open in Y . Therefore p−1
g is continuous.

PSet 4, Part 1

Problem 25 (Gδ sets) Let (X, T ) be a topological space. A subset A ⊂ X us called Gδ set if there

exists countably many open sets U1, U2, · · · so that A =

∞⋂
n=1

Un.

(1) Show that [0, 1) is a Gδ set in R.

(2) Show that any closed set in a metric space is a Gδ set.

(3) Let (Y, d) be a metric space, and f : (X, T ) → (Y, d) a map. Prove: “the set of points where f is
continuous” is a Gδ set in X .
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Proof (1) [0, 1) =

∞⋂
n=1

(
− 1
n , 1
)
is a Gδ set.

(2) Suppose A is a closed set in a metric space X and let Gn =
⋃
a∈A

B
(
a, 1

n

)
, then each Gn is open. If

x ∈
∞⋂
n=1

Gn, then there is some xn ∈ A such that d(xn, x) < 1
n . Then xn → x, and since A is closed,

x ∈ A. Therefore A =

∞⋂
n=1

Gn is a Gδ set.

(3) The set of points where f is continuous is

{x ∈ X : ωf (x) = 0} =

∞⋂
n=1

{
x ∈ X : ωf (x) <

1

n

}
,

where
ωf (x) := lim

δ↘0
sup

z,w∈B(x,δ)
|f(z)− f(w)|.

If ωf (x) < 1
n , then for sufficiently small δ > 0, we have

sup
z,w∈B(x,2δ)

|f(z)− f(w)| < 1

n
.

Since B(y, δ) ⊂ B(x, 2δ) for y ∈ B(x, δ), this implies

ωf (y) <
1

n

for all y ∈ B(x, δ). Therefore each
{
x ∈ X : ωf (x) <

1
n

}
is open, and the set of points where f is

continuous is a Gδ set.

Problem 26 (“Sequentially continuous = continuous” for (A1) spaces) Let X be an (A1) space, Y
be any topological space. Prove: a map f : X → Y is continuous at x0 if and only if it is sequentially
continuous at x0.

Proof The “only if” part holds for any topological space, so we only need to prove the “if” part. For
any closed subset C ⊂ Y , to see that f−1(C) is closed in X , by the first countability of X , it suffices to
show that for any sequence (xn) in f−1(C) that converges to x0, we have x0 ∈ f−1(C). By sequential
continuity, xn → x0 implies f(xn) → f(x0), and since f(xn) ∈ C and C is closed, we have f(x0) ∈ C.
Therefore x0 ∈ f−1(C), as desired.

Problem 27 (Closedness for the derived set)

(1) Consider a set X = {a, b, c} of three elements. Let

T = {∅, {a}, {b, c}, {a, b, c}}.

¬ Check: T is a topology on X .

 Denote A = {b}. Find A′ and (A′)
′. Is A′ closed?

(2) Let (X, d) be a metric space. Prove: for any A ⊂ X , the derived set A′ is closed.
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(3) For a general topological space (X,T ),

¬ For any subsets A,B ⊂ X , prove: (A ∪B)′ = A′ ∪B′.

 Prove: if A ⊂ X is closed, then A′ is closed.

® For any subset A ⊂ X , prove: (A′)
′ ⊂ A ∪A′.

Proof (1) ¬ We have ∅, X ∈ T , {a} ∪ {b, c} = {a, b, c} ∈ T , and {a} ∩ {b, c} = ∅ ∈ T (unions or
intersections with ∅ or X are trivial to check).

 A′ = {c} and (A′)
′
= {b}. The derived set A′ is not closed since (A′)

c
= {a, b} /∈ T .

(2) It suffices to show that (A′)
′ ⊂ A′. Let x be a limit point of A′ and U be an open set containing x.

Then there is some y ∈ U ∩ (A′ \ {x}). Now U is an open set containing y ∈ A′, and since X is
a metric space, this means that U contains infinitely many points of A. To sum up, any open set
containing x contains infinitely many points of A, so x ∈ A′. Therefore (A′)

′ ⊂ A′, as desired.

(3) ¬ A′ ∪B′ ⊂ (A ∪B)′ A ⊂ (A ∪B) implies A′ ⊂ (A ∪B)′, and similarly for B′.

(A ∪B)′ ⊂ A′ ∪B′ Suppose x /∈ A′ ∪ B′, then there exist open sets UA, UB containing x
such that

UA ∩ (A \ {x}) = ∅, UB ∩ (B \ {x}) = ∅.

Then
(UA ∩ UB) ∩ ((A ∪B) \ {x}) = ∅.

Since UA ∩ UB is an open set containing x, this means x /∈ (A ∪B)′.

 Since A is closed, A = A ∪A′ and therefore A′ ⊂ A. For any x ∈ X \A′, since x in not a limit
point of A, there is some open set U containing x such that U ∩ (A \ {x}) = ∅. From x /∈ A′

and A′ ⊂ Awe have A′ ⊂ A \ {x}, hence U ∩A′ = ∅. This shows that A′ is closed.

® If x /∈ A∪A′, then there is an open set U containing x such that U ∩ (A \ {x}) = ∅. And since
x /∈ A, this becomes U ∩ A = ∅. Hence for any y ∈ U we have U ∩ (A \ {y}) = U ∩ A = ∅,
which implies y /∈ A′. To sum up, x has an open neighborhood U such that U ∩ A′ = ∅, so
x /∈ (A′)′. Therefore (A′)

′ ⊂ A ∪A′.

Problem 28 (Convergence by net) We call (P,�) a directed set if

� (P,�) is a partially ordered set.

� For any α, β ∈ P , there exists γ ∈ P such that α � γ and β � γ.

For a topological spaceX , a net is a map f : (P,�) → X from a directed set (P,�) toX . We will use the
notation (xα) instead of a map “f : α 7→ xα” if there is no ambiguity. We say a net (xα) converges to x0,
denoted by xα → x0, if for any neighborhood U of x0, there is an α ∈ P such that xβ ∈ U holds for any
α � β.

(1) RealizeN (x) as a directed set. You need to carefully choose the partial order relation so that it can
be used in part (2) below.

(2) Prove: x ∈ A ∪A′ if and only if there exists a net (xα) in A that converges to x.

(3) Prove: a map f : X → Y is continuous if and only if for any net (xα) in X which converges to a
limit x0, the net (f(xα)) in Y converges in Y to f(x0).
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Proof (1) N (x) can be partially ordered by reverse inclusion, i.e., U � V iff V ⊂ U . This is a directed
set since for any U, V ∈ N (x), U ∩ V ∈ N (x) and U � U ∩ V , V � U ∩ V .

(2) (⇐) Suppose (xα) is a net in A that converges to x. Then for any open set U containing x, by the
definition of convergence by net, it contains some xα ∈ A. Thus x ∈ A.

(⇒) Assume x ∈ A. For any U ∈ N (x), there exists xU ∈ U ∩A by assumption. Then (xU )U∈N (x)

is a net in A. Moreover, for any neighborhood V of x, then xU ∈ V for all U ⊂ V , that is, for
all U with V � U . Thus xU → x.

(3) (⇒) Assume f is continuous and let (xα) be a net inX converging to x0. Let U be a neighborhood
of f(x0). Then f−1(U) is a neighborhood of x, so there exists α such that xβ ∈ f−1(U) for all
β with α � β, so that f(xβ) ∈ U for all such β. Thus f(xα) → f(x0).

(⇐) Suppose that f is not continuous. Then there exists U open in Y such that f−1(U) is not
open in X . Then there exists x0 ∈ f−1(U) such that no neighborhood of x0 is contained in
f−1(U), so that x0 ∈ X \ f−1(U). It follows from part (2) that there is a net (xα) inX \f−1(U)

converging to x0. As no point f(xα) belongs to U , it follows that the net (f(xα)) in Y does not
converge to f(x0) ∈ U .

PSet 4, Part 2

Problem 29 (Points and sets in subspace topology) Let (X, T ) be a topological space and Y ⊂ X a
subset, endowed with subspace topology. Let A ⊂ Y . We denote by AY the closure of A in Y etc. Find
the relation between each pair below: if they are equal, prove it; if one is contained in another but not
vice versa, prove the relation and provide a counterexample for the other.

(1) A′Y and A′X .

(2) A
Y and AX .

(3) ∂YA and ∂XA.

(4) IntY (A) and IntX(A).

Proof (1) We have A′Y ⊂ A′X , or more specifically, A′Y = A′X ∩ Y .

A′Y ⊂
(
A′X ∩ Y

)
If x ∈ X ′Y , then x ∈ Y . Moreover, for any neighborhood U of x in X , since

U ∩ Y is a neighborhood of x in Y , we have (U ∩ Y ) ∩ (A \ {x}) 6= ∅. As A ⊂ Y , this is
equivalent to U ∩ (A \ {x}) 6= ∅, so x ∈ A′X ∩ Y .(

A′X ∩ Y
)
⊂ A′Y If x ∈ A′X ∩Y , for any neighborhoodU of x in Y , there is some neighborhood

V of x inX withU = V ∩Y . Since x ∈ A′X , V ∩(A\{x}) 6= ∅, and thereforeU∩(A\{x}) 6= ∅
as A ⊂ Y . Hence x ∈ A′Y .

Take X = R, Y = (0, 1) and A = (0, 1). Then A′X = [0, 1] and A′Y = (0, 1).

(2) From A
Y
= A ∪A′Y , AX = A ∪A′X , and results in part (1), we have AY = A

X ∩ Y . In particular,
A
Y ⊂ A

X . The reverse inclusion does not hold by the same counterexample in part (1), where
A
Y
= (0, 1) and AX = [0, 1].
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(3) It is always true that ∂YA ⊂ ∂XA. To see this, let x ∈ ∂YA and U be an open set in X containing
x. Then U ∩ Y is open in Y , hence

∅ 6= (U ∩ Y ) ∩A = U ∩A,

∅ 6= (U ∩ Y ) ∩ (Y \A) ⊂ U ∩ (X \A).

Thus x ∈ ∂XA, and ∂YA ⊂ ∂XA. The reverse inclusion does not hold in general. TakeX = R and
Y = A = (0, 1). Then ∂XA = {0, 1} and ∂YA = ∅.

(4) By the relation between the interior and the closure, and using part (2), we have

IntY (A) = Y \X \A
X

= Y \
(
Y ∩ Y \A

X
)
= Y \ Y \A

X

=
(
X \ Y \A

X
)
∩ Y =

(
X \X \ (A ∪ (X \ Y ))

X
)
∩ Y

=
(
X \X \ (A ∪ Y c)

X
)
∩ Y = IntX(A ∪ Y c) ∩ Y

⊃
(
IntX(A) ∪ IntX(Y c)

)
∩ Y

= IntX(A) ∩ Y = IntX(A).

The reverse inclusion does not hold in general. TakeX = R, Y = A = [0, 1]. Then IntX(A) = (0, 1)

and IntY (A) = [0, 1].

Problem 30 (Closure and interior in box and product topology) Let Xα be topological spaces, and
Aα ⊂ Xα. Consider the box topology Tbox and the product topology Tproduct on

∏
α

Xα.

(1) With respect to which topology, do we always have
∏
α

Aα =
∏
α

Aα?

(2) With respect to which topology, do we always have Int
(∏

α

Aα

)
=
∏
α

Int(Aα)?

Solution (1) The equality holds for both Tbox and Tproduct.∏
α

Aα ⊂
∏
α

Aα Let (xα) be a point of
∏
α

Aα and U =
∏
α

Uα be a basis element for either the box

or product topology that contains (xα). Since xα ∈ Aα andUα is an open neighborhood of xα,

we can choose a point yα ∈ Uα ∩ (Aα \ {xα}) for each α. Then (yα) ∈ U ∩

(∏
α

Aα \ {(xα)}

)
.

Since U is arbitrary, it follows that x ∈
∏
α

Aα.

∏
α

Aα ⊂
∏
α

Aα Suppose (xα) ∈
∏
α

Aα in either topology. For each given index β, let Vβ be an

arbitrary open set of Xβ containing xβ . Since π−1
β (Vβ) is open in

∏
α

Xα in either topology, it

contains a point (yα) ∈
∏
α

Aα with yβ 6= xβ . Then yβ ∈ Vβ ∩ (Aβ \{xβ}). Since Vβ is arbitrary,

it follows that xβ ∈ Aβ .

(2) The equality holds for box topology.
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∏
α

Int(Aα) ⊂ Int
(∏

α

Aα

)
Since each Int(Aα) is open in Xα, the inclusion holds.

Int
(∏

α

Aα

)
⊂
∏
α

Int(Aα) Let (xα) ∈ Int
(∏

α

Aα

)
, then for each α there is an open setUα ⊂ Xα

containing xα with ∏
α

Uα ⊂ Int
(∏

α

Aα

)
⊂
∏
α

Aα.

This implies Uα ⊂ Aα for each α, hence Uα ⊂ Int(Aα) and (xα) ∈
∏
α

Int(Aα).

This equality fails for the product topology. Take Xn = R and An = (0, 1) for each n ∈ N. Then
∞∏
n=1

Int(An) =

∞∏
n=1

(0, 1). However, by the definition of product topology, this cannot be an open

set in
∞∏
n=1

Xn, and hence Int
( ∞∏
n=1

An

)
6=

∞∏
n=1

Int(An).

Problem 31 (Closure of union of closed sets) Let (X,T ) be a topological space.

(1) Let A,B be subsets in X . Prove: A ∪B = A ∪B.

(2) Let Aα be a family of subsets in X . Prove:
⋃
α

Aα ⊂
⋃
α

Aα.

(3) Find an example so that
⋃
α

Aα 6=
⋃
α

Aα for a family of subsets Aα ⊂ R.

(4) We say a family {Aα} of subsets in X is locally finite if for any x ∈ X , there exists an open neigh-
borhood of Ux of x so that Aα ∩ Ux 6= ∅ for only finitely many α’s. Prove: if {Aα} is a locally finite
family, then

{
Aα
}
is a locally finite family, and

⋃
α

Aα =
⋃
α

Aα.

Proof (1) Since A ∪B is closed and contains both A and B, it contains A and B, hence their union.
The reverse inclusion follows since A ∪B ⊂

(
A ∪B

)
= A ∪B.

(2) If x ∈
⋃
α

Aα, then x ∈ Aβ for some β. For any neighborhood U of x, U ∩ (Aβ \{x}) 6= ∅, and hence

U ∩

(⋃
α

Aα \ {x}

)
6= ∅. Since U is arbitrary, this implies x ∈

⋃
α

Aα.

(3) Consider R with the standard topology and all singletons {r} for r ∈ Q. Then
⋃
r∈Q

{r} =
⋃
r∈Q

{r} =

Q, while
⋃
r∈Q

{r} = Q = R.

(4) For any x ∈ X , since {Aα} is locally finite, there exists an open neighborhood Ux of x so that
Aα ∩ Ux 6= ∅ for only finitely many α’s. Suppose Aβ ∩ Ux 6= ∅ for some β, we shall show that
Aβ ∩ Ux 6= ∅. If Ux contains a point of Aβ , then we are done. If Ux contains a limit point of Aβ ,
then Ux is a neighborhood of this limit point, and hence it must contain a point of Aβ . This shows
that

{
Aα
}
is locally finite.
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For the second part, by (2) it suffices to prove that
⋃
α

Aα ⊂
⋃
α

Aα, and note that it is enough to

show that
⋃
α

Aα is closed. Take any x /∈
⋃
α

Aα. By local finiteness of {Aα} (and then of
{
Aα
}
),

there exists an open neighborhood U of x so that Aα ∩ U 6= ∅ for only finitely many α’s, say
α1, . . . , αn. Then

Ũ := U \
(
Aα1 ∪ · · · ∪ Aαn

)
is an open neighborhood of x that does not intersect anyAα and contains x. Thus the complement
of
⋃
α

Aα is open, i.e.,
⋃
α

Aα is closed, and the proof is complete.

Problem 32 (Characterize continuity via interior)

(1) In class we proved

A map f : X → Y between two topological spaces is continuous if and only if f
(
A
)
⊂ f(A)

holds for any A ⊂ X .

Apply the idea of “open-closed” duality, write down the corresponding characterization of conti-
nuity of f via the interior operation, and then prove it.

(2) Show that f : X → Y is a closed map if and only if f(A) ⊂ f
(
A
)
holds for any A ⊂ X .

(3) Prove a similar property for open maps via interior.

Proof (1) We can characterize continuity of f via the interior operation as follows:

Proposition A map f : X → Y between two topological spaces is continuous if and only if

f−1(Int(A)) ⊂ Int
(
f−1(A)

)
holds for any A ⊂ Y .

Proof

(⇒) Suppose f is continuous and let p ∈ f−1(Int(A)). Then f(p) ∈ Int(A), hence there exists an
open neighborhood U of f(p) contained in A. By the continuity of f , f−1(U) ⊂ f−1(A) is
open in X and contains p, so p ∈ Int

(
f−1(A)

)
.

(⇐) For any open set U ⊂ Y , we have

f−1(U) = f−1(Int(U)) ⊂ Int
(
f−1(U)

)
⊂ f−1(U).

Therefore f−1(U) = Int
(
f−1(U)

)
is open in X . Hence f is continuous.

(2) (⇒) If f is a closed and A ⊂ X , then f
(
A
)
is closed in Y since A is closed in X . Therefore

f(A) ⊂ f
(
A
)
implies f(A) ⊂ f

(
A
)
= f

(
A
)
.

(⇐) Suppose A ⊂ X is closed. Then f(A) ⊂ f
(
A
)
= f(A) ⊂ f(A), hence f(A) = f(A) is closed.

Therefore f is a closed map.

(3) We can characterize openness of a map in terms of interiors as follows:

Proposition A map f : X → Y between two topological spaces is open if and only if

f−1(Int(A)) ⊃ Int
(
f−1(A)

)
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holds for any A ⊂ Y .

Proof

(⇒) Suppose f is open. For any A ⊂ Y , Int f−1(A) is open in X , hence f
(
Int f−1(A)

)
is open in

Y . Also note that f
(
Int f−1(A)

)
⊂ f

(
f−1(A)

)
⊂ A, therefore f

(
Int f−1(A)

)
⊂ Int(A), and

thus
Int f−1(A) ⊂ f−1

(
f
(
Int f−1(A)

))
⊂ f−1(Int(A)).

(⇐) Suppose U ⊂ X is open, then take A = f(U), so that

U = Int(U) ⊂ Int f−1(f(U)) ⊂ f−1(Int f(U)).

Hence f(U) ⊂ f
(
f−1(Int f(U))

)
⊂ Int f(U), which implies f(U) = Int f(U) is open in Y .

Therefore f is an open map.

PSet 5, Part 1

Problem 33 (Intersection of compact sets)

(1) LetX be a Hausdorff space. Prove: ifKα are compact subsets ofX , then
⋂
α

Kα is a compact subset

of X .

(2) Find an example: A,B are compact subsets of a topological spaceX , while A∩B is non-compact.

Proof (1) Since every compact subset of a Hausdorff space is closed, eachKα is closed. Then
⋂
α

Kα

is closed, and it is compact since it is a closed subset of a compact set (any fixedKβ).

(2) Take R with the usual topology and add in two more points a and b. Declare the open sets to be
the usual open sets in R together with R ∪ {a},R ∪ {b} and R ∪ {a, b}. Now A := R ∪ {a} and
B := R ∪ {b} are both compact, but A ∩B = R is not compact.

Problem 34 (Compactness for the “upper semi-continuous” topology) In Problem 15 you are sup-
posed to construct the upper semi-continuous topology on R, and the solution is

Tu.s.c. = {∅} ∪ {R} ∪ {(−∞, a) : a ∈ R}.

(1) Is (R,Tu.s.c.) compact / sequentially compact?

(2) Describe all compact subsets in (R,Tu.s.c.).

(3) State a theorem called “the extremal value theorem for upper semi-continuous functions” and
prove it.

Proof (1) (R,Tu.s.c.) is non-compact since {(−∞, n) : n ∈ N} is an open cover ofRwith no finite sub-
cover. Take the sequence xn = n, then it has no convergent subsequence, which means (R,Tu.s.c.)

is not sequentially compact.

(2) A subset A ∈ (R,Tu.s.c.) is compact if and only if it is ∅ or has a maximum.
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(⇐) If A has a maximum M , then for any open cover of A, there must exist an open set (−∞, a)

(a ∈ R ∪ {+∞}) containingM , which does cover A.

(⇒) Suppose A 6= ∅ does not have a maximum and letM be the supremum of A.

� If M < +∞, then
{(

−∞,M − 1
n

)
: n ∈ N

}
is an open cover of A, but it has no finite

subcover by the definition of supremum.
� IfM = +∞, then {(−∞, n) : n ∈ N} is an open cover of A, but it has no finite subcover.

(3) Theorem If a function f : (X,T ) → R is upper semi-continuous andK ⊂ X is compact, then f attains
its maximum onK.

Proof In Problem 15 (2) ¬ we proved that a function f from a topological space (X,T ) to R
is upper semi-continuous if and only if f : (X,T ) → (R,Tu.s.c.) is continuous. So if K ⊂ X is
compact, then f(K) is compact in (R,Tu.s.c.), and by (2) we know that f(K) has a maximum.

Problem 35 (Limit point compact) Let X be a topological space. If for any infinite subset S of X one
has S′ 6= ∅, then we say X is limit point compact.

(1) Consider the cofinite topology (X,Tcofinite). Is it limit point compact?

(2) Show that X = (N,Tdiscrete) × (N,Ttrivial) is not compact, not sequentially compact, but is limit
point compact.

(3) Prove: if X is compact or sequentially compact, then it is limit point compact.

(4) Show that any closed subset of a limit point compact space is limit point compact.

(5) Let X be limit point compact and f : X → Y be continuous. Is f(X) limit point compact?

Proof (1) If S ⊂ X is infinite, then for any x ∈ X , the set S \ {x} is infinite, so U ∩ (S \ {x}) 6= ∅
for any non-empty open set U ⊂ X . This means x is a limit point of S, and S′ = X . Therefore
(X,Tcofinite) is limit point compact.

(2) ¬ {{n} × N : n ∈ N} is an open cover of X , but it has no finite subcover, so X is not compact.

 Take the sequence xn = (n, 1), then it has no convergent subsequence, which meansX is not
sequentially compact.

® For any non-empty subset S ⊂ X , take some (m0, n0) ∈ S, then any (m0, n1) with n1 6= n0 is
a limit point of S. Thus X is limit point compact.

(3) ¬ Suppose X is compact, and S ⊂ X is any subset. Suppose X has no limit point, then S is
closed since S = S∪S′ = S. For any a ∈ S, there exists an open set Ua such that S∩Ua = {a}.
Now Sc ∪ {Ua : a ∈ S} is an open cover of X . By compactness, there exists a1, · · · , ak ∈ S

such that

X = Sc ∪

(
k⋃
i=1

Uai

)
.

It follows that

S = S ∩X = S ∩

(
k⋃
i=1

Uai

)
=

k⋃
i=1

(S ∩ Uai) = {a1, · · · , ak}

is a finite subset. This implies that X is limit point compact.
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 Suppose X is sequentially compact, and S ⊂ X is any infinite subset. Take any infinite
sequence (x1, x2, · · · ) in S such that xi 6= xj for i 6= j. Then there exists a subsequence
(xn1

, xn2
, · · · ) converging to some x0 ∈ X . It follows from definition that

x0 ∈ {xn1
, xn2

, · · · }′ ⊂ {x1, x2, · · · }′ ⊂ S′.

Hence S′ 6= ∅ and X is limit point compact.

(4) Suppose X is limit point compact, and A ⊂ X is an infinite closed subset. For any infinite subset
S ⊂ A, S′X 6= ∅. By Problem 29 (1) we know that S′A = S′X ∩A. Since A is closed, S′X ⊂ A′X ⊂
A. Therefore S′A = S′X ∩A = S′X 6= ∅, and then A is limit point compact.

(5) Not true in general. For example, X = (N,Tdiscrete) × (N,Ttrivial) is limit point compact as shown
in (2). Consider the projection onto the first factor:

π1 : (N,Tdiscrete)× (N,Ttrivial) → (N,Tdiscrete),

which is continuous. However, π1(X) = N is not limit point compact since any subset in a discrete
space has no limit point.

Problem 36 (One-point compactification) Given any topological space (X,T ), we say a compact topo-
logical space Y is a compactification of X if there exists a homeomorphism f : X → f(X) ⊂ Y such that
f(X) = Y .

(1) Prove: both S1 and [0, 1] are compactifications of R.

(2) For any non-compact topological space (X,T ), define a topology T ∗ on the setX∗ = X t{∞} by

T ∗ = T ∪ {X∗} ∪ {Kc ∪ {∞} : K ⊂ X is closed and compact}.

Prove: T ∗ is a topology on X∗, and (X∗,T ∗) is a compactification of (X,T ). This is called the
one-point compactification of (X,T ).

(3) Prove: the one-point compactification of N is homeomorphic to {0} ∪
{

1
n : n ∈ N

}
(as a subset in

R).

(4) Construct a compact Hausdorff topology on any set X .

Proof (1) ¬ Let σ : S1 \ {N} → R be the stereographic projection that sends a point x other than
the “north pole”N on S1 to the point u ∈ R chosen so that U = (u, 0) is the point in R2 where
the line through N and xmeets the subspace x2 = 0. It is easy to obtain a formula for σ:

σ : S1 \ {N} → R, (x1, x2) 7→
x1

1− x2
.

Its inverse f := σ−1 is given by

f : R → S1 \ {N}, x 7→
(

2x

x2 + 1
,
x2 − 1

x2 + 1

)
.

Since both σ and f are continuous, f is a homeomorphism betweenR and S1\{N}. Moreover,
S1 is compact in R2 and f(R) = S1 \ {N} = S1. Therefore S1 is a compactification of R.
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 Consider the homeomorphism

f : R → (0, 1), x 7→ 1

π
arctanx+

1

2
.

Since f(R) = (0, 1) = [0, 1] is compact, [0, 1] is a compactification of R.

(2) For conciseness, we regard ∅ as a closed and compact subset of X , then

T ∗ = T ∪ {Kc ∪ {∞} : K ⊂ X is closed and compact}.

¬ Clearly ∅ ∈ T ⊂ T ∗ and X∗ ∈ T ∗.

 If U1, U2 ∈ T , then U1 ∩U2 ∈ T ⊂ T ∗. If Ui = X∗ \Ci where Ci is closed and compact inX
(i = 1, 2), then Ci ∪ C2 is again closed and compact in X , and

U1 ∩ U2 = (X∗ \ C1) ∩ (X∗ \ C2) = X∗ \ (C1 ∪ C2) ∈ T ∗.

If U1 ∈ T and U2 = X∗ \ C2 where C2 is closed and compact in X , then

U1 ∩ U2 = U1 ∩ (X∗ \ C2) = U1 ∩ (X \ C2) ∈ T ⊂ T ∗.

® For any {Uα : α ∈ Λ} ⊂ T ∗, if
⋃
α∈Λ

Uα = ∅ or X∗, then
⋃
α∈Λ

Uα ∈ T ∗. Otherwise there are

three cases:

� If {Uα : α ∈ Λ} ⊂ T , then
⋃
α∈Λ

Uα ∈ T ∗.

� If {Uα : α ∈ Λ} ⊂ {Kc ∪ {∞} : K ⊂ X is closed and compact}, then

X∗ \
⋃
α∈Λ

Uα =
⋂
α∈Λ

(X∗ \ Uα)

is closed in (X,T ), and for any fixed β ∈ Λ,

X∗ \
⋃
α∈Λ

Uα ⊂ X∗ \ Uβ .

Since any closed subset of a compact space is compact,X∗ \
⋃
α∈Λ

Uα is compact inX∗ \Uβ .

Therefore ⋃
α∈Λ

Uα ∈ {Kc ∪ {∞} : K ⊂ X is closed and compact} ⊂ T ∗.

� If
Λ1 := {λ ∈ Λ : Uλ ∈ T } 6= ∅

and
Λ2 := {λ ∈ Λ : Uλ ∈ {Kc ∪ {∞} : K ⊂ X is closed and compact}} 6= ∅,
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then by the above two cases we know that
⋃
α∈Λ1

Uα ∈ T and

⋃
α∈Λ2

Uα ∈ {Kc ∪ {∞} : K ⊂ X is closed and compact}.

Now

X∗ \
⋃
α∈Λ

Uα = X∗ \

(( ⋃
α∈Λ1

Uα

)
∪

( ⋃
α∈Λ2

Uα

))

=

(
X∗ \

⋃
α∈Λ1

Uα

)
∩

(
X∗ \

⋃
α∈Λ2

Uα

)
⋆

(
X \

⋃
α∈Λ1

Uα

)
∩

(
X∗ \

⋃
α∈Λ2

Uα

)
.

Note that in “?” we used the fact that ∞ /∈ X∗ \
⋃
α∈Λ2

Uα. Hence X∗ \
⋃
α∈Λ

Uα is closed in

the compact subspace X∗ \
⋃
α∈Λ2

Uα of (X,T ), so it is compact. Therefore

⋃
α∈Λ

Uα ∈ {Kc ∪ {∞} : K ⊂ X is closed and compact} ⊂ T ∗.

So T ∗ is a topology on X∗.
To see that (X∗,T ∗) is a compact space, take any open cover {Uα : α ∈ Λ} ofX∗. Then there
exists β ∈ Λ such that ∞ ∈ Uβ . By the definition of T ∗, X∗ \ Uβ is closed and compact in
X . Since {Uα : α ∈ Λ} is an open cover of X∗ \ Uβ , it has a finite subcover {U1, · · · , Un}.
Now {Uβ , U1, · · · , Un} is a finite subcover of {Uα : α ∈ Λ} that covers Uβ ∪ (X∗ \ Uβ) = X∗.
Therefore (X∗,T ∗) is compact.
The inclusion map ι : X → X∗ is clearly a homeomorphism betweenX and ι(X). Moreover,
any open set containing∞ is of the formKc∪{∞} for some closed and compactK ⊂ X , and
Kc 6= ∅ since X is non-compact by assumption, this open set must intersect ι(X). Therefore
∞ ∈ ι(X)′ and ι(X) = X∗, which proves that (X∗,T ∗) is a compactification of (X,T ).

(3) Consider the bijection

f : N ∪ {∞} → {0} ∪
{
1

n
: n ∈ N

}
, n 7→ 1

n
, ∞ 7→ 0.

For any open set U ⊂ {0} ∪
{

1
n : n ∈ N

}
, if 0 /∈ U , then f−1(U) consists of finitely many points

and is open in N ∪ {∞}. If 0 ∈ U , then there exists N ∈ N such that 1
n ∈ U for all n > N , i.e.,

the complement of f−1(U) is a union of a finite set with {∞}, which is closed and compact in N.
Hence in both cases one has f−1(U) is open in N∪{∞}. Therefore f is a continuous bijection from
the compact spaceN∪{∞} to the Hausdorff space {0}∪

{
1
n : n ∈ N

}
, which is a homeomorphism.

(4) Pick a point x0 ∈ X and endowX \ {x0}with the discrete topology. Then let (X \ {x0})∪ {x0} be
the one-point compactification of X \ {x0}. Now X endowed with this new topology is compact
by (2). To see that it is also Hausdorff, we only need to consider the case of separating x0 from
any other point x1 ∈ X \ {x0} by disjoint open sets. Since {x1} is closed and compact inX \ {x0},
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(X \ {x0, x1}) ∪ {x0} = X \ {x1} is open in X . Then {x1} and X \ {x1} are two disjoint open sets
separating x1 and x0.

PSet 5, Part 2

Problem 37 (Compact subsets of Rn)

(1) Prove Alexander subbasis theorem for R with S = {(−∞, a), (a,∞) : a ∈ R}.

(2) Prove any finite closed interval [a, b] in R is compact using (1).

(3) Show that a subset in Rn is compact if and only if it is bounded and closed.

Proof (1) Let us begin by showing that a subsetK ⊂ R whose every S-cover has a finite subcover is
closed and bounded.

(Boundedness) If K has no upper bounded, then the S-cover {(−∞, n) : n ∈ N} has no finite
subcover, a contradiction. Similarly, if K has no lower bound, then the S-cover {(−n,∞) :

n ∈ N} has no finite subcover, again a contradiction. Thus,K is bounded.

(Closedness) For any sequence (xn) inK that converges to x ∈ R (we may assume xn 6= x for all
n), we canpick a subsequence (xnk

) such that eitherxnk
> x for all k orxnk

< x for all k. In the
former case, wemust have x ∈ K for otherwise the S-cover {(x,∞)}∪

{(
−∞, x− 1

n

)
: n ∈ N

}
of K has no finite subcover. In the latter case, we still have x ∈ K, for otherwise the S-cover
{(−∞, x)} ∪

{(
x+ 1

n ,∞
)
: n ∈ N

}
ofK has no finite subcover. Thus,K is closed.

For any sequence (xn) in K, since K is bonuded, (xn) has a convergent subsequence (xnk
). And

since K is closed, the limit of (xnk
) is in K. This implies that K is sequentially compact, which is

equivalent to compactness in R.

(2) Suppose {(−∞, bi)}i∈I ∪ {(aj ,∞)}j∈J is a cover of [a, b]. It is reasonable to assume all bi > 0 and
aj < 0. Since ⋃

i∈I
(−∞, bi) =

(
−∞, sup

i∈I
bi

)
,

⋃
j∈J

(ai,∞) =

(
inf
j∈J

aj ,∞
)
,

we have sup
i∈I

bi > inf
j∈J

aj . Thus, there exists i0 ∈ I and j0 ∈ J such that bi0 > aj0 . Then there is a

finite subcover {(−∞, bi0), (aj0 ,∞)}. By (1), [a, b] is compact.

(3) (⇒) Suppose K ⊂ R is compact. Since a compact subset of a Hausdorff space is closed, K is
closed. If K is unbounded, then the open cover {B(0, n) : n ∈ N} has no finite subcover, a
contradiction. Thus,K is bounded and closed.

(⇐) Suppose K ⊂ R is bounded and closed. Since K is bounded, K ⊂ [a, b]n for some a, b ∈ R.
By (2), [a, b] is compact, and then [a, b]n is compact by Tychonoff’s theorem. So K is a closed
subset of a compact set, hence compact.

Problem 38 (Topology of the Cantor set) Consider the Cantor set

C = [0, 1] \
∞⋃
n=1

3n−1−1⋃
k=0

(
3k + 1

3n
,
3k + 2

3n

)
.
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(1) Prove: every point in the Cantor set is a limit point.

(2) Prove: as a subset of [0, 1], the Cantor set is nowhere dense.

(3) For any closed subset F ⊂ C, construct a continuous map f : C → F so that f(x) = x for all x ∈ F .

(4) Define a map

g : {0, 1}N → [0, 1], a = (a1, a2, · · · ) 7→
∞∑
k=1

2ak
3k

.

Prove: g induces a homeomorphism between
(
{0, 1}N,Tproduct

)
and C.

(5) Show that the map

h : {0, 1}N → [0, 1]2, a = (a1, a2, · · · ) 7→

( ∞∑
k=1

a2k−1

2k
,

∞∑
k=1

a2k
2k

)

is continuous and surjective. Is h injective?

Proof (1) Let Cj = [0, 1] \
j⋃

n=1

3n−1−1⋃
k=0

(
3k + 1

3n
,
3k + 2

3n

)
, then each Cj is a finite union of closed inter-

vals. For any x ∈ C and any ε > 0, choose n ∈ N such that 3−n < ε. Then the closed interval in
Cn containing x is contained in B(x, ε). Note that the two endpoints of this interval are both in C,
and one of them is different from x. This shows that every open set containing x contains a point
in C different from x. Thus, x is a limit point of C.

(2) Since C =

∞⋂
n=1

Cn is closed, C = C. Moreover, no open interval in [0, 1] is disjoint from all the

deleted open intervals of [0, 1]. Hence Int
(
C
)
= ∅.

(3) Let F be a nonempty closed subset of C. Then [0, 1] \ F is open in [0, 1], so it can be written as a
countable disjoint union of open intervals in [0, 1]:

[0, 1] \ F =

∞⊔
n=1

Jn.

If Jn is of the form (an, bn), then clearly an, bn ∈ F . Since C does not contain any open interval, we
can pick some xn ∈ (an, bn) \ C. If Jn is of the form [0, bn), then bn ∈ F and we take xn = 0. If Jn
is of the form (an, 1], then an ∈ F and we take xn = 1. Now define

f : C → F, x 7→


x, ifx ∈ F,

an, ifx ∈ (an, xn] for somen,
bn, ifx ∈ [xn, bn) for somen.

For x ∈ C \F , there is an open set containing x on which f is constant, so f is continuous at x. For
x ∈ F , if x is a limit point of F on both sides, then since f |F = IdF , we see that f is continuous at
x; if x is an an, then f is left-continuous at x, and since f is constant on (an, xn], f is continuous at
x; the same argument applies to the case where x is a bn. Thus, f is a continuous function.

(4) The bijectivity of g is immediate from the ternary expansions of real numbers in C. To prove that
g−1 : C → {0, 1}N is continuous, by the property of product topology, it suffices to prove that each
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πn ◦ g−1 : C → {0, 1} is continuous, where πn is the projection onto the n-th component. Then
we only need to show that the preimages of {0} and {1} under πn ◦ g−1 are both closed in C. In
fact, they are both intersections of C with finitely many closed intervals, which are closed in C
as desired. Now g−1 is a continuous bijection from the compact space C to the Hausdorff space
{0, 1}N, which is a homeomorphism.

(5) The fact that h is surjective follows from the fact that every real number in [0, 1] has a binary ex-
pansion. To prove that h is continuous, by the property of product topology, it suffices to show
that the map

h̃ : {0, 1}N → [0, 1], (b1, b2, · · · ) 7→
∞∑
k=1

bk
2k

is continuous. By (4), we can regard {0, 1}N as the Cantor set C, and then h̃ can be viewed as a
surjection from C to [0, 1] which is non-decreasing. Note that a non-decreasing function can only
have jump discontinuities, and surjectivity implies there are no jumps. Thus, h̃ is continuous, and
so is h. However, h is not injective. For example, both (1, 1, 0, 0, 0, 0, · · · ) and (0, 0, 1, 1, 1, 1, · · · ) are
mapped to

(
1
2 ,

1
2

)
.

Problem 39 (Sequential compactness for products)

(1) Let X1, · · · , Xn be sequentially compact topological spaces. Prove: the product space X = X1 ×
· · · ×Xn is sequentially compact.

(2) Is X = {0, 1}N sequentially compact when equipped with the box topology Tbox?

(3) Let (Xn, dn) be compact metric spaces. Define a metric on X =

∞∏
n=1

Xn via

d((xn), (yn)) :=

∞∑
n=1

dn(xn, yn)

[1 + diam(Xn)] · 2n
.

Prove: on X the metric topology Td coincides with the product topology.

Proof (1) It suffices to prove the statement for n = 2. Let X and Y be two sequentially compact
topological spaces. Let (xk, yk) be a sequence in X × Y . Since X is sequentially compact, there
is a subsequence

(
xkj
)
converging to some x ∈ X . Since Y is sequentially compact, there is a

subsequence
(
ykjl

)
converging to some y ∈ Y . Then

(
xkjl , ykjl

)
converges to (x, y) inX×Y . This

shows that X × Y is sequentially compact.

(2) Consider ei ∈ X where the i-th coordinate is 1 and all other coordinates are 0. If the sequence
(e1, e2, · · · ) has a convergent subsequence, then the limit must be (0, 0, · · · ), but {(0, 0, · · · )} itself
is open in the box topology and no ei is in this set. Thus, X is not sequentially compact.

(3) Td ⊂ Tproduct SupposeU ∈ Td. Then for any (an) ∈ U there exists r > 0 such thatB((an), r) ⊂ U .
Consider

V = B1

(
a1,

r
2

)
× · · · × BN

(
aN ,

r
2

)
×XN+1 ×XN+2 × · · · ∈ Tproduct.
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Take N ∈ N such that 2−N < r
2 , then for all (bn) ∈ V we have

d((an), (bn)) =

∞∑
n=1

dn(an, bn)

[1 + diam(Xn)] · 2n
⩽

N∑
n=1

r
2

2n
+

∞∑
n=N+1

1

2n

=
r

2

(
1− 1

2N

)
+

1

2N
<
r

2
+
r

2
= r.

Hence (an) ∈ V ⊂ B((an), r) ⊂ U , which implies U ∈ Tproduct.

Tproduct ⊂ Td Suppose V ∈ Tproduct, which has the form

V = V1 × · · · × Vk ×Xk+1 ×Xk+2 × · · · ,

where each Vi is open inXi. For any (xn) ∈ V , there exists r1, · · · , rk > 0 such that B(xi, ri) ⊂
Vi for 1 ⩽ i ⩽ k. Let

r0 = min
{

r1
[1 + diam(X1)] · 21

, · · · , rk
[1 + diam(Xk)] · 2k

}
> 0,

then (xn) ∈ B((xn), r0) ⊂ V . Hence V ∈ Td.

Problem 40 (Interior of compact subsets)

(1) Let Xα be a family of topological spaces such that Xα is non-compact for infinitely many α’s. Let

K be a compact set in
(∏

α

Xα,Tproduct

)
. Prove: K has no interior point.

(2) Consider the space `2(R) defined by

`2(R) =

(xn)n∈N : ‖x‖2 :=

(∑
n

|xn|2
) 1

2

< +∞

 ⊂ RN,

endowed with the metric d2. Is the closed unit ball compact? Can a compact subset have any
interior point?

(3) A topological space (X,T ) is called locally compact if for every x ∈ X , there exists a compact set
Kx and an open set Ux such that

x ∈ Ux ⊂ Kx.

Prove: the product
(∏

α

Xα,Tproduct

)
of a family of topological spaces is locally compact if and

only if there is a finite set of indices Λ0 such that

Xα is

 compact forα /∈ Λ0,

locally compact forα ∈ Λ0.

Proof (1) Suppose (xα) ∈ Int(K) and take an open neighborhood U =
∏
α

Uα of (xα) contained in

K. Then Uβ = Xβ for some β where Xβ is non-compact. Now fix an open cover {Vλ : λ ∈ Λ} of
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Xβ , then {Wλ : λ ∈ Λ} is an open cover ofK with no finite subcover, whereWλ =
∏
α

Wλ,α and

Wλ,α =

Xα, α 6= β,

Vλ, α = β.

(2) The closed unit ball in `2(R) is non-compact, for the sequence (e1, e2, · · · ) has no convergent sub-
sequence. Suppose K ⊂ `2(R) is compact and has an interior point (xn) ∈ K. Then there exists
r > 0 such that B((xn), r) ⊂ K. Let

y(i)n =

xn, n 6= i,

xn +
r

2
, n = i.

Then the sequence
(
y(1)n

)
,
(
y(2)n

)
, · · · lies in K but has no convergent subsequence since any two

distinct points in this sequence have distance r√
2
. This contradicts the compactness ofK. Therefore

any compact subset of `2(R) has no interior point.

(3) (⇒) Suppose the product space is locally compact. Then for any Xα and x ∈ Xα, we can pick a
point in the product space whose α-th coordinate is x. This point has a compact neighbor-
hood, and by projecting this neighborhood toXα, we get a compact neighborhood of x. Thus,
each Xα is locally compact. Next, for any (xα) in the product space, there exists a compact
neighborhood of (xα). By the definition of product topology, this neighborhood can be writ-
ten as

∏
α

Kα, where Kα = Xα for all but finitely many α’s. And all these Xα’s are compact

since the projection maps are continuous. Thus, only finitely manyXα’s can be non-compact.
(⇐) Suppose eachXα is locally compact and all but finitely manyXα’s are compact. Then for any

(xα) in the product space, there exists a compact neighborhoodKα of each xα, and for α /∈ Λ0

we can letKα = Xα. Then
∏
α

Kα is a compact neighborhood of (xα) by Tychonoff’s theorem

and the definition of product topology. Thus, the product space is locally compact.

PSet 6, Part 1

Problem 41 (Totally bounded) Let (X, d) be a metric space, and A ⊂ X (equipped with subspace
metric).

(1) Suppose (X, d) is totally bounded. Show that (A, d) is totally bounded.

(2) Suppose (A, d) is totally bounded. Propose a condition on A so that (X, d) is totally bounded.

(3) Show that (X, d) is totally bounded if and only if any sequence in X has a subsequence that is
Cauchy.

(4) Let (X, d) be complete. Prove: A is compact if and only if A is totally bounded.

Proof (1) For any ε > 0, there exists x1, · · · , xn ∈ X such thatA ⊂ X =

n⋃
i=1

B
(
xi,

ε
2

)
. After getting rid

of the balls that do not intersectA, let us sayA ⊂
m⋃
k=1

B
(
xik ,

ε
2

)
. For each k, pick ak ∈ A∩B

(
xik ,

ε
2

)
.
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Note that B(ak, ε) ⊃ B
(
xik ,

ε
2

)
, hence A ⊂

m⋃
k=1

B(ak, ε). Finally, we see that A =

m⋃
k=1

BA(ak, ε), so

(A, d) is totally bounded.

(2) Condition: A is dense in X .

Proof For any ε > 0, there exists a1, · · · , an ∈ A such that A ⊂
n⋃
i=1

B(ai, ε2 ). Since A is dense in

X , for any x ∈ X , there exists ax ∈ A such that d(x, ax) < ε
2 . Suppose ax ∈ B

(
ak,

ε
2

)
for some k,

then d(x, ak) ⩽ d(x, ax) + d(ax, ak) <
ε
2 + ε

2 = ε. Hence x ∈ B(ak, ε) and thus X =

n⋃
i=1

B(ai, ε).

Therefore, (X, d) is totally bounded.

(3) (⇒) Suppose (X, d) is totally bounded. For any sequence {xn} and any ε > 0, since X can be
covered by finitely many balls of radius ε

2 , one of these balls must contain infinitely many
terms of {xn}. Let us denote this subsequence by {xnk

}. Then for any l1, l2 ∈ N, we have
d
(
xnl1

, xnl2

)
< ε

2 + ε
2 = ε. Hence {xnk

} is Cauchy.

(⇐) Suppose any sequence inX has a subsequence that is Cauchy but (X, d) is not totally bounded.
Then there exists ε > 0 such that X cannot be covered by finitely many balls of radius ε. Let
us pick x1 ∈ X . Since X cannot be covered by a ball of radius ε centered at x1, there exists

x2 ∈ X \ B(x1, ε). Similarly, we can find xk ∈ X \
k−1⋃
i=1

B(xi, ε). Then the sequence {xk} has

no Cauchy subsequence, since for any n,m ∈ N, we have d(xn, xm) ⩾ ε, a contradiction.

(4) A subspace of a complete metric space is complete if and only if it is closed. Since A is already
closed,A is compact if and only if it is totally bounded. Therefore, what we need to prove becomes:

A is totally bounded if and only if A is totally bounded.

(⇒) Suppose A is totally bounded. For any ε > 0, there exists a1, · · · , an ∈ A such that A ⊂
n⋃
i=1

B
(
ai,

ε
2

)
. For any x ∈ A \ A, the ball B

(
x, ε2

)
must contain some ax ∈ A. Suppose ax ∈

B
(
ak,

ε
2

)
for some k, then d(x, ak) ⩽ d(x, ax) + d(ax, ak) <

ε
2 + ε

2 = ε. Hence A ⊂
n⋃
i=1

B(ai, ε),

which means A is totally bounded.

(⇐) This is part (1).

Problem 42 (Isometric embedding on a compact metric space is a homeomorphism)

Let (X, d) be a compact metric space, and f : X → X be an isometric embedding. Prove: f is a homeo-
morphism. Can we remove compactness assumption on X?

Proof (Injectivity) If f(x) = f(y), then d(x, y) = d(f(x), f(y)) = 0 and x = y.

(Continuity) Since f is an isometric embedding, f−1(B(f(x), ε)) = B(x, ε) for any x ∈ X and ε > 0.

(Surjectivity) Suppose there exists x ∈ X \ f(X). Since f is continuous, f(X) is compact, hence closed.
By Problem 7 (2), d := df(X)(x) > 0. Now consider the recursively defined sequence

xn =

x, n = 0,

f(xn−1), n ⩾ 1.
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Then d(x0, xn) ⩾ d for all n ⩾ 1. This implies that d(xk, xk+n) ⩾ d for all k ⩾ 0 and n ⩾ 1.
Therefore d(xn, xm) ⩾ d for all n 6= m, which violates the (sequential) compactness of X . Hence
f(X) = X , i.e., f is surjective.

Now f is a continuous bijection from a compact space to a Hausdorff space, hence a homeomor-
phism. However, we cannot remove the compactness assumption on X , a counterexample is given by
the right shift map on [0,+∞):

f : [0,+∞) → [0,+∞), x 7→ x+ 1.

It is obviously an isometric embedding, but not surjective, hence not a homeomorphism.

Problem 43 (Completion of metric spaces) Let X be a set, and (Y, dY ) be a metric space. Consider
the space of bounded maps,

B(X,Y ) = {f : X → Y : f(X) is bounded inY }.

(1) Prove: the supremum metric d∞(f, g) := sup
x∈X

dY (f(x), g(x)) is a metric on B(X,Y ).

(2) Prove: if Y is complete, so is (B(X,Y ), d∞).

â In what follows, suppose (X, dX) is a metric space, and take Y = R.

(3) Fix a point x0 ∈ X . For any a ∈ X , define a function fa : X → R via fa(x) := dX(x, a)− dX(x, x0).
Prove: fa ∈ B(X,R).

(4) Prove: the map
Φ : (X, d) → (B(X,R), d∞), a 7→ fa

is an isometric embedding, i.e., dX(a, b) = d∞(fa, fb) for any a, b ∈ X .

(5) Prove: any metric space (X, dX) admits a completion.

(6) Prove: if (Y1, d1) and (Y2, d2) are two completions of (X, dX), then (Y1, d1) and (Y2, d2) are isomet-
ric.

Proof (1) Clearly d∞(f, g) ⩾ 0 and d∞(f, g) = 0 if and only if f = g. For any f, g ∈ B(X,Y ),

d∞(f, g) = sup
x∈X

dY (f(x), g(x)) = sup
x∈X

dY (g(x), f(x)) = d∞(g, f).

Finally, for any f, g, h ∈ B(X,Y ), we have

d∞(f, h) = sup
x∈X

dY (f(x), h(x))

⩽ sup
x∈X

(dY (f(x), g(x)) + dY (g(x), h(x)))

⩽ sup
x∈X

dY (f(x), g(x)) + sup
x∈X

dY (g(x), h(x))

= d∞(f, g) + d∞(g, h).

(2) Suppose {fn} is a Cauchy sequence in (B(X,Y ), d∞). For any x ∈ X , |fn(x)−fm(x)| ⩽ d∞(fn, fm),
hence {fn(x)} is a Cauchy sequence in Y . Since Y is complete, {fn(x)} converges to some yx ∈ Y .
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Now define f : X → Y via f(x) := yx. By construction, f(X) is bounded in Y , hence f ∈ B(X,Y ).
Moreover, for any ε > 0, there exists N ∈ N such that d∞(fn, fm) < ε

2 for all n,m ⩾ N . Letting
m → ∞, we have d∞(fn, f) ⩽ ε

2 < ε for all n ⩾ N . Therefore {fn} converges to f , and thus
(B(X,Y ), d∞) is complete.

(3) |fa(x)| = |dX(x, a)− dX(x, x0)| ⩽ dX(a, x0) <∞ for all x ∈ X .

(4) The triangle inequality gives

sup
x∈X

|dX(x, a)− dX(x, b)| ⩽ dX(a, b),

and equality holds when x = a or x = b. Therefore

d∞(fa, fb) = sup
x∈X

|[dX(x, a)− dX(x, x0)]− [dX(x, b)− dX(x, x0)]|

= sup
x∈X

|dX(x, a)− dX(x, b)|

= dX(a, b).

(5) There are two ways to construct the completion of (X, dX).

(Method 1) By (2), (4) and Proposition 2.3.7,
(
Φ(X), d∞

)
is a completion of (X, dX).

(Method 2) Let C(X) denote the set of all Cauchy sequences in X and define the equivalence
relation ∼ on C(X) by

(xn) ∼ (yn) ⇐⇒ lim
n→∞

dX(xn, yn) = 0.

Denote the equivalence class of (xn) ∈ C(X) by [xn] and let X̂ = C(X)/ ∼ be the set of all
equivalence classes. Define a metric d̂ : X̂ → R⩾0 by

d̂([xn], [yn]) = lim
n→∞

dX(xn, yn).

For x ∈ X , let x̂ = (x, x, x, · · · ) be the constant sequence with value x and let φ : X →
X̂, x 7→ [x̂]. If φ(x) = φ(y), then by definition lim

n→∞
d(x, y) = 0, which implies x = y. Hence

φ is injective, so we can identify X with its isomorphic copy φ(X) ⊂ X̂ . Moreover, this also
shows that d̂([x̂], [ŷ]) = dX(x, y). To show that φ(X) = X̂ , let [xn] ∈ X̂ and ε > 0 be arbitrary.
Since (xn) is Cauchy, there exists N ∈ N such that

dX(xn, xm) <
ε

2
, ∀n,m ⩾ N.

Then we have
d̂([x̂N ], [xn]) = lim

n→∞
dX(xN , xn) ⩽

ε

2
< ε.

Therefore φ(X) = X̂ . Finally we demonstrate that
(
X̂, d̂

)
is complete. By the completeness

criterion, it suffices to show that every Cauchy sequence in φ(X) converges in X̂ . Let ([ŵn]) be
a Cauchy sequence in φ(X), so each ŵn has the form (wn, wn, wn, · · · ). Since φ is an isometry,

d̂(ŵn, ŵm) = dX(wn, wm), ∀n,m ∈ N.
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Therefore, the sequence (wn) is Cauchy in X . Let w = [(wn)] ∈ X̂ . Then for any ε > 0, since
there existsM ∈ N such that

d(wn, wm) <
ε

2
, ∀n,m > M.

Thus for all n > M , we have

d̂([ŵn],w) = lim
m→∞

dX(wn, wm) ⩽ ε

2
< ε.

Therefore [ŵn] → w ∈ X̂ as n→ ∞, and X̂ is complete. So
(
X̂, d̂

)
is a completion of (X, dX).

(6) Let φ1 : X → Y1 and φ2 : X → Y2 be the corresponding isometries. Then ψ := φ2 ◦ φ−1
1 gives an

isometry from φ1(X) to φ2(X). Since φ1(X) and φ2(X) are dense in Y1 and Y2 respectively, we can
extend ψ continuously to a map ψ : Y1 → Y2. To be specific, for any y ∈ Y1, we can find a Cauchy
sequence (yn) in Y1 with limit y. Then we define

ψ(y) := lim
n→∞

ψ(yn),

which converges as Y2 is complete. Next we show that ψ is surjective. For any w ∈ Y2, let (wn) be a
Cauchy sequence in φ2(X) with limit w. Let yn be the preimage of wn under ψ. Then y := lim

n→∞
yn

is well-defined since Y1 is complete and satisfies

ψ(y) = lim
n→∞

ψ(yn) = lim
n→∞

wn = w.

Therefore ψ is surjective. To show that ψ is injective, suppose that

lim
n→∞

ψ(yn) = lim
n→∞

ψ(y′n)

and
lim
n→∞

yn = y, lim
n→∞

y′n = y′.

For any ε > 0, pickM ∈ N such that ψ(yn) and ψ(y′n) lie in B
(
ψ(y), ε3

)
for all n ⩾M . Then we have

d1(yn, y
′
n) = d2(ψ(yn), ψ(y

′
n)) ⩽ 2 · ε

3
< ε.

This implies y = y′, so ψ is injective. Since the distance function of a metric space is continuous, it
follows that ψ is an isometry on all of Y1, and Y1 and Y2 are isometric.

Problem 44 (Lebesgue property) We say a metric space (X, d) has the Lebesgue property if any open
covering of X has a positive Lebesgue number.

(1) Suppose (X, dX) has the Lebesgue property. Prove:

¬ (X, dX) is complete.

 For any metric space (Y, dY ), any continuous map f : X → Y is uniformly continuous.

® If A,B are non-empty disjoint closed subsets in (X, dX), then dist(A,B) := inf{dX(x, y) : x ∈
A, y ∈ B} > 0.
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(2) Prove: if for any metric space (Y, dY ), any continuous map f : X → Y is uniformly continuous,
then (X, dX) has the Lebesgue property.

Proof (1) ¬ If (X, dX) is not complete, then there exists a Cauchy sequence {xn} that does not
converge in X . By Problem 43 (5), (X, dX) admits a completion

(
X̂, d̂

)
. Let x ∈ X̂ be the

limit of {xn} in X̂ . Let V0 = X̂ \ BX̂
(
x, 12

)
, and for k ⩾ 1 let Vk = BX̂

(
x, 1

2k−1

)
\ BX̂

(
x, 1

2k+1

)
.

Then {Uk : k ⩾ 0} where Uk := Vk ∩X is an open cover ofX . However, for any δ > 0, the set
BX̂(x, δ) ∩X cannot be contained in any Uk, which contradicts the Lebesgue property.

 Suppose f : (X, dX) → (Y, dY ) is continuous, and let ε > 0 be arbitrary. For each x ∈ X

choose an open neighborhoodUx of xwith f(Ux) ⊂ BY
(
f(x), ε2

)
. Let δ be a Lebesgue number

for the open cover {Ux : x ∈ X}. Then dX(x1, x2) < δ implies dY (f(x1), f(x2)) < ε
2 + ε

2 = ε.

® Since A,B are non-empty disjoint closed subsets, by Problem 7 (2), dA(b) > 0 and dB(a) > 0

for all a ∈ A and b ∈ B. Thus for every a ∈ A, we can find an open ball B(a, εa) that does
not intersect B. Similarly, for every b ∈ B, we can find an open ball B(b, εb) that does not
intersect A. Now {B(a, εa) : a ∈ A} ∪ {B(b, εb) : b ∈ B} is an open cover of A ∪ B. By the
Lebesgue property, there exists δ > 0 such that any subset whose diameter is less than δ is
contained in some B(a, εa) or B(b, εb). If dist(A,B) = 0, then there exists a0 ∈ A and b0 ∈ B

such that dX(a0, b0) < δ. So a0 and b0 must lie in the same open ball, which contradicts our
construction.

(2) Suppose suchmetric space (X, dX) does not have the Lebesgue property. Then there exists an open
cover {Uα : α ∈ Λ} such that for all δ > 0, there exists a subsetAδ whose diameter is less than δ but
is not contained in any Uα. Now for any n ∈ N, choose xn, yn ∈ A 1

n
with xn 6= yn. We shall show

that no subsequence of {xn} converges in X . If there is a subsequence {xnk
} converging to some

x ∈ X , then x ∈ Uα for some α. Then there exists ε > 0 such that B(x, ε) ⊂ Uα. Since xnk
→ x, if

we choose nk large enough so that 1
nk

< ε
2 and d(xnk

, x) < ε
2 , then for any a ∈ Ank

, one has

d(a, x) ⩽ d(a, xnk
) + d(xnk

, x) <
1

nk
+
ε

2
< ε.

Hence Ank
⊂ B(x, ε) ⊂ Uα, a contradiction. Therefore {xn} has no convergent subsequence, and

similarly {yn} has no convergent subsequence. Therefore the set

E := {x1, y1, x2, y2, · · · }

has no limit point, which implies that it is discrete. So any function defined on E is continuous.
By passing to a subsequence, we may assume that xn 6= ym for all n,m ∈ N. Now we can define a
function f : E → {0, 1} by taking f(xn) = 0 and f(ym) = 1 for all n,m ∈ N. Since E = E ∪E′ = E

is closed, by the Tietze extension theorem, f can be extended to a continuous function F onX . By
assumption, F : X → R is uniformly continuous. However, |F (xn)− F (yn)| ≡ 1 as d(xn, yn) → 0,
a contradiction. Therefore (X, dX) has the Lebesgue property.
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PSet 6, Part 2

Problem 45 (Uniform metric)

(1) Prove Proposition 2.4.3:

Suppose Y is a complete metric space. Then

du(f, g) := sup
x∈X

dY (f(x), g(x))

1 + dY (f(x), g(x))

is a complete metric on M(X,Y ).

(2) Here is another proof of Proposition 2.4.4 / Problem 8 (3) for the special case Y = R:

Suppose fn ∈ C(X,R) and fn → f in (M(X,R), du). To prove f is continuous, it is
enough to prove that for any a ∈ R, f−1((−∞, a)) and f−1((a,+∞)) are open. Let’s
prove the first one is open. Let’s fix an x with f(x) < a. Take ε = a − f(x). Then there
exists N such that du(fn, f) < ε

3 for n ⩾ N . Since fN is continuous, there exists an open
neighborhood U of x such that |fN (y)− fN (x)| < ε

3 for all y ∈ U . It follows that for all
y ∈ U , |f(x)− f(y)| < ε. So U ⊂ f−1((−∞, a)).

It seems that this is not a good proof since it only works for Y = R and can’t be easily adjusted to
prove the general case (i.e., general Y ). However, what exists is reasonable. Find out the advantage
of this proof.

Proof (1) In Problem 8 (2) ¬ we have proved that du is a metric on M(X,Y ). To show that du is
complete, let {fn} be a Cauchy sequence in M(X,Y ). Then for any ε ∈ (0, 1), there exists N ∈ N
such that du(fn, fm) < ε for all n,m > N . In particular, for any x ∈ X ,

dY (fn(x), fm(x))

1 + dY (fn(x), fm(x))
<

ε

1 + ε

for all n,m > N . This implies that

dY (fn(x), fm(x)) < ε (45–1)

for all n,m > N , so {fn(x)} is a Cauchy sequence in Y . Since Y is complete, there exists yx ∈ Y

such that fn(x) → yx as n → ∞. Define f(x) = yx, then f ∈ M(X,Y ). Letting m → ∞ in (45–1)
we get dY (fn(x), f(x)) ⩽ ε for all x ∈ X and n > N , i.e., du(fn, f) ⩽ ε for all n > N . Thus fn → f

in M(X,Y ).

(2) This proof exploits the simplicity of the basic open sets in R and the order structure of R.

Problem 46 (More on LCH)

(1) (Strucure of non-compact LCH)

¬ Let K be a compact Hausdorff space, p ∈ K and X = K \ {p} is non-compact. Prove: X is
LCH.
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 Conversely, suppose X is an non-compact LCH. Let X∗ = X t {∞} be the one-point com-
pactification of X (see Problem 36). Prove: X∗ is compact and Hausdorff.

(2) (The evaluation map could fail to be continuous without local compactness) Consider the eval-
uation map

e : Q× C(Q, [0, 1]) → [0, 1], (x, f) 7→ e(x, f) = f(x).

¬ Prove: Q is not locally compact.

 Prove: for any q1 ∈ Q and any closed subsetA ⊂ Qwith q1 /∈ A, there is a continuous function
f1 ∈ C(Q, [0, 1]) such that f1(q1) = 1, f1(A) = {0}.

® Now let f0 ∈ C(Q, [0, 1]) be the zero map f0(Q) = {0}, and take any q0 ∈ Q. Prove: e is not
continuous at (q0, f0) (where we endow C(Q, [0, 1])with the compact convergence topology).

Proof (1) ¬ Since (T2) property is hereditary, X is Hausdorff.

(Proof 1) Since K is Hausdorff, {p} is closed, and then X = K \ {p} is open. It suffices to
show that every open subspace X of a compact Hausdorff space K is LCH. To show that X
is locally compact, let x ∈ X and let Ux ⊂ X be an open neighborhood of x. Since X is
assumed to be open, Ux is also open inK. NowK is compact Hausdorff, {x} is a compact
subset ofK, and Ux is an open subset ofK containing {x}. It follows that there exists an
open subset Vx ⊂ K such that

{x} ⊂ Vx ⊂ Vx ⊂ Ux ⊂ X.

SinceK is Hausdorff, Vx is a compact neighborhood of x in X . Thus X is LCH.
(Proof 2) Given x ∈ X , we show X is locally compact at x. Choose disjoint open sets U and

V of K containing x and p, respectively. Then the set C = K \ V is closed in K, so it
is a compact subspace of K. Since C lies in X , it is also compact as a subspace of X .
Moreover, C contains the neighborhood U of x, as desired.

 (X∗ is compact) Let A be an open cover ofX∗. The collection A must contain an open set of
the form X∗ \ C, where C is a compact subset of X . This is because otherwise the point
∞ would not be covered. Take all the members of A different from X∗ \ C and intersect
them with X ; they form a collection of open sets of X covering C. Since C is compact,
finitely many of them cover C; the corresponding finite collection of elements of A will,
along with the element X∗ \ C, cover all of X∗.

(X∗ is Hausdorff) Let x and y be two points ofX∗. If both of them lie inX , there are disjoint
open sets U and V open inX containing them, respectively. On the other hand, if x ∈ X

and y = ∞, we can choose a compact set C in X containing an open neighborhood U

of x since X is LCH. Then U and X∗ \ C are disjoint open neighborhoods of x and ∞,
respectively, in X∗.

(2) ¬ Let U be an arbitrary neighborhood in Q. Then U contains some open interval (a, b) ∩ Q for
some a, b ∈ R. Because of the existence of irrational numbers, the set (a, b) ∩ Q can be parti-
tioned into infinitely many disjoint open intervals inQ, which serves as an infinite cover with
no finite subcover. Thus U cannot be compact. Therefore no neighborhood in Q is compact,
which implies Q is not locally compact.

 This follows from the Urysohn’s lemma for metric spaces (see Problem 7 (3)).
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® Wehave shown in¬ that no neighborhood inQ is compact. Hence for any open neighborhood
U of q0 and any compact set K in Q, there exists q1 ∈ U \ K. By  there is a continuous
function f1 ∈ C(Q, [0, 1]) such that f1(q1) = 1 and f1(K) = {0}. Then f1 ∈ B(f0;K, ε) for
every ε > 0. This shows that any neighborhood of (q0, f0) contains some point (q1, f1) such
that e(q1, f1) = 1, so e is not continuous at (q0, f0).

Problem 47 (More on compact-open topology)

(1) Prove Proposition 2.4.21, i.e., if (Y, d) is a metric space, then Tc.c. = Tc.o. on C(X,Y ).

(2) Let (X,Tdiscrete) be discrete. What is Tc.o. on M(X,Y )?

(3) Let Y be Hausdorff. Prove: (C(X,Y ),Tc.o.) is Hausdorff.

(4) Prove: if X is locally compact and Hausdorff, then on C(X,Y ),

S({x}, U) =
⋃

compact neighborhoodK of x
S(K,U).

Proof (1) Tc.o. ⊂ Tc.c. Let S(K,V ) = {f ∈ C(X,Y ) : f(K) ⊂ V } be arbitrary, where K is compact
inX and V is open in Y . It suffices to show that S(K,V ) ∈ Tc.c.. For any f ∈ S(K,V ), we have
f(K) ⊂ V . Since f is continuous, f(K) is compact and then closed in Y . Since the closed set
V c and the compact set f(K) are disjoint, the distance df := dist(f(K), V c) is positive. This
implies that B(f ;K, df ) ⊂ S(K,V ). Thus

S(K,V ) =
⋃

f∈S(K,V )

B(f ;K, df ) ∈ Tc.c..

Tc.c. ⊂ Tc.o. Let B(f ;K, ε) be arbitrary, where f ∈ C(X,Y ), K is compact in X , and ε > 0. It
suffices to find a basis element for Tc.o. that contains f and lies in B(f ;K, ε). Each point ofX
has a neighborhood Vx such that f

(
Vx
)
lies in an open set Ux of Y having diameter less than

ε. (For example, choose Vx so that f(Vx) lies in the ε
4 -neighborhood of f(x). Then f

(
Vx
)
lies

in the ε
3 -neighborhood of f(x), which has diameter at most 2ε

3 .) Since K is compact, we can
cover K by finitely many such sets Vx, say for x = x1, · · · , xn. Let Kxi

= Vxi
∩K. Then each

Kxi
is closed in the compact setK, so it is compact. Now the basis element

S(Kx1 , Ux1) ∩ · · · ∩ S(Kxn , Uxn) ∈ Tc.o.

contains f and lies in B(f ;K, ε), as desired.

(2) IfX is a discrete space, then the compact subsets ofX are the finite subsets. Therefore the compact-
open topology on M(X,Y ) is the product topology, i.e., the pointwise convergence topology.

(3) For any f 6= g in C(X,Y ), there exists x0 ∈ X such that f(x0) 6= g(x0). Since Y is Hausdorff, there
exist disjoint open neighborhoods U and V of f(x0) and g(x0), respectively. Now f ∈ S({x0}, U)

and g ∈ S({x0}, V ). Also, S({x0}, U) and S({x0}, V ) are disjoint open sets in (C(X,Y ),Tc.o.).
Therefore (C(X,Y ),Tc.o.) is Hausdorff.
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(4) LHS ⊂ RHS For any f ∈ S({x}, U), since f is continuous, f−1(U) is open inX and contains the
compact set {x}. SicneX is LCH, there exists an open set V ⊂ X such that V is compact and

{x} ⊂ V ⊂ V ⊂ f−1(U).

This shows that V is a compact neighborhood of x and f ∈ S
(
V ,U

)
⊂ RHS.

RHS ⊂ LHS This is trivial.

Problem 48 (Compactly generated spaces)

(1) Read the materials on compactly generated spaces (page 103), and prove: any locally compact
space is compactly generated.

(2) Prove: any first countable space is compactly generated.

(3) Find a compactly generated space that is not locally compact.

Proof (1) Suppose that X is locally compact. Let A ∩ K be open in K for every compact subset K
of X . We show A is open in X . Given x ∈ A, choose an open neighborhood U of x that lies in a
compact subsetK of X . Since A ∩K is open inK by hypothesis, A ∩ U = (A ∩K) ∩ U is open in
U , and hence open inX . Then A∩U is an open neighborhood of x contained in A, so A is open in
X . Therefore X is compactly generated.

(2) Suppose thatX is first countable. IfA∩K is closed inK for every compact subsetK ofX , we show
that A is closed in X . For any x ∈ A, we show that x ∈ A. Since X has a countable neighborhood
basis at x, there is a sequence {xn}∞n=1 of points of A converging to x. The subspace

K = {x} ∪ {xn : n ∈ N}

is compact, so that A ∩ K is by assumption closed in K. Since A ∩ K contains xn for every n, it
contains x as well. Therefore, x ∈ A, as desired. Hence A = A is closed in X , and X is compactly
generated.

(3) Similar to Problem 46 (2) ¬, the space Q ∩ [0, 1] is not locally compact. However, Q ∩ [0, 1] is first
countable, so it is compactly generated by part (2).

PSet 7, Part 1

Problem 49 (Uniformly equicontinuous) Let (X, dX) and (Y, dY ) bemetric spaces. A familyF ∈ C(X,Y )

is called uniformly equicontinuous if for any ε > 0, there exists δ > 0 (which depends only on ε) such that
dY (f(x1), f(x2)) < ε holds for any f ∈ F and any pair of points x1, x2 ∈ X satisfying dX(x1, x2) < δ.

(1) Prove: ifF is a finite set consisting of uniformly continuous functions, thenF is uniformly equicon-
tinuous.

(2) Show that if F is a family of Lipschitz continuous functions with a common Lipschitz constant,
then F is uniformly equicontinuous.

(3) Show that if X is compact, then F is uniformly equicontinuous if and only if it is equicontinuous.
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Proof (1) Suppose F = {f1, · · · , fn}. Since each fi is uniformly continuous, for each ε > 0, there
exists δi > 0 such that dX(x1, x2) < δi implies dY (fi(x1), fi(x2)) < ε. Let δ = min{δ1, · · · , δn}.
Then dX(x1, x2) < δ implies dY (fi(x1), fi(x2)) < ε for all i = 1, · · · , n.

(2) Suppose dY (f(x1), f(x2)) ⩽ L · dX(x1, x2) for all f ∈ F and x1, x2 ∈ X . Given ε > 0, let δ = ε
L ,

then dX(x1, x2) < δ implies dY (f(x1), f(x2)) < ε for all f ∈ F .

(3) The “only if” part is trivial. For the “if” part, suppose F is equicontinuous. Given ε > 0, for any
x0 ∈ X , there exists δx0

> 0 such that dX(x, x0) < δx0
implies dY (f(x), f(x0)) < ε

2 for all f ∈ F .
Since X is a compact metric space, the open cover {B(x0, δx0) : x0 ∈ X} has a Lebesgue number
δ > 0. Then dX(x1, x2) < δ implies x1, x2 ∈ B(x0, δx0) for some x0 ∈ X , and hence

dY (f(x1), f(x2)) ⩽ dY (f(x1), f(x0)) + dY (f(x2), f(x0)) <
ε

2
+
ε

2
= ε

for all f ∈ F .

Problem 50 (Applications of Arzelà–Ascoli)

(1) Suppose k = k(x, y) ∈ C([0, 1]× [0, 1],R). For any f ∈ C([0, 1],R), define

Kf(x) =

∫ 1

0

k(x, y)f(y)dy.

Prove: K is a compact operator, i.e., it maps any bounded set in (C([0, 1],R), d∞) into a compact
subset in the same space.

(2) We want to minimize the functional Φ[f ] :=
∫ 1

−1

f(t)dt. Consider the set

F = {f ∈ C([−1, 1], [0, 1]) : f(−1) = f(1) = 1}.

¬ What is inf
f∈F

Φ[f ]? Is the infimum attained?

 For any constant C > 0, let

FC = {f ∈ F : |f(x)− f(y)| ⩽ C|x− y|}.

Prove: the infimum inf
f∈FC

Φ[f ] is attained. Can you find the function?

Proof (1) Suppose F ⊂ (C([0, 1],R), d∞) and sup
x∈[0,1]

|f(x)| < M for all f ∈ F . Since k(x, y) ∈

C([0, 1]× [0, 1],R), it is uniformly continuous. Then for any ε > 0, there exists δ > 0 such that
|k(x, y)−k(x0, y)| < ε

M for all x, x0, y ∈ [0, 1] satisfying |x−x0| < δ. So when |x−x0| < δ, we have

|Kf(x)−Kf(x0)| =
∣∣∣∣∫ 1

0

[k(x, y)− k(x0, y)]f(y)dy
∣∣∣∣

⩽
∫ 1

0

|k(x, y)− k(x0, y)| · |f(y)|dy

<
ε

M
·M = ε.
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This shows that G := {Kf : f ∈ F} ⊂ C([0, 1],R) is equicontinuous. For any a ∈ [0, 1], the set

Ga := {g(a) : g ∈ G} = {Kf(a) : f ∈ F}

is bounded by M max
(x,y)∈[0,1]2

|k(x, y)|, so G is pointwise bounded and then pointwise precompact.

By Theorem 2.5.8 (1), G is compact in (C([0, 1],R),Tc.c.). Since [0, 1] is compact, (C([0, 1],R),Tc.c.) =

(C([0, 1],R), d∞). Therefore,K maps F into a compact subset in (C([0, 1],R), d∞).

(2) ¬ Define

fn(x) =


−nx− n+ 1, x ∈

[
−1,−1 + 1

n

]
,

0, x ∈
(
−1 + 1

n , 1−
1
n

)
,

nx− n+ 1, x ∈
[
1− 1

n , 1
]
.

Then fn ∈ F and Φ[fn] =
1
n → 0 as n → ∞. So inf

f∈F
Φ[f ] = 0. However, the infimum is not

attained since Φ[f ] = 0 would imply f ≡ 0 on [−1, 1].
 For any ε > 0, let δ = ε

C . Then |x − y| < δ implies |f(x) − f(y)| ⩽ C|x − y| < ε. Therefore,
FC is equicontinuous. Since (FC)a ⊂ [0, 1] for all a ∈ [0, 1], FC is pointwise precompact. By
Arzelà–Ascoli theorem (compact space version), the infimum inf

f∈FC

Φ[f ] is attained.

� If C ⩽ 1, then the function

f(x) =

−Cx+ 1− C, x ∈ [−1, 0],

Cx+ 1− C, x ∈ (0, 1]

attains the infimum.
� If C > 1, then the function

f(x) =


−Cx+ 1− C, x ∈

[
−1, 1−CC

]
,

0, x ∈
(
1−C
C , C−1

C

]
,

Cx+ 1− C, x ∈
(
C−1
C , 1

]
attains the infimum.

Problem 51 (Arzelà–Ascoli for locally compact + σ-compact spaces) Prove Theorem 2.5.12:

Let X be locally compact and σ-compact, and (Y, d) be a metric space. Let F ⊂ C(X,Y ) be a subset
which is equicontinuous and pointwise precompact. Then any sequence in F has a subsequence that
converges uniformly on compact sets of X to a limit function f ∈ C(X,Y ).

Proof Let us first construct a sequence of compact sets {Ki}∞i=1 such thatX =

∞⋃
i=1

Ki andKi ⊂ IntKi+1.

SinceX is σ-compact, we can writeX =

∞⋃
i=1

Ci, with eachCi compact. TakeK1 = C1. Now givenKi, we

defineKi+1. SinceX is locally compact, for each point x ∈ Ki, there is an open set Ux and a compact set
Vx such that x ∈ Ux ⊂ Vx. Then {Ux : x ∈ Ki} is an open cover of Ki. Since Ki is compact, there exists

x1, · · · , xn ∈ Ki such that Ki ⊂
n⋃
j=1

Uxj =: U . Let Ki+1 = Ci+1 ∪
n⋃
j=i

Vxj , then Ki+1 is a finite union of

compact sets, so it is compact. Since U is open and U ⊂ Ki+1, we getKi ⊂ U ⊂ IntKi+1, as desired.
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Since F is equicontinuous and pointwise precompact, so is its restriction to each Ki. Then we
can pick a sequence

{
f (1)n

}∞

n=1
in F which converges uniformly on K1. Next, we pick a subsequence{

f (2)n

}∞

n=1
of
{
f (1)n

}∞

n=1
which converges uniformly on K2. We continue this process to get a sequence

of subsequences, and then apply Cantor’s trick: define a sequence by fn = f (n)n . Then the sequence
{fn}∞n=1 converges uniformly on allKi.

Finally, for any compact set K ⊂ X , we claim that K ⊂ Ki for some i. If not, then K \Ki 6= ∅ for
all i. Take xi ∈ K \Ki such that all xi are distinct. Then the sequence {xi}∞i=1 lies in the compact setK,
so it has a limit point x0 ∈ K. Suppose x0 ∈ Kn, then the neighborhood IntKn+1 of x0 must contain
infinitely many xi, which is a contradiction. Therefore any compact setK ⊂ X is contained in someKi,
and the sequence {fn}∞n=1 converges uniformly onK to a limit function f ∈ C(X,Y ).

Problem 52 (σ compactness) A topolotical space is called σ-compact if it can be written as the union
of countably many compact subsets.

(1) Is the Sorgenfrey line σ-compact?

(2) Show that the product of two σ-compact spaces is σ-compact.

(3) What about the product of countably many σ-compact spaces?

(4) Prove: if X is σ-compact and locally compact Hausdorff, then X has the following exhaustion
property: there exist open sets {Un} such that

� Each Un is compact.

� Un ⊂ Un+1 for each n.

� X =
⋃
n

Un.

Proof (1) The Sorgenfrey line is not σ-compact. We shall prove that any compact subset of the Sor-
genfrey line is at most countable. As a consequence, countable union of compact sets is at most
countable, which cannot cover R. To see this, consider a non-empty compact subset K of the Sor-
genfrey line. Fix an x ∈ K, consider the following open cover ofK:

{[x,+∞)} ∪
{(

−∞, x− 1
n

)
: n ∈ N

}
.

Since K is compact, this cover has a finite subcover, and hence there exists rx ∈ R such that the
interval (rx, x] contains no point of K apart from x. This is true for all x ∈ K. Now choose a
rational number qx ∈ (rx, x] ∩ Q. Since the intervals (rx, x], parametrized by x ∈ K, are pairwise
disjoint, the function q : K → Q is injective. ThereforeK is at most countable.

(2) Suppose X =

∞⋃
i=1

Ki and Y =

∞⋃
j=1

Lj , where allKi and Lj are compact. Then

X × Y =

∞⋃
i,j=1

(Ki × Lj).

EachKi × Lj is compact sinceKi and Lj are compact. Therefore X × Y is σ-compact.
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(3) The product of countably many σ-compact spaces may fail to be σ-compact. For example,
∞∏
k=1

R is

not σ-compact. To see this, suppose to the contrary that
∞∏
k=1

R =

∞⋃
i=1

Ci, where all Ci are compact.

Take Kn =

n⋃
i=1

Ci, then {Kn}∞n=1 is a sequence of increasing compact sets whose union is
∞∏
k=1

R.

Since each projection map πk is continuous, πk(Kn) ⊂ R is compact for all k. So there exists
Mn,k ∈ R>0 such that πk(Kn) ⊂ [−Mn,k,Mn,k]. Then

Kn ⊂
∞∏
k=1

[−Mn,k,Mn,k].

Since {Kn}∞n=1 is increasing, we can assume that {Mn,k}∞n=1 is increasing for each fixed k. Now

consider the element x = (M1,1 + 1,M2,2 + 1, · · · ) ∈
∞∏
k=1

R. Then x /∈ Kn for all n, which is a

contradiction. Therefore
∞∏
k=1

R is not σ-compact.

(4) In the first paragraph of the proof of Problem 51, we have constructed a sequence of compact sets

{Ki}∞i=1 such that X =

∞⋃
i=1

Ki and Ki ⊂ IntKi+1. Since X is LCH, by Proposition 2.4.16, for each

i, there exists an open set Ui such that Ui is compact and

Ki ⊂ Ui ⊂ Ui ⊂ IntKi+1.

Now the open sets {Ui} satisfy all the required properties.

PSet 7, Part 2

Problem 53 (Topological algebra) Let X be a topological space. Endow C(X,R) with the compact
convergence topology.

(1) Prove: the addition, multiplication and the scalar multiplication

a : C(X,R)× C(X,R) → C(X,R), (f, g) 7→ a(f, g) = f + g,

m : C(X,R)× C(X,R) → C(X,R), (f, g) 7→ m(f, g) = fg,

s : R× C(X,R) → C(X,R), (λ, g) 7→ s(λ, g) = λg

are continuous. As a consequence, C(X,R) is a topological algebra.

(2) Prove Proposition 2.6.4:

Let A be a topological algebra, and A1 ⊂ A a subalgebra. Then the closure A1 is a (closed)
subalgebra of A.

Proof (1) ¬ For any (f, g) ∈ C(X,R) × C(X,R), consider the basis element for Tc.c. of the form
B(f + g;K, ε), where K ⊂ X is compact and ε > 0. Then B

(
f ;K, ε2

)
× B

(
g;K, ε2

)
⊂

a−1(B(f + g;K, ε)) is an open neighborhood of (f, g). Therefore, a is continuous.
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 For any (f, g) ∈ C(X,R)×C(X,R), consider the basis element for Tc.c. of the formB(fg;K, ε),
whereK ⊂ X is compact and ε > 0. Let F := sup

x∈K
|f(x)| and G := sup

x∈K
|g(x)|.

� If F 6= 0, then for any
(
f̃ , g̃
)
∈ B

(
f ;K, ε

ε
F +2G

)
×B

(
g;K, ε

2F

)
, we have

∣∣∣f(x)g(x)− f̃(x)g̃(x)
∣∣∣ ⩽ |f(x)| · |g(x)− g̃(x)|+ |g̃(x)| ·

∣∣∣f(x)− f̃(x)
∣∣∣

⩽ |f(x)| · |g(x)− g̃(x)|+ (|g̃(x)− g(x)|+ |g(x)|) ·
∣∣∣f(x)− f̃(x)

∣∣∣
< F · ε

2F
+
( ε

2F
+G

) ε
ε
F + 2G

= ε

for all x ∈ K. Therefore (f, g) ∈ B
(
f ;K, ε

ε
F +2G

)
×B

(
g;K, ε

2F

)
⊂ m−1(B(fg;K, ε)).

� If F = 0, then f(x) = 0 for all x ∈ K. For any
(
f̃ , g̃
)
∈ B

(
f ;K, ε

2G

)
×B(g;K,G), we have

∣∣∣f̃(x)g̃(x)∣∣∣ ⩽ ∣∣∣f̃(x)∣∣∣ · (|g̃(x)− g(x)|+ |g(x)|) < ε

2G
· 2G = ε.

Therefore (f, g) ∈ B
(
f ;K, ε

2G

)
×B(g;K,G) ⊂ m−1(B(fg;K, ε)).

Therefore,m is continuous.

® For any (λ, g) ∈ R×C(X,R), consider the basis element forTc.c. of the formB(λg;K, ε), where
K ⊂ X is compact and ε > 0. LetM := sup

x∈K
|g(x)|.

� IfM > 0, then for any (µ, h) ∈ B
(
λ, ε

2M

)
×B

(
g;K, ε

ε
M +2|λ|

)
, we have

|µh(x)− λg(x)| = |[µh(x)− µg(x)] + |[µg(x)− λg(x)]|

⩽ |µ| · |h(x)− g(x)|+ |µ− λ| · |g(x)|

⩽ (|µ− λ|+ |λ|) · |h(x)− g(x)|+ |µ− λ| · |g(x)|

<
( ε

2M
+ |λ|

) ε
ε
M + 2|λ|

+
ε

2M
·M

= ε.

for all x ∈ K. Therefore (λ, g) ∈ B
(
λ, ε

2M

)
×B

(
g;K, ε

ε
M +2|λ|

)
⊂ s−1(B(λg;K, ε)).

� IfM = 0 and λ 6= 0, then g(x) = 0 for all x ∈ K. For any (µ, h) ∈ B(λ, |λ|)×B
(
g;K, ε

2|λ|

)
,

|µh(x)− λg(x)| ⩽ (|µ− λ|+ |λ|) · |h(x)| < 2|λ| · ε

2|λ|
= ε

for all x ∈ K. Therefore (λ, g) ∈ B(λ, |λ|)×B
(
g;K, ε

2|λ|

)
⊂ s−1(B(λg;K, ε)).

� IfM = 0 and λ = 0, then (λ, g) ∈ B(0, 1)×B(g;K, ε) ⊂ s−1(B(λg;K, ε)).

Therefore, s is continuous.

(2) For the topological algebra (A,+, ·) and its subalgebra A1, since addition + : A1 × A1 → A1 is
continuous, we have

A1 +A1 ⊂ A1 +A1 = A1.
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Similarly, since multiplication · : A1 ×A1 → A1 is continuous, we have

A1 · A1 ⊂ A1 · A1 ⊂ A1.

Likewise, the fact that A1 is a vector subspace of A follows from the continuity of scalar multipli-
cation. Therefore, A1 is a (closed) subalgebra of A.

Problem 54 (Applications of Stone–Weierstrass)

(1) Prove: any continuous function on [0, 1] can be approximated uniformly by functions of the form
a0 + a1ex + a2e2x + · · ·+ anenx, n ∈ N.

¬ As a consequence, prove if f is a continuous function on [0, 1] satisfying∫ 1

0

f(x)enx dx = 0, n = 0, 1, 2, · · · , (54–1)

then f = 0.
 What if (54–1) holds only for even n?

(2) Let X,Y be compact Hausdorff spaces. Prove: any f ∈ C(X × Y,R) can be approximated uni-
formly by functions of the form

f1(x)g1(y) + f2(x)g2(y) + · · ·+ fn(x)gn(y), n ∈ N,

where fk ∈ C(X,R), gk ∈ C(Y,R).

(3) Let A be the set of (rational) functions of the form p(x)
q(x) , where p, q are polynomials with deg(p) ⩽

deg(q), and q(x) 6= 0 for all x ∈ R. Prove: if f ∈ C(R,R) and lim
x→∞

f(x) = lim
x→−∞

f(x), then f can
be approximated uniformly by functions in A.

Proof (1) Since [0, 1] is compact and Hausdorff, A := 〈1, ex〉 is a subalgebra of C([0, 1],R) that van-
ishes at nopoint and separates points, by Stone–Weierstrass theorem,A is dense in (C([0, 1],R), d∞).

¬ For any ε > 0, there exists g ∈ A such that d∞(f, g) < ε. By assumption,∫ 1

0

f2(x)dx =

∫ 1

0

f2(x)dx−
∫ 1

0

f(x)g(x)dx =

∫ 1

0

f(x)[f(x)− g(x)]dx

⩽
∫ 1

0

|f(x)||f(x)− g(x)|dx ⩽ ε
∫ 1

0

|f(x)|dx.

Since ε > 0 is arbitrary, we have f = 0.
 Note that A′ :=

〈
1, e2x

〉
is a subalgebra of C([0, 1],R) that vanishes at no point and sepa-

rates points. By Stone–Weierstrass theorem, A′ is dense in (C([0, 1],R), d∞). Therefore, the
conclusion still holds by the same argument as above.

(2) SinceX,Y are compact and Hausdorff, so isX × Y . Moreover, both C(X,R) and C(Y,R) separate
points. Since A := 〈fg : f ∈ C(X,R), g ∈ C(Y,R)〉 is a subalgebra of C(X × Y,R) that vanishes at
no point and separates points, by Stone–Weierstrass theorem, A is dense in (C(X × Y,R), d∞).

(3) Let A∗ be the set of functions of the form p(x)
q(x) where p, q are polynomials with deg(p) < deg(q)

and q(x) 6= 0 for all x ∈ R. Then A∗ is a subalgebra of C0(R,R).
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� 1

x2 + 1
∈ A∗, so A∗ vanishes at no point.

� For any a, b ∈ R with a 6= b, the rational function x(
x− a+b

2

)2
+ 1

∈ A∗ separates a and b.

Since R is locally compact and Hausdorff, by Problem 56 (2),A∗ is dense in C0(R,R). Now for any
f ∈ C(R,R) with lim

x→∞
f(x) = lim

x→−∞
f(x) =: L, the function f − L lies in C0(R,R), so f − L can

be approximated uniformly by functions in A∗ ⊂ A. And since the constant function L is in A,
f = (f − L) + L can be approximated uniformly by functions in A.

Problem 55 (Stone–Weierstrass for complex/quaternion-valued functions)

(1) Prove Theorem 2.6.16:

Let X be compact Hausdorff, and A ⊂ C(X,C) be a complex subalgebra which separates points
and vanishes at no point. Moreover, assume A is self adjoint, then A is dense in C(X,C).

(2) For any quaternion q = a + bi+ cj+ dk ∈ H, check: a =
q − iqi− jqj− kqk

4
. Then prove Theorem

2.6.12 for C(X,H).

Proof (1) Since Re f = f+f̄
2 and Im f = f−f̄

2i , the setAR of real and imaginary parts of functions inA
is a real subalgebra of C(X,R) to which the Stone–Weierstrass theorem applies. SinceA = {f+ ig :

f, g ∈ AR}, the desired result follows.

(2) For q = a+ bi+ cj+ dk ∈ H, we have

q − iqi− jqj− kqk
=(a+ bi+ cj+ dk)− i(a+ bi+ cj+ dk)i− j(a+ bi+ cj+ dk)j− k(a+ bi+ cj+ dk)k
=a+ bi+ cj+ dk− ai2 − bi3 − ciji− diki− aj2 − bjij− cj3 − djkj− ak2 − bkik− ckjk− dk3

=a+ bi+ cj+ dk− a+ bi− cj− dk+ a− bi+ cj− dk+ a− bi− cj+ dk
=4a.

Therefore, the scalar part a is the real number q − iqi− jqj− kqk
4

. Likewise,

� the scalar part of −qi is bwhich is the real number −qi− iq + jqk+ qj
4

.

� the scalar part of −qj is c which is the real number −qj− iqk− jq + kqi
4

.

� the scalar part of −qk is d which is the real number −qk+ iqj− jqk− kq
4

.

Now the theorem follows by similar arguments as in part (1).

Problem 56 (Stone–Weierstrass on LCH)

(1) Let X be LCH. Prove: C0(X,R) is an algebra.

(2) Prove Theorem 2.6.17 (Stone–Weierstrass theorem on LCH):

Suppose X is an non-compact LCH. Let A ⊂ C0(X,R) be a subalgebra which vanishes at no
point and separates points. Then A is dense in C0(X,R).
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(3) Prove: any f ∈ C0([0,+∞),R) can be approximated uniformly by functions of the form

n∑
k=−n

ake−kx, n ∈ N.

Proof (1) It suffices to show that C0(X,R) is closed under addition, multiplication and scalar multi-
plication.

� For any f, g ∈ C0(X,R) and ε > 0, there exists compactKf ,Kg ⊂ X such that

|f(x)| < ε

2
on (Kf )

c and |g(x)| < ε

2
on (Kg)

c.

Then |f(x)+ g(x)| ⩽ |f(x)|+ |g(x)| < ε outside the compact setKf ∪Kg , so f + g ∈ C0(X,R).

� For any f, g ∈ C0(X,R) and ε > 0, there exists compactKf ,Kg ⊂ X such that

|f(x)| < ε on (Kf )
c and |g(x)| < 1 on (Kg)

c.

Then |f(x)g(x)| < ε · 1 outside the compact setKf ∪Kg , so fg ∈ C0(X,R).

� For any f ∈ C0(X,R), λ ∈ R and ε > 0, if λ = 0, then λf = 0 ∈ C0(X,R); if λ 6= 0, there exists
compactK ⊂ X such that

|f(x)| < ε

|λ|
onKc.

Then |λf(x)| < ε onKc, so λf ∈ C0(X,R).

Therefore, C0(X,R) is an algebra.

(2) Consider the one-point compactificationX∗ := Xt{∞} ofX (see Problem 36). By Problem 46 (1)
,X∗ is compact andHausdorff. Any f ∈ C0(X,R) can be extended continuously to f∗ ∈ C(X∗,R)
by f∗(x) = f(x) for all x ∈ X and f∗(∞) = 0. To see this, it suffices to check the continuity of
f∗ at ∞: for any neighborhood U of f∗(∞) = 0, there is some ε > 0 such that B(0, ε) ⊂ U ; and
there exists compact K ⊂ X such that |f(x)| < ε on Kc, i.e., Kc ∪ {∞} ⊂ (f∗)

−1
(B(0, ε)). Now A

corresponds to a subalgebra A∗ ⊂ C(X∗,R) that vanishes only at ∞ and separates points. Since
A∗ is not dense in C(X∗,R), by Theorem 2.6.13,

A∗ = {f∗ ∈ C(X∗,R) : f∗(∞) = 0}.

Note that the right-hand side restricts to C0(X,R), so A is dense in C0(X,R).

(3) The set A of functions of the form
n∑

k=−n

ake−kx (n ∈ N) is a subalgebra of C0([0,+∞),R) that

vanishes at no point and separates points. Since [0,+∞) is LCH, A is dense in C0([0,+∞),R) by
part (2).
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PSet 8, Part 1

Problem 57 (Closedness of graph) Let X,Y be topological spaces, define the graph of a map f : X →
Y to be the set

Gf := {(x, f(x)) : x ∈ X} ⊂ X × Y.

(1) Prove: Y is Hausdorff ⇐⇒ for any X and f ∈ C(X,Y ), Gf is closed in X × Y .

(2) Construct a discontinuous function f : R → R whose graph is closed.

(3) (Closed graph theroem) Prove: if Y is a compact Hausdorff space, then f is continuous if and
only if Gf is closed.

Proof (1) (⇒) Let (x, y) ∈ (X × Y ) \Gf , so that f(x) 6= y. Since Y is Hausdorff, there exist disjoint
open sets U and V in Y such that f(x) ∈ U and y ∈ V . Then f−1(U) × V is an open set in
X × Y containing (x, y) but disjoint from Gf , so Gf is closed.

(⇐) Take X = Y , and consider the identity map IdY : Y → Y . Then Gf = {(y, y) : y ∈ Y } is
closed in Y × Y by assumption, so Y is Hausdorff by Proposition 2.7.19 (2).

(2) f(x) =

 1
x , x 6= 0,

0, x = 0.

(3) The “only if” part is already proved in (1). Now assume Gf is closed in X × Y . Let x ∈ X and
let V be an open neighborhood of f(x) in Y . Then C := Gf ∩ (X × (Y \ V )) is closed in X × Y .
Denote by πX the projection map X × Y → X . We claim that πX(C) is closed in X . Indeed, let
x0 ∈ X \πX(C) be arbitrary. Then the slice {x0}×Y is contained in the open set (X×Y )\C. Since
both {x0} and Y are compact, by the tube lemma, there exists open neighborhood W of x0 in X
such that {x0}×Y ⊂W×Y ⊂ (X×Y )\C. This implies x0 ∈W ⊂ X \πX(C). Since x0 is arbitrary,
X \ πX(C) is open, so πX(C) is closed in X . Now U := X \ π1(C) is a neighborhood of x, and
we claim that f(U) ⊂ V . Suppose to the contrary that there exists x1 ∈ U with f(x1) /∈ V . Then
(x1, f(x1)) ∈ C, so πX((x1, f(x1))) = x1 ∈ πX(C), a contradiction. Therefore x ∈ U ⊂ f−1(V ), so
f is continuous.

Problem 58 (Lindelöf property) A topological space (X,T ) is called Lindelöf if any open covering of
X admits a countable subcovering.

(1) Prove Proposition 2.7.14:

� Any second countable space is Lindelöf.

� Any σ-compact space is Lindelöf.

(2) Suppose (X,T ) is second countable. Prove: any basis B of T has a countable sub-family B0 ⊂ B
that is still a basis.

(3) Prove Proposition 2.7.15:

� Any closed subspace of a Lindelöf space is Lindelöf.

� The continuous image of a Lindelöf space is Lindelöf.

� A metric space is Lindelöf if and only if it is second countable.
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(4) Check: (R,Tcocountable) is Lindelöf but not σ-compact.

(5) Check: the Sorgenfrey line
(
R,TSorgenfrey

)
is Lindelöf.

Proof (1) Let {Uα : α ∈ Λ} be an open cover of X .

� Suppose (X,T ) is second countable and {Bn}∞n=1 is a countable basis of T . For each Bn,
if there is some Uα containing Bn, then choose such Uα and denote it by Un. Otherwise,
let Un = ∅. Since each point x ∈ X has a neighborhood Vx contained in some Uα, and Vx
contains some Bn about x, it follows that {Un}∞n=1 is a countable subcover of {Uα}α∈Λ.

� SupposeX is σ-compact andX =

∞⋃
n=1

Kn where eachKn is compact. For each n, there exists

a finite subcover {Uαn
: αn ∈ Λn} of {Uα : α ∈ Λ} for Kn. Then

∞⋃
n=1

{Uαn
: αn ∈ Λn} is a

countable subcover of {Uα}α∈Λ.

(2) Let {Un}∞n=1 be a countable basis of T . Let B = {Bα : α ∈ Λ} be an arbitrary basis of T . For each
n, there exists Λn ⊂ Λ such that Un =

⋃
α∈Λn

Bα. SinceX is Lindelöf by (1), there exists a countable

subset Λ′
n ⊂ Λn such that Un =

⋃
α∈Λ′

n

Bα. Then B0 :=

∞⋃
n=1

{Bα : α ∈ Λ′
n} is a countable sub-family

of B that is still a basis.

(3) � SupposeX is Lindelöf and A is a closed subspace ofX . For any open cover {Uα}α∈Λ of A, let
Uα = Vα ∩A for each α ∈ Λ, where Vα is open inX . Since A is closed inX , {Vα : α ∈ Λ} ∪Ac

is an open cover of X . By Lindelöf property, there exists a countable subcover {Vn}∞n=1 ∪ Ac

of X . Then {Vn ∩A}∞n=1 is a countable subcover of {Uα : α ∈ Λ}.

� Suppose X is Lindelöf and f : X → Y is continuous. For any open cover {Uα : α ∈ Λ} of
f(X),

{
f−1(Uα) : α ∈ Λ

}
is an open cover ofX . By Lindelöf property, there exists a countable

subset Λ′ ⊂ Λ such that
{
f−1(Uα) : α ∈ Λ′} is still a cover of X . Then {Uα : α ∈ Λ′} is a

countable subcover of {Uα : α ∈ Λ}.

� The “if” part is already proved in (1). Now suppose X is a Lindelöf metric space. For each
n ∈ N, the collection

{
B
(
x, 1

n

)
: x ∈ X

}
is an open cover of X . By Lindelöf property, there

exists a countable subcover {Un,k}∞k=1. For any open set U inX and any x ∈ U , there is some
n ∈ N such that x ∈ B

(
x, 1

n

)
⊂ U . Since xmust be contained in some U2n,k, which is a ball of

radius 1
2n , it follows by the triangle inequality that x ∈ U2n,k ⊂ B

(
x, 1

n

)
. Hence {U2n,k}∞n,k=1

is a countable basis of X .

(4) For any open cover {Uα : α ∈ Λ} of (R,Tcocountable), pick any α1 ∈ Λ such that Uα1
6= ∅. Then

R \ Uα1
is countable, denote it by {xn}∞n=2. For each n ⩾ 2, choose αn ∈ Λ such that xn ∈ Uαn

.
Then {Uαn

}∞n=1 is a countable subcover of {Uα : α ∈ Λ}. Therefore (R,Tcocountable) is Lindelöf.

However, compact sets in (R,Tcocountable)must be finite (any infinite subsetA contains some count-
able subset {xn}∞n=1, and the open cover

{(⋃
k ̸=n{xk}

)c}∞

n=1
ofAhas no finite subcover), so count-

able union of compact sets is still countable, which cannot coverR. Therefore (R,Tcocountable) is not
σ-compact.

(5) Since B = {[a, b) : a, b ∈ R} is a basis of TSorgenfrey, it suffices to show that each B-cover of R admits
a countable subcover. SupposeR =

⋃
α∈Λ

[aα, bα). We claim thatR\
⋃
α∈Λ

(aα, bα) is at most countable.
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In fact, for any x /∈
⋃
α∈Λ

(aα, bα), there exists βx ∈ Λ such that x = aβx
. Note that such open intervals

(aβx
, bβx

) are disjoint for different x, so the claim follows. Now the set

Λ0 :=

{
βx ∈ Λ : x /∈

⋃
α∈Λ

(aα, bα)

}

is at most countable. Since {(aα, bα) : α ∈ Λ} is an open cover of
⋃
α∈Λ

(aα, bα) in the usual topology

ofR, and
⋃
α∈Λ

(aα, bα) is a second countablemetric space asR is (A2), by (3) it is Lindelöf. Therefore

there exists a countable subcover Λ′ ⊂ Λ such that
⋃
α∈Λ

(aα, bα) =
⋃
α∈Λ′

(aα, bα). Then

{[aα, bα) : α ∈ Λ′} ∪ {[aβ , bβ) : β ∈ Λ0}

is a countable subcover of {[aα, bα) : α ∈ Λ}. Therefore
(
R,TSorgenfrey

)
is Lindelöf.

Problem 59 (Hereditary properties) A topological property P is called hereditary if

(X,T ) satisfies P =⇒ any subspace Y of X satisfies P .

(1) Prove: (A1) and (A2) are hereditary, but (T4) is not hereditary.

(2) Which of the following properties are hereditary:

compact / sequentially compact / locally compact / separable / Lindelöf / (T1) / (T2) / (T3)

(3) A topological property P is called closed hereditary if

(X,T ) satisfies P =⇒ any closed subspace Y of X satisfies P .

For the non-hereditary properties above, determine whether they are closed hereditary.

Proof (1) Since the intersection of a basis / neighborhood basis of the total space with a subspace is
still a basis / neighborhood basis of the subspace, (A1) and (A2) are hereditary. However, (T4)
is not hereditary. Consider R endowed with the cofinite topology, then any two nonempty open
sets in R intersect, so R is not (T4). Let X := R t {∞}, whose open sets are those of (R,Tcofinite)

together with X . Now any two nonempty closed sets in X intersect (they both contain ∞), so X
is (T4). This shows that (T4) is not hereditary.

(2) ¬ Compactness is not hereditary. For example, [0, 1] is compact, but (0, 1) is not.

 Sequential compactness is not hereditary. One can take the same example as above.

® Local compactness is not hereditary. For example, [0, 1] is locally compact, but [0, 1]∩Q is not
(see Problem 46 (2) ¬).

¯ Separability is not hereditary. Take any non-separable space Y and consider X := Y t {∞},
whose open sets are given by

{∅} ∪ {U ∪ {∞} : U is open inY }.

Then X is separable since {∞} = X . However, Y ⊂ X is not separable.
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° Lindelöf property is not hereditary. Take any non-Lindelöf space Y and consider X := Y t
{∞}, whose open sets are given by

{U : U is open inY } ∪ {V ∪ {∞} : V ⊂ Y andY \ V is countable}.

Then for any open cover {Uα : α ∈ Λ} of X , one can first pick α1 ∈ Λ such that ∞ ∈ Uα1 . By
constructionUα1 = V ∪{∞}, where V cocountable in Y . Let Y \V = {xn}∞n=2. For each n ⩾ 2,
choose αn ∈ Λ such that xn ∈ Uαn . Then {Uαn}∞n=1 is a countable subcover of {Uα : α ∈ Λ},
so X is Lindelöf. However, Y ⊂ X is not Lindelöf.

± (T1) is hereditary since (T1) is equivalent to “every singleton is closed”.

² (T2) is hereditary since the intersections of any two disjoint open sets with a subspace are
disjoint open sets in the subspace.

³ (T3) is hereditary. Let X be (T3) and Y be a subspace of X . For any closed subset A of Y
and any x ∈ Y \ A, there exists a closed subset B of X such that A = B ∩ Y . Since X is (T3)
and x /∈ B, there exist disjoint open sets U and V in X such that B ⊂ U and x ∈ V . Then
A ⊂ U ∩ Y and x ∈ V ∩ Y . Therefore Y is (T3).

(3) ¬ (T4) is closed hereditary. Suppose X is (T4) and Y is a closed subspace of X . For any two
disjoint closed sets A and B in Y , since Y is closed inX , A and B are closed inX . SinceX is
(T4), there exist disjoint open setsU and V inX such thatA ⊂ U andB ⊂ V . ThenA ⊂ U∩Y
and B ⊂ V ∩ Y , so Y is (T4).

 Compactness is closed hereditary. This is Proposition 2.1.16 (1).

® Sequential compactness is closed hereditary. This is Proposition 2.1.16 (2).

¯ Local compactness is closed hereditary. Suppose X is locally compact and Y is a closed sub-
space of X . For any x ∈ Y , since X is locally compact, there exists a compact neighborhood
K of x in X . Then K ∩ Y is a neighborhood of x in Y . Moreover, it is compact. In fact, for
any open cover {Uα : α ∈ Λ} of K ∩ Y in X , {Y c} ∪ {Uα : α ∈ Λ} is an open cover of K
in X . Since K is compact, there exists a finite subcover {Y c} ∪ {Uα1

, · · · , Uαn
} of K in X .

Then {Uα1
, · · · , Uαn

} is a finite subcover of {Uα : α ∈ Λ}. Therefore K ∩ Y is a compact
neighborhood of x in Y and Y is locally compact.

° Separability is not closed hereditary. One can take the same example as in (2) ¯, where
Y = X \ {∞} is closed in X but not separable.

± Lindelöf property is closed hereditary. This is Problem 58 (3).

Problem 60 (The Sorgenfrey plane) Consider the product of two Sorgenfrey lines,

(
R2,TSorgenfrey

)
:=
(
R,TSorgenfrey

)
×
(
R,TSorgenfrey

)
,

which is known as the Sorgenfrey plane.

(1) Prove: it is first countable, separable but not second countable.

(2) Is it Hausdorff?

(3) Consider the subspaceA = {(x,−x) : x ∈ R}. Is it closed? What is the induced subspace topology
on A?
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(4) Prove: it is not Lindelöf.

Proof (1) For any (x, y) ∈
(
R2,TSorgenfrey

)
, the collection

{[
x, 1

n

)
×
[
y, 1

n

)
: n ∈ N

}
is a countable

neighborhood basis of (x, y). Hence
(
R2,TSorgenfrey

)
is first countable. Since Q2 is a countable

dense subset of
(
R2,TSorgenfrey

)
, it is separable. However,

(
R2,TSorgenfrey

)
is not second countable.

In fact, if it were second countable, by Problem 59 (1), (A2) is hereditary, so
(
R,TSorgenfrey

)
would

be second countable, which contradicts Example 2.7.8 (2).

(2) For any x, y ∈
(
R,TSorgenfrey

)
with x < y, the open sets [x, y) and [y, y + 1) are disjoint and contain

x and y respectively. Hence
(
R,TSorgenfrey

)
is Hausdorff. By Problem 61 (1), (T2) is productive, so(

R2,TSorgenfrey
)
is also Hausdorff.

(3) By Problem 9 (3), the topology TSorgenfrey is finer than the usual topology on R. It follows that
TSorgenfrey is finer than the usual topology on R2. Since A is closed in the usual topology of R2,
it is also closed in

(
R2,TSorgenfrey

)
. For any (x,−x) ∈ A, the open set [x, x + 1) × [−x,−x + 1)

of
(
R2,TSorgenfrey

)
intersects A only at (x,−x), so {(x,−x)} is open in A. Therefore the induced

subspace topology on A is discrete.

(4) The subspace A ⊂
(
R2,TSorgenfrey

)
is not Lindelöf since the open cover {(x,−x) : x ∈ R} has no

countable subcover. By Problem 59 (3), Lindelöf property is closed hereditary, so
(
R2,TSorgenfrey

)
is not Lindelöf.

PSet 8, Part 2

Problem 61 (Productive properties) A topological property P is called productive if

each (Xα,Tα) satisfies P =⇒

(∏
α

Xα,Tproduct

)
satisfies P .

(1) Prove: (T1), (T2) and (T3) are productive.

(2) Conversely, if
(∏

α

Xα,Tproduct

)
is (T1), (T2) or (T3), can we conclude that each (Xα,Tα) is (T1),

(T2) or (T3)?

(3) Is (T4) productive? Is Lindelöf productive?

(4) Prove: separability and metrizability are not productive. What about (A1), (A2)?

(5) Can you introduce a weaker version of productivity, so that those non-productive properties in
part (4) satisfy the weaker one?

Proof (1) If each (Xα,Tα) is (T1), then for any distinct x, y ∈
∏
α

Xα, there exists β such that xβ 6= yβ .

Since Xβ is (T1), there exist open sets Uβ , Vβ in Xβ such that xβ ∈ Uβ \ Vβ and yβ ∈ Vβ \ Uβ . Let
Uα = Xα and Vα = Yα for all α 6= β. Then U =

∏
α

Uα and V =
∏
α

Vα are open sets in
∏
α

Xα such

that x ∈ U \ V and y ∈ V \ U . Hence
∏
α

Xα is (T1).

If each (Xα,Tα) is (T2), then for any distinct x, y ∈
∏
α

Xα, there exists β such that xβ 6= yβ . Since

Xβ is (T2), there exist disjoint open sets Uβ , Vβ inXβ such that xβ ∈ Uβ and yβ ∈ Vβ . Let Uα = Xα
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and Vα = Yα for all α 6= β. Then U =
∏
α

Uα and V =
∏
α

Vα are disjoint open sets in
∏
α

Xα such

that x ∈ U and y ∈ V . Hence
∏
α

Xα is (T2).

If each (Xα,Tα) is (T3), then for any x ∈
∏
α

Xα and any open neighborhood U =
∏
α

Uα of x, we

can always find an open neighborhood V =
∏
α

Vα of x such that V ⊂ U . Indeed, when Uα = Xα

let Vα = Xα too. For the finitely many α’s such that Uα 6= Xα, since each Xα is (T3), we can find
open sets Vα such that Vα ⊂ Uα. Then by Problem 30 (1),

V =
∏
α

Vα =
∏
α

Vα ⊂
∏
α

Uα = U.

By Proposition 2.7.19 (3), this implies that
∏
α

Xα is (T3).

(2) Each (Xα,Tα) can be viewed as a subspace of
∏
α

Xα, so by Problem 59 (2), if
(∏

α

Xα,Tproduct

)
is (T1) / (T2) / (T3), then each (Xα,Tα) is (T1) / (T2) / (T3).

(3) By Problem 58 (5), the Sorgenfrey line
(
R,TSorgenfrey

)
is Lindelöf. However,

(
R2,Tproduct

)
is not

Lindelöf by Problem 60 (4). So Lindelöf property is not productive.

The above example can also be used to show that (T4) is not productive:(
R,TSorgenfrey

)
is (T4) Let A and B be disjoint closed sets in

(
R,TSorgenfrey

)
. For any a ∈ A, we

have a ∈ Bc. Subce Bc is open, we can take εa > 0 such that [a, a+ εa)∩B = ∅. Similarly, for
any b ∈ B, we can take εb > 0 such that [b, b+ εb) ∩A = ∅. Note that we always have

[a, a+ εa) ∩ [b, b+ εb) = ∅, ∀a ∈ A and b ∈ B,

for otherwise we would have b ∈ [a, a + εa) or a ∈ [b, b + εb), which is a contradiction. It
follows that

UA :=
⋃
a∈A

[a, a+ εa) and UB :=
⋃
b∈B

[b, b+ εb)

are disjoint open sets separating A and B.(
R2,TSorgenfrey

)
is not (T4) In Problem 60 (3) we have shown that ∆ = {(x,−x) : x ∈ R} is

closed in
(
R2,Tproduct

)
, and the subspace topology on A is discrete. Thus any subset of ∆ is

closed in
(
R2,Tproduct

)
. If
(
R2,TSorgenfrey

)
is (T4), then by Urysohn’s lemma, for any A ⊂ ∆,

since A and B := ∆ \ A are both closed in the Sorgenfrey plane, there exists a continuous
function f :

(
R2,TSorgenfrey

)
→ [0, 1] such that f(A) = {0} and f(B) = {1}. Therefore

∣∣C((R2,TSorgenfrey
)
, [0, 1]

)∣∣ ⩾ ∣∣2∆∣∣ = ∣∣2R∣∣ = 2ℵ1 = ℵ2.

On the other hand, by Problem 60 (1), the Sorgenfrey plane is separable, so any continuous
function on it is determined by its values on a countable dense subset, which means

∣∣C((R2,TSorgenfrey
)
, [0, 1]

)∣∣ ⩽ |[0, 1]|ℵ0 = ℵℵ0
1 = ℵ1.

This is a contradiction. Therefore
(
R2,TSorgenfrey

)
is not (T4).
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(4) All these properties may not be preserved by products. Let each Xα be the discrete space {0, 1},
and let X =

∏
α∈Λ

Xα, where |Λ| > ℵ1. Then each Xα is separable, metrizable, (A1) and (A2).

X is not separable Suppose D were a countable dense subset of X . Then for distinct α, β ∈ Λ,
the sets π−1

α (0), π−1
β (0) and π−1

β (1) are all nonempty open sets in X . Then π−1
α (0) ∩ π−1

β (1)

and π−1
β (0) are both nonempty open sets in X , and they are disjoint. Since D is dense,

D ∩
(
π−1
α (0) ∩ π−1

β (1)
)

and D ∩ π−1
β (0)

are disjoint nonempty subsets of D. It follows that

D ∩ π−1
α (0) and D ∩ π−1

β (0)

are distinct subsets of D. Thus the map

Φ : Λ → 2D, α 7→ D ∩ π−1
α (0)

is injective, which implies |Λ| ⩽
∣∣2D∣∣ = 2ℵ0 = ℵ1, a contradiction.

X is not (A1)/(A2)/metrizable Assume {Bn}∞n=1 is a countable neighborhood basis at the point
p ∈ X . For each n, πα(Bn) = {0, 1} for all but finitely many α. Since there are uncountably
many α, we can select one, say α0, such that πα0

(Bn) = {0, 1} for all n. Then π−1
α0

(pα0
) = {x ∈

X : xα0
= pα0

} is an open neighborhood of p which contains no Bn, a contradiction. There-
fore X is not (A1), and then not (A2). Since each Xα is compact Hausdorff, by Tychnoff’s
theorem and then productivity of (T2),X is compact Hausdorff. So by Proposition 2.8.13,X
is metrizable if and only if it is (A2). Therefore X is not metrizable.

(5) The four properties in (4) are all preserved by countable products.

Separability Suppose eachXn is separable and letX =

∞∏
n=1

Xn. For each n, letDn be a countable

dense subset of Xn and fix a point xn ∈ Dn. Then consider

Em =

{
y ∈

∞∏
n=1

Dn : yn = xn for alln ⩾ m
}

and let E =

∞⋃
m=1

Em. Since each Em is countable, it follows that E is countable. Note that any

nonempty open set in X is of the form

V =

m−1∏
n=1

Un ×
∞∏
n=m

Xn,

where Un is a nonempty open set in Xn for 1 ⩽ n < m. Since

V ∩ Em =

m−1∏
n=1

(Vn ∩Dn)×
∞∏
n=m

{xn} 6= ∅,

we see that V ∩ E 6= ∅. Therefore E is a countable dense subset of X .
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Metrizability Suppose eachXn is metrizable. Moreover, by replacing the original metric with its
corresponding uniformmetric dn, we can assume that eachXn is bounded. Then by Problem
39 (3), the topology induced by the metric

d((xn), (yn)) :=

∞∑
n=1

dn(xn, yn)

[1 + diam(Xn)] · 2n

coinicides with the product topology on X . Therefore X is metrizable.

(A1) Suppose each Xn is first countable and let X =

∞∏
n=1

Xn. Take any x = (xn) ∈ X . For each

n, let {Bn,k}∞k=1 be a countable neighborhood basis at xn. Then

∞⋃
n=1

∞⋃
k=1

{
n∏

m=1

Bm,k ×
∞∏

m=n+1

Xm

}

is a countable neighborhood basis at x.

(A2) Suppose each Xn is second countable and let X =

∞∏
n=1

Xn. For each n, let {Bn,k}∞k=1 be a

countable basis for Xn. Then

∞⋃
n=1

∞⋃
k=1

{
n∏

m=1

Bm,k ×
∞∏

m=n+1

Xm

}

is a countable basis for X .

Problem 62 (Baire space) A topological space is called a Baire space if every intersection of countable
collection of open dense sets in the space is dense.

(1) Use “open-closed” duality to give an equivalent characterization of Baire space.

(2) Prove: any complete metric space is a Baire space.

(3) Prove: any compact Hausdorff space is a Baire space.

(4) Prove: any locally compact Hausdorff space is a Baire space.

Proof (1) A topological space is a Baire space if and only if every countable union of closed sets in
the space with empty interior has empty interior.

(2) & (3) By Problem 7 (2) and Proposition 2.7.20, whetherX is completemetric or compact Hausdorff,
it is regular. Given a countable collection {An}∞n=1 of closed sets of X having empty interiors, we

want to show that their union
∞⋃
n=1

An also has empty interior in X . So, given the nonempty open

set U0 of X , we must find a point x of U0 that does not lie in any of the sets An.

Consider the first setA1. By hypothesis,A1 does not contain U0. Therefore, wemay choose a point
y of U0 that is not in A1. SinceX is regular and U0 \A1 is open inX , by Proposition 2.7.19 (3), we
can choose an open neighborhood U1 of y such that x ∈ U1 ⊂ U1 ⊂ U0 \A1, that is,

U1 ∩A1 = ∅ and U1 ⊂ U0.
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If X is metric, we also choose U1 small enough that its diameter is less than 1.

In general, given the nonempty open set Un−1, we choose a point of Un−1 that is not in the closed
set An, and then we choose Un to be an open neighborhood of this point such that

Un ∩An = ∅ and Un ⊂ Un−1,

and also diamUn <
1
n in the metric case.

We assert that the intersection
∞⋂
n=1

Un is nonempty. From this fact, the desired result will follow.

For if x ∈
∞⋂
n=1

Un, then x is in U0 because U1 ⊂ U0. And for each n, the point x is not in An because

Un is disjoint from An.

� If X is complete metric, since U1 ⊃ U2 ⊃ · · · is a nested sequence of nonempty closed sets
in the complete metric space X , and diamUn → 0 as n → ∞, our assertion follows from the
Cantor’s intersection theorem.

� If X is compact Hausdorff, since the collection
{
Un
}∞
n=1

has the finite intersection property,
our assertion follows from Proposition 2.1.6.

(4) SupposeX is a non-compact LCH space. LetX∗ = X t {∞} be the one-point compactification of
X . Then by Problem 46 (1) ,X∗ is a compact Hausdorff space. So by (3)X∗ is a Baire space. Let
{Un}∞n=1 be a countable collection of open dense sets in X . Since X is non-compact, {∞} /∈ T ∗

by the construction of T ∗ (see Problem 36 (2)). Therefore any open neighborhood of ∞ is of the
form V ∪{∞}where V is a nonempty open subset ofX . Then V ∩Un 6= ∅ for all n, which implies
that ∞ is a limit point of each Un. So {Un}∞n=1 is also a collection of open dense sets in X∗, and

since X∗ is a Baire space,
∞⋂
n=1

Un is dense in X∗. It follows that
∞⋂
n=1

Un is dense in X . Therefore X

is a Baire space.

Problem 63 (Applications of Urysohn lemma)

(1) Let X be a compact Hausdorff space, x0 ∈ X , and U is an open neighborhood of x0. Prove: for
any ε > 0 and any continuous function f : X → R, there exists a continuous function g : X → R
satisfying all of the following three conditions:

� sup
x∈X

|g(x)− f(x)| < ε.

� g = f on U c.

� there exists a neighborhood V of x0 such that g(x) ≡ f(x0) on V .

(2) Let X be LCH. Recall

� Cb(X,R) = {f : X → R : f is continuous and bounded}.

� Cc(X,R) = {f : X → R : f is continuous and compactly supported}.

� C0(X,R) = {f : X → R : f is continuous and vanishes at infinity}.

On Cb(X,R) we have a metric d∞(f, g) := sup
x∈X

|f(x) − g(x)|. Prove: the closure of Cc(X,R) in

Cb(X,R) is C0(X,R).
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Proof (1) After translating f by f(x0), wemay assume f(x0) = 0. Since f : X → R is continuous, the
setW = f−1

(
B
(
0, ε2

))
is an open neighborhood of x0. Then U0 := U ∩W is an open neighborhood

of x0. SinceX is Hausdorff, {x0} is compact. By Proposition 2.4.16, there exists an open set V such
that V is compact and {x0} ⊂ V ⊂ V ⊂ U0. By Proposition 2.7.22,X is normal. So by the Urysohn
lemma, there exists a continuous function h : X → [0, 1] such that h

(
V
)
= 0 and h(U c

0) = 1. Now
take g = fh, then we have

� sup
x∈X

|g(x)− f(x)| = sup
x∈X

|f(x)||h(x)− 1| = sup
x∈U0

|f(x)||h(x)− 1| ⩽ sup
x∈U0

|f(x)| ⩽ ε
2 < ε.

� g(x) = f(x)h(x) = f(x) for x ∈ U c
0, thus g = f on U c.

� g(x) = f(x)h(x) = 0 = f(x0) on V .

(2) By Theorem 2.6.17 / Problem 56 (2), it suffices to show that Cc(X,R) is a subalgebra of C0(X,R)
which vanishes at no point and separates points.

� Since the union of two compact sets are compact, the support of the sum/product of two
compactly supported functions is a closed subset of a compact set, hence compact. Also it is
obvious that scalar multiples of compactly supported functions are compactly supported.

� For any x ∈ X , choose an open neighborhoodU of x. Since the compact set {x} and the closed
set U c are disjoint, by Theorem 2.8.9, there exists a compactly supported continuous function
f : X → [0, 1] such that f(x) = 1 and f(U c) = 0. Hence Cc(X,R) vanishes at no point.

� For any x, y ∈ X with x 6= y, since X is Hausdorff, the singleton {y} is closed. And since
{x} is compact, by Theorem 2.8.9, there exists a compactly supported continuous function
f : X → [0, 1] such that f(x) = 1 and f(y) = 0. Hence Cc(X,R) separates points.

Problem 64 (Metrizability for compact Hausdorff spaces) Let (X,T ) be a compact Hausdorff space.
Show that the following are equivalent:

(1) X is metrizable.

(2) The diagonal ∆ ⊂ X ×X is a Gδ set.

(3) There exists a continuous function f : X ×X → R such that f−1(0) = ∆.

Proof (3) ⇒ (2) ∆ = f−1(0) =

∞⋂
n=1

f−1
(
− 1
n ,

1
n

)
is a Gδ set.

(2) ⇒ (1) SinceX is compactHausdorff, byCorollary 2.8.13, it suffices to show thatX is second count-

able. Suppose ∆ =

∞⋂
n=1

Gn, where each Gn is open in X ×X . For each fixed n and for any x ∈ X ,

since (x, x) ∈ ∆ ⊂ Gn, we can find some open neighborhood Unx of x such that Unx × Unx ⊂ Gn.
SinceX is regular, there exists an open neighborhood V nx of x such that x ∈ V nx ⊂ V nx ⊂ Unx . Since
X is compact, finitely many of the V nx cover X , say X = V nx1

∪ · · · ∪ V nxkn
. Now consider

S =

∞⋃
n=1

kn⋃
m=1

{
V nxm

, V nxm

c}
,

which is countable. Moreover, for any distinct x, y ∈ X , since (x, y) /∈ ∆, there is some n such that
(x, y) /∈ Gn. Choose some V nxm

containing x. Note that V nxm
× V nxm

⊂ Gn, so y /∈ V nxm
. Hence V nxm

and V nxm

c are disjoint open sets separating x and y.
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Now consider the topology TS generated by S . The above observation shows that (X,TS) Haus-
dorff. We claim that the corresponding basis

B = {B : B = S1 ∩ · · · ∩ Sm for someS1, · · · , Sm ∈ S}

is a countable basis for TS . Indeed, since S is countable,

|B| ⩽ |finite subsets ofS| ⩽ ℵ1
0 + ℵ2

0 + ℵ3
0 + · · · = ℵ0 + ℵ0 + ℵ0 + · · · = ℵ0.

Since TS ⊂ T , the identity map

IdX : (X,T ) → (X,TS)

is continuous. Moreover, it is a bijection from a compact space to a Hausdorff space, so it is a
homeomorphism. Therefore these two topologies are the same. Now B is a countable basis of
(X,T ), so X is second countable as we needed.

(1) ⇒ (3) For the metric space (X, d), the function d : X ×X → R is continuous and d−1(0) = ∆.

PSet 9, Part 1

Problem 65 (Uniqueness of extension)

(1) Prove Lemma 2.9.2:

Let X,Y be topological spaces, A ⊂ X be a dense subset, and f : A → Y be a continuous map.
If Y is a (T2) space, then f admits at most one continuous extension.

(2) Can we replace (T2) by (T1)? If yes, prove it; if not, give a counterexample.

Proof (1) Suppose that f admits two continuous extensions g1, g2 : X → Y . Then there exists x ∈
X such that g1(x) 6= g2(x). Since Y is Hausdorff, there exist disjoint open sets U1, U2 such that
g1(x) ∈ U1 and g2(x) ∈ U2. Now g−1

1 (U1) ∩ g−1
2 (U2) is an open neighborhood of x, so it contains

some a ∈ A by density. But this contradicts the fact that g1(a) = f(a) = g2(a).

(2) The conclusion does not hold if Y is a (T1) space. Consider X = Y = (R,Tcofinite). Then Y is a
(T1) space, and A = Z is dense in X . For the inclusion map f : A ↪→ Y , any function of the form

ft(x) =

x, x 6= t,

0, x = t,
where t /∈ Z

is a continuous extension of f .

Problem 66 (Tietze extensions with restrictions) Let (X,T ) be a (T4) space, A ⊂ X be closed.

(1) Let C be a convex compact subset of Rm. Prove: any continuous map f : A → C can be extended
to a continuous map f : X → C. In particular, any complex-valued continuous function on A can
be extended to X while keeping the norm.
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(2) Let f : A→ R and g1, g2 : X → R be continuous functions. Suppose

g1(x) ⩽ f(x) ⩽ g2(x), ∀x ∈ A and g1(x) ⩽ g2(x), ∀x ∈ X.

Prove: f can be extended to a continuous function f̃ : X → R such that

g1(x) ⩽ f̃(x) ⩽ g2(x), ∀x ∈ X.

Proof (1) As stated in Remark 2.9.7, f can be extended to a continuous function g : X → Rm. Since
C is a convex compact subset of Rm, it is a strong deformation retract of Rm, so there exists a
continuous retraction r : Rm → C. Then r ◦ g : X → C is the desired extension of f .

(2) SinceX is normal andA is closed, by Tietze extension theorem, f can be extended to a continuous
function g0 : X → R. Then f̃ = min{max{g0, g1}, g2} is a continuous extension of f that satisfies
g1(x) ⩽ f̃(x) ⩽ g2(x) for all x ∈ X .

Problem 67 (Retraction) Let X be a topological space, A ⊂ X be a subspace. We say A is a retract of
X if there exists a continuous map r : X → A such that

r(x) = x, ∀x ∈ A.

Such a map r is called a retraction.

(1) Prove: if X is Hausdorff, A is a retract of X , then A is closed.

(2) Prove: A is a retract ofX if and only if for any topological space Y , any continuous map f : A→ Y

has an extension f̃ : X → Y .

(3) SupposeX is normal and A is closed. Prove: if Y is a retract of RJ (with product topology, where
J is any set), then any continuous map f : A→ Y admits a continuous extension f̃ : X → Y .

Proof (1) Fix any a /∈ A. Suppose r : X → A is a retraction and r(a) = b = r(b) ∈ A. Since X is
Hausdorff, there exist disjoint open sets U, V such that a ∈ U and b ∈ V . Then r−1(U ∩ A) and
r−1(V ∩A) are disjoint open sets. Note that a ∈ r−1(b) ⊂ r−1(V ∩A), so U ∩ r−1(V ∩A) is an open
neighborhood of a disjoint from A. This shows that Ac is open, so A is closed.

(2) (⇒) Just take f̃ = f ◦ r where r : X → A is a retraction.

(⇐) Take Y = A and f = IdA. Then the extension f̃ : X → A is a retraction.

(3) Let ι : Y → RJ be the inclusion map. Then ι ◦ f : A → RJ is continuous and so is each πj ◦ ι ◦ f :

A → R for j ∈ J . Since X is normal and A is closed, by Tietze extension theorem, each πj ◦ ι ◦ f
can be extended to a continuous function gj : X → R. With these we obtain a continuous function
g : X → RJ , and then f̃ = r ◦ g : X → Y is the desired extension of f .

Problem 68 (Different compactifications) Let X,Y, Z be LCH spaces.

(1) Prove that the Stone–Čech compactification βX is the largest compactification of X : for any com-
pact Hausdorff compactification K of X (with an embedding ϕ : X → K), there is a surjective
continuous closed map F : βX → K which extends the embedding ϕ : X → K.
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(2) Prove that the one-point compactification X∗ is the smallest compactification of X .

(3) Given any continuous map ϕ : X → Y , we constructed a continuous map βϕ : βX → βY . Prove
that the “lifting” ϕ⇝ βϕ is “functorial” in the following sense:

¬ If IdX is the identity map, then βIdX = IdβX .

 If ϕ : X → Y , ψ : Y → Z are continuous maps, then β(ψ ◦ ϕ) = βψ ◦ βϕ.

Proof (1) By the universal property of Stone–Čech compactification, there exists a continuous map
ϕ̃ : βX → K such that ϕ̃◦β = ϕ. Since ϕ̃ is a continuous map from a compact space to a Hausdorff
space, it is closed. By Problem 32 (2), ϕ̃(βX) = ϕ̃

(
β(X)

)
⊃ ϕ̃(βX) = ϕ(X) = K, so ϕ̃ is surjective.

(2) Lemma 1 If A is dense in X , then for every open U ⊂ X we have U = U ∩A.

Proof For every x ∈ U and any neighborhood W of x, the intersection W ∩ U is open and
nonempty. Since A is dense, we have W ∩ U ∩ A 6= ∅, and it follows that x ∈ U ∩A. Thus
the inclusion U ⊂ U ∩A holds. The reverse inclusion is obvious.

Lemma 2 A locally compact dense subspaceM of a Hausdorff space X is open in X .

Proof Every point x ∈M has a neighborhoodU in the subspaceM such that the setUM = U∩M
(see Problem 29 (2)) is compact and thus closed in X . Since U ⊂ U ∩M , we have U ⊂ U ∩M =

U ∩M ⊂M . LetW be an open subset of X satisfying U =M ∩W . Then by Lemma 1

x ∈W ⊂W =M ∩W = U ⊂M,

which shows that every point x ∈ M has a neighborhood W in the space X contained in the
subspaceM , i.e., thatM is open in X .

Note that Lemma 2 shows that any Hausdorff compactification ϕ : X → Y of the LCH space X
satisfies ϕ(X) is open in Y , and it follows that ϕ is an open map. Now consider the map

F : Y → X∗ = X t {∞}, y 7→

x, if y = ϕ(x) for somex ∈ X,

∞, if y /∈ ϕ(X).

It is obvious that F is surjective. Let U ⊂ X∗ be open.

� If ∞ /∈ U , then F−1(U) = ϕ(U) is open in ϕ(X), and then open in Y by Lemma 2.

� If∞ ∈ U , let U = (X \K)∪{∞}whereK is compact inX . Then F−1(K) = ϕ(K) is compact
in Y , so it is closed in Y . Hence F−1(U) = Y \ F−1(K) is open in Y .

Therefore F is a continuous map from a compact space to a Hausdorff space, which is closed. This
shows that X∗ is the smallest compactification of X in the sense of Remark 2.9.22.

(3) ¬ Since IdβX satisfies IdβX ◦ β = β ◦ IdX , by Proposition 2.9.20, βIdX = IdβX .

 Since (βψ ◦ βϕ) ◦ β = βψ ◦ (βϕ ◦ β) = βψ ◦ (β ◦ ϕ) = (βψ ◦ β) ◦ ϕ = (β ◦ ψ) ◦ ϕ = β ◦ (ψ ◦ ϕ),
by Proposition 2.9.20, β(ψ ◦ ϕ) = βψ ◦ βϕ.
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PSet 9, Part 2

Problem 69 (Local finiteness)

(1) Prove: if F = {A} is a locally finite family of subsets, so is F̃ =
{
A
}
.

(2) Prove: ifX is countably compact, then any locally finite family of subsetsF (whose elements need
not be open) is indeed a finite family.

(3) Prove: countably compact paracompact space is compact.

(4) Prove: X is compact if and only if every open cover of X has a locally finite subcover.

(5) Prove: if every locally finite open covering of X has a finite subcover, then X is pseudocompact.

Proof (1) This has been proved in Problem 31 (4).

(2) Lemma / Exercise 2.1.3 (3)X is countably compact if and only if for every nested sequenceF1 ⊃ F2 ⊃ · · ·

of nonempty closed subsets of X , the intersection
∞⋂
n=1

Fn is nonempty.

Proof

(⇒) If
∞⋂
n=1

Fn = ∅, then
∞⋃
n=1

F c
n = X , i.e., {F c

n}
∞
n=1 is a countable open cover of X . Since X

is countably compact, there exists a finite subcover
{
F c
ni

}k
i=1

, which implies
k⋂
i=1

Fni
= ∅, a

contradiction.
(⇐) Let {Un}∞n=1 be a countable open cover ofX . For each n, let Vn = U1 ∪ · · · ∪Un and Fn = V c

n .
Suppose that no finite subcollection of {Un}∞n=1 covers X . Then each Fn is nonempty, and

F1 ⊃ F2 ⊃ · · · . By the assumption,
∞⋂
n=1

Fn 6= ∅, which implies
∞⋃
n=1

Vn ( X , a contradiction.

Now supposeX is countably compact and there exists a locally finite family {An}∞n=1 of nonempty

subsets of X . Let Fn =

∞⋃
k=n

Ak. Then F1 ⊃ F2 ⊃ · · · and by (1),
{
An
}∞
n=1

is also a locally finite

family, so
∞⋂
n=1

Fn = lim
n→∞

∞⋃
k=n

Ak = ∅.

This is a contradiction by the lemma.

(3) For any open cover {Uα : α ∈ Λ} of X , since X is paracompact, it admits a locally finite open
refinement {Vβ : β ∈ Λ′}. By (2), |Λ′| < ∞. Then for each β ∈ Λ′, there exists αβ ∈ Λ such that
Vβ ⊂ Uαβ

. Thus {Uαβ
: β ∈ Λ′} is a finite subcover of {Uα : α ∈ Λ}. Hence X is compact.

(4) The “only if” part is trivial. Now suppose every open cover of X has a locally finite subcover. By
(2), it suffices to show that X is countably compact. Let {Un}∞n=1 be a countable open cover of

X . Suppose it has no finite subcover. For each n, let Vn =

n⋃
k=1

Uk. Then {Vn}∞n=1 has no finite

subcover and V1 ⊂ V2 ⊂ · · · . It follows that {Vn}∞n=1 is an open cover of X with no locally finite
subcover (for any subcover Vn1 ⊂ Vn2 ⊂ · · · , any point x ∈ Vn1 is contained all Vni for i ⩾ 1), a
contradiction. Therefore X is countably compact and hence compact by (2).
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(5) Let f be a continuous real-valued function defined on X . Note that
{
f−1(n− 1, n+ 1)

}
n∈Z is a

locally finite open covering of X , the existence of a finite subcover implies that f is bounded.

Problem 70 (Products of paracompact spaces)

(1) Prove: the Sorgenfrey line is paracompact, while the Sorgenfrey plane is not.

(2) Is paracompactness productive? Is it preserved under continuous maps?

(3) Prove: if X is compact, Y is paracompact, then X × Y is paracompact.

Proof (1) ¬ The Sorgenfrey line is Lindelöf (Problem 58 (5)), (T1) and (T4) (Example 2.7.17),
hence (T3). So it is paracompact by Proposition 2.10.7.

 By the proof of Problem 61 (3),
(
R2,TSorgenfrey

)
is not normal. Since a paracompact Hausdorff

space is normal by Proposition 2.10.11,
(
R2,TSorgenfrey

)
cannot be paracompact.

(2) ¬ By (1) we know that paracompactness is not productive.

 By Problem 15 (2) the identity map from R to (R,Tu.s.c.) is continuous. The usual real line
is paracompact since it is Lindelöf and (T3). However, (R,Tu.s.c.) is not paracompact. For
example, the open cover {(−∞, n)}∞n=1 has no locally finite refinement, since any nonempty
open set in (R,Tu.s.c.) is of the form (−∞, a) where a ∈ R ∪ {∞}.

(3) Let U be an open cover ofX×Y . For any y ∈ Y , the sliceX×{y} is compact, so there exists a finite
subcover {Uy,k}ny

k=1 ofU . LetNy = Uy,1∪· · ·∪Uu,ny . ThenNy is an open set containingX×{y}, and
by the tube lemma, there exists an open neighborhoodWy of y such thatX×{y} ⊂ X×Wy ⊂ Ny .
Now {Wy : y ∈ Y } forms an open cover of Y . Since Y is paracompact, there exists a locally finite
open refinement {Wyα : α ∈ Λ}. Let us show that

⋃
α∈Λ

nxα⋃
k=1

{Uyα,k ∩ (X ×Wyα)}

is a locally finite open refinement of U . Take any point (x, y) ∈ X × Y . First y is in some Wyα ,
and (x, y) ∈ X × Wyα ⊂ Nyα is covered by {Uyα,k ∩ (X ×Wyα)}

nxα

k=1. Since Y is paracompact,
there exists an open neighborhood V of y in Y such that V intersects only finitely manyWyα . Then
X × V is an open neighborhood of (x, y) that intersects only finitely many Uyα,k. ThereforeX × Y

is paracompact.

Problem 71 (LCH version of P.O.U.) Let X be a σ-compact LCH space, and U = {Uα} be an open
cover of X .

(1) There exist two locally finite open coverings V = {Vn} and W = {Wn} such that

� Wn ⊂Wn ⊂ Vn ⊂ Vn, and Vn is compact,

� for each n, there exists Uα ∈ U such that Vn ⊂ Uα.

(2) Prove Theorem 2.10.15 (LCH version of P.O.U.):

Let X be a σ-compact LCH space. Then for any open covering U = {Uα} of X , there exists a
partition of unity {ρn} such that

� each supp(ρn) is compact,
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� for each n, there exists Uα ∈ U such that supp(ρn) ⊂ Uα.

Proof (1) By Problem 52 (4), there exists an open cover {Gn}∞n=1 of X such that Gn ⊂ Gn ⊂ Gn+1

and eachGn is compact. LetG−1 = G0 = ∅ and fix n ⩾ 1. For each x ∈ Gn \Gn−1, choose Ux ∈ U
so that x ∈ Ux. Since

� the compact set Gn \Gn−1 is contained in the open set Gn+1 \Gn−2,

� the compact set {x0} is contained in the open set Ux,

by Proposition 2.4.16 we can choose an open neighborhood Nx of x such that

Nx ⊂ Ux ∩
(
Gn+1 \Gn−2

)
and Nx is compact.

Since {Nx}x∈Gn\Gn−1
is an open cover of the compact set Gn \ Gn−1, it admits a finite subcover

Γn ⊂ {Nx}x∈Gn\Gn−1
. By construction, for each W ∈ Γn, there is some U ∈ U such that W ⊂

U ∩
(
Gn+1 \Gn−2

)
. Apply Proposition 2.4.16 again to find for eachW ∈ Γn, an open set VW such

that
W ⊂ VW ⊂ VW ⊂ U ∩

(
Gn+1 \Gn−2

)
and VW is compact.

Now enumerate {Wn}∞n=1 =

∞⋃
n=1

Γn and define Vn = VWn . The collections V = {Vn} and W =

{Wn} satisfy the desired properties.

(2) Let V = {Vn} andW = {Wn} be as in (1). By the LCH version of Urysohn lemma (Theorem 2.8.9),
for each n, there exists fn ∈ Cc(X, [0, 1]) such that fn

(
Wn

)
= {1} and fn(V c

n) = {0}. Since V = {Vn}

is locally finite, each x ∈ X has an open neighborhood on which f :=

∞∑
n=1

fn is well-defined and

continuous. Note that f ⩾ 1 because W = {Wn} covers X , so ρn := fn
f is a well-defined member

of Cc(X, [0, 1]) for each n and satisfies supp(ρn) ⊂ Vn ⊂ Uα for some Uα ∈ U .

Problem 72 (Examples of non-examples of topological manifolds)

(1) Prove: every topological manifold is σ-compact.

(2) Prove: RPn is a topological manifold.

(3) (Line with doubled point) Let X = (R× {0, 1})/ ∼, where (x, 0) ∼ (x, 1) for all x 6= 0. Prove: X
is (A2) and locally Euclidean, but not (T2).

(4) (Long line) Let Ω be the smallest uncountable well-ordered set. That is, Ω is an uncountable set,
and there is a well-order < on Ω such that for any a ∈ Ω, the set {b ∈ Ω : b < a} is countable. Let
L = Ω× (0, 1]. Define an order on L via

(a, t) ≺ (b, s) if and only if “a < b” or “a = b and t < s”.

For any x ≺ y in L, consider the interval (x, y) = {z ∈ L : x ≺ z ≺ y}.

¬ Prove: there “intervals” (x, y) form a basis for a topology on L.

 Prove: with respect to this topology, L is (T2), locally Euclidean, but not (A2). It is called the
long line.
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Proof (1) Let M be a topological manifold and B be a countable basis of M . For each x ∈ M ,
there exists an open neighborhood Ux of x homeomorphic to an open subset Vx of Rn, denoted
by ϕx : Ux

∼
Vx. Find an open ball B(ϕ(x), ε) in Vx. Then there exists Bx ∈ B such that

Bx ⊂ ϕ−1
(
B
(
ϕ(x), ε2

))
. Since ϕ(Bx) is compact, it follows thatBx is compact. Since B is countable,

the collection
{
Bx : x ∈M

}
is a countable cover ofM by compact sets, soM is σ-compact.

(2) For each 0 ⩽ i ⩽ n, consider Ui = {[x0 : · · · : xn] ∈ RPn : xi 6= 0} and the map

ϕi : Ui → Rn, [x0 : · · · : xn] 7→
(
x0
xi

: · · · xi−1

xi
,
xi+1

xi
, · · · , xn

xi

)
.

Then ϕi is a homeomorphism between Ui and Rn. Since RPn =

n⋃
i=0

Ui, it is locally Euclidean. For

any two points in RPn, either they are in different Ui and we are done, or they are in the same Ui
and by the homeomorphism ϕi, we can find disjoint open neighborhoods of them. Hence RPn is
(T2). Since Rn is (A2) and there are n+ 1 charts in total, RPn is (A2).

(3) The collection⋃
q∈Q\{0}

⋃
r∈(0,|q|)∩Q

{[(q − r, q + r)× {0}]} ∪
⋃

r∈Q>0

{[(−r, r)× {0}]} ∪
⋃

r∈Q>0

{[(−r, r)× {1}]}

is a countable basis ofX , soX is (A2). For x 6= 0, the open neighborhood
[(
x− |x|

2 , x+ |x|
2

)
× {0}

]
is homeomorphic to

(
x− |x|

2 , x+ |x|
2

)
. For the two origins, both [(−1, 1)×{0}] and [(−1, 1)×{1}]

are homeomorphic to (−1, 1). HenceX is locally Euclidean. By construction, the two origins [(0, 0)]
and [(0, 1)] cannot be separated by disjoint open sets, so X is not (T2).

(4) ¬ For any z = (a, t) ∈ Ω × (0, 1], take x =
(
a, t2

)
and y = (b, 1) with a < b. (Since Ω is the

smallest uncountable well-ordered set, such b exists.) Then z ∈ (x, y), so the intervals (x, y)
cover L. For any two intervals (x1, y1) and (x2, y2), if they intersect, then (x1, y1) ∩ (x2, y2) is
still an interval. Therefore the intervals (x, y) form a basis for a topology on L.

 Let us denote the successor of a ∈ Ω by a+. (Note that there is no maximal element in Ω, and
then the set {b ∈ Ω : a < b} is nonempty and has a least element by well-order.) For any two
distinct points x = (a, t) and y = (b, s) in L, without loss of generality assume a < b or a = b.

� If a < b, the disjoint open sets
((
a, t2

)
,
(
a+, s2

))
and

((
a+, s2

)
, (b+, 1)

)
separate x and y.

� If a = b, we may assume t < s. Then
((
a, t2

)
,
(
a, t+s2

))
and

((
a, t+s2

)
, (a+, 1)

)
are disjoint

open sets separating x and y.

HenceL is (T2). For any a ∈ Ω, consider themapϕa from the open set {a}×(0, 1]∪{a+}×(0, 1)

to (−1, 1) defined by
ϕa(a, t) = t− 1 and ϕa(a

+, t) = t.

Note that this is a homeomorphism, so L is locally Euclidean. Since {{a} × (0, 1) : a ∈ Ω} is
an uncountable collection of disjoint open sets, L admits no countable basis so is not (A2).
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PSet 10, Part 1

Problem 73 (Connectedness) Clarifywhether the following spaces are connected, totally disconnected
or neither.

(1) (X,Tcofinite).

(2) ({0, 1},T ), where T = {∅, {1}, {0, 1}}.

(3) (X, d), where d is an ultrametric, i.e., the triangle inequality in Definition 1.1.1 is strengthened to
d(x, z) ⩽ max{d(x, y), d(y, z)}. The p-adic numbers (Example 1.1.6 (8)) form an ultrametric space.

(4)
(
RN,Tuniform

)
(see Problem 20).

Solution (1) If X is finite, then (X,Tcofinite) is discrete, so X is totally disconnected. If X is infinite,
then any two nonempty open sets must intersect, so X is connected.

(2) ({0, 1},T ) is connected since the only two nonempty open sets intersect.

(3) Any open ball B(x, r) in (X, d) is clopen. Indeed, for any y ∈ B(x, r) and any z ∈ B(y, r), we have
d(x, z) ⩽ d(y, z) < r, so y ∈ B(y, r) ⊂ B(x, r). Let S be any subset of X that contains more than
one point, say x and y, set r = 1

2d(x, y). Then S is covered by two disjoint open sets B(x, r) and
B(x, r)c both having nonempty intersection with S. Hence S is disconnected. Thus (X, d) is totally
disconnected.

(4)
(
RN,Tuniform

)
is neither connected nor totally disconnected. See Problem 79 (1) ® for a classifica-

tion of its connected components.

Problem 74 (Connectedness of subspaces) Let (X,T ) be a topological space, and Y ⊂ X a subspace.
Which of the following statements are equivalent to the fact that Y is disconnected? Prove the correct
ones and give counterexamples for the wrong ones.

(1) There exist nonempty sets A,B ⊂ X with A ∩ B = A ∩ B = ∅, such that Y = A ∪ B, where the
closures are taken in X .

(2) There exist disjoint open sets A,B in X with A ∩ Y 6= ∅, B ∩ Y 6= ∅, such that Y ⊂ A ∪B.

(3) There exist disjoint closed sets A,B in X with A ∩ Y 6= ∅, B ∩ Y 6= ∅, such that Y ⊂ A ∪B.

(4) There exists a clopen set A in X such that A ∩ Y 6= ∅ and A ∩ Y 6= Y .

(5) There is a surjective continuous map f : Y → {0, 1}.

Solution (1) 4 By Problem 29 (2), A ∩ BY = A ∩
(
B ∩ Y

)
= (A ∩ Y ) ∩ B = A ∩ B, and similarly

A
Y ∩B = A ∩B. Hence the conditions are equivalent to Y being disconnected.

(2) 8 Consider R where the open sets are ∅ and all subsets that contain 0. Then R \ {0} is discrete,
so it is disconnected. However, any two nonempty open sets in R intersect.

(3) 8 Consider R where the open sets are R and all subsets that does not contain 0. Then R \ {0} is
discrete, so it is disconnected. However, any two nonempty closed sets in R intersect.

(4) 8 Consider the example in (2), where ∅ and R are the only clopen sets.
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(5) 4 This is Proposition 3.1.2 (5).

Problem 75 (Connected components) LetX be a topological space. The connected component contain-
ing x ∈ X is defined to be the maximal connected subsets of X containing x.

(1) Prove: the connected component containing x is the union of all connected subsets of X that con-
tain x.

(2) Prove: each connected component is a closed subset.

(3) Give an example showing that the connected component need not be open.

(4) Prove: if f : X → Y is continuous, then for any subset A of X , the cardinality of connected
components of f(A) is no more than the cardinality of connected components of A.

(5) Denote the connected component of Xα containing xα to be C(xα). Prove: the connected compo-
nent of

∏
α

Xα containing the point (xα) is
∏
α

C(xα).

(6) Let X be a compact Hausdorff space. Prove: for any x, the connected component C(x) is the
intersection of all clopen sets that contain x.

Proof (1) By Proposition 3.1.14, the union of all connected subsets of X containing x is connected
and contains x. Its maximality is clear.

(2) Let C be a connected component ofX . Then C is connected by Proposition 3.1.12. The maximality
of C implies C = C, so C is closed.

(3) By Problem 79 (1) ¬, each point on the Sorgenfrey line is a connected component, while it is not
open.

(4) The image of any connected component of A under f is connected, so the cardinality of connected
components of f(A) is no more than that of A.

(5) Denote by C the connected component of
∏
α

Xα containing (xα). Then each πα(C) is connected

and contains xα, so πα(C) ⊂ C(xα) and C ⊂
∏
α

πα(C) ⊂
∏
α

C(xα). On the other hand, by Propo-

sition 3.1.18,
∏
α

C(xα) is connected and contains (xα), so
∏
α

C(xα) ⊂ C. Hence C =
∏
α

C(xα).

(6) Let A(x) be the intersection of all clopen sets that contain x.

C(x) ⊂ A(x) Any clopen set containing x also contains C(x), for otherwise C(x) would be dis-
connected by this clopen set and its complement.

A(x) ⊂ C(x) It suffices to show that A(x) is connected, and we prove this by contradiction. If A
is disconnected, then there exist disjoint nonempty closed sets E,F in A(x) such that A(x) =
E∪F . SinceA(x) is the intersection of closed sets, it is closed. Hence bothE and F are closed
in X . Since X is compact Hausdorff, X is normal, so there exist disjoint open sets U, V in X
such that E ⊂ U and F ⊂ V . Note that (U ∪V )c is closed and then compact forX is compact,
and it is covered by the open sets

F := {F : F c is a clopen set containingx}.
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Hence there exist finitely many F1, . . . , Fn ∈ F such that (U ∪ V )c ⊂ F1 ∪ · · · ∪ Fn, or equiva-
lently,

K := F c
1 ∩ · · · ∩ F c

n ⊂ U ∪ V.

We can assume x ∈ U . Note that K is clopen, and K ∩ U = K \ V since K ⊂ U ∪ V and
U ∩ V = ∅. It follows thatK ∩ U is clopen and contains x, but it does not contain all of A(x)
forU does not contain all ofA(x). This contradicts the definition ofA(x), soA(x) is connected
and then A(x) ⊂ C(x).

Problem 76 (Non-products)

(1) Let X,Y be topological spaces, and A ( X , B ( Y . Prove: if X,Y are connected, so is (X × Y ) \
(A×B).

(2) Suppose R ' X × Y . Prove: either X or Y is a single point set.

(3) Prove the same conclusion for S1.

Proof (1) Suppose f : (X×Y )\ (A×B) → {0, 1} is continuous. Fix some x0 ∈ X \A and y0 ∈ Y \B.
For any (x, y) ∈ (X × Y ) \ (A × B), without loss of generality, assume x /∈ A. Then {x} × Y is
homeomorphic to Y and contained in (X × Y ) \ (A × B), so the restriction f |{x}×Y is constant.
Similarly, f |X×{y0} is constant. Hence

f(x, y) = f(x, y0) = f(x0, y0).

Thus f is constant, and by Proposition 3.1.2 (5), (X × Y ) \ (A×B) is connected.

(2) Since R is connected, both X and Y are connected. If both X and Y contain more than one point,
then for any x ∈ X and y ∈ Y the set (X ×Y ) \ {(x, y)} is connected by (1). However, Rwould no
longer be connected if we remove some point from it (if it misses r, then R \ {r} can be covered by
(−∞, r) and (r,+∞)), a contradiction.

(3) Suppose S1 ' X × Y . Since S1 is connected, both X and Y are connected. Suppose |X| ⩾ 2 and
|Y | ⩾ 2. The bijection between S1 and X × Y implies that either |X| ⩾ 3 or |Y | ⩾ 3. Without loss
of generality, assume |X| ⩾ 3. Then we can pick two distinct points x1, x2 ∈ X and y ∈ Y . The set
(X ×Y ) \ {(x1, y), (x2, y)} is connected by (1), but S1 minus two points is disconnected (S1 minus
one point is homeomorphic to R, and R minus one point is disconnected), a contradiction.

PSet 10, Part 2

Problem 77 (Path-connectedness: examples)

(1) Although looks quite non-obvious, the set R2 \Q2 is path-connected. We give two proofs here:

First proof Since Q2 is a countable set, for any x ∈ R2 \ Q2, there exist uncountably many lines l
such that

x ∈ l ⊂ R2 \Q2.

Now for x 6= y ∈ R2 \ Q2, pick two such lines, one contains x and the other contains y, such
that they are not parallel. Now you can connect x to the intersection point through the first
line, then to y through the second line.
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Second proof Suppose (x1, y1), (x2, y2) ∈ R2 \Q2. If x1, x2 ∈ R \Q, then we pick y0 ∈ R \Q, and
connect (x1, y1) to (x1, y0) through the line x = x1, and connect (x1, y0) to (x2, y0) through the
line y = y0, and finally connect (x2, y0) to (x2, y2) through the line x = x2. Similar arguments
hold if x1, y2 ∈ R \Q or y1, y2 ∈ R \Q or x2, y1 ∈ R \Q.

It turns out that each proof can be extended to prove a more general result on path-connectedness:

Proposition 1 Let S be ... then Rn \ S is path-connected.

Proposition 2 Let X,Y be path-connected, and ...

Complete the full statements and prove.

(2) Show that the topological space (X = {v, s},T = {∅, {s}, {v, s}}) is path-connected.

Proof (1) ¬ Let S be a countable subset of Rn (n ⩾ 2). Then Rn \ S is path-connected.

Proof Since S is countable, for any x ∈ Rn \ S, there exist uncountably many lines l such
that x ∈ l ⊂ Rn \S. Now for x 6= y ∈ Rn \S, pick two such lines, one contains x and the other
contains y, such that they intersect at a point z. Then we can connect x to z through the first
line, then to y through the second line.

 Let X,Y be path-connected, then for any U ⊂ X and V ⊂ Y , the set (U × Y ) ∪ (X × V ) is path-
connected.

Proof Suppose (x1, y1), (x2, y2) ∈ (U×Y )∪(X×V ). If x1, x2 ∈ U , then we pick y0 ∈ V , and
connect (x1, y1) to (x1, y0) through the line x = x1, and connect (x1, y0) to (x2, y0) through the
line y = y0, and finally connect (x2, y0) to (x2, y2) through the line x = x2. Similar arguments
hold if x1 ∈ U, y2 ∈ V or y1, y2 ∈ V or x2 ∈ U, y1 ∈ V .

(2) It suffices to construct a path from v to s:

γ : [0, 1] → X, t 7→

v, 0 ⩽ t ⩽ 1
2 ,

s, 1
2 < t ⩽ 1.

Problem 78 (Local connectedness)

(1) Define the concept of local connectedness:

Definition We say a topological space X is locally connected if ...

(2) Is (R,Tcocountable) connected/locally connected/path-connected/locally path-connected?

(3) For simplicity, let us denote

C = connected, LC = locally connected,
PC = path-connected, LPC = locally path-connected.
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Give examples for regions ¬ to ³ in the following picture:

C

PC

LPC

LC

¬



®

¯

°

±

²

³

(4) Prove: if X is compact and locally connected, then X has finitely many connected components.
Can we remove the local connectedness condition?

(5) Prove: X is locally connected if and only if for any open set U in X , any connected component of
U is open. In particular, any connected component of a locally connected space is open.

(6) SupposeX is locally connected, f : X → Y is continuous. Prove: if f is either open or closed, then
f(X) is locally connected. Can we remove the assumption “f is either open or closed”?

Proof (1) A topological space X is locally connected if every point admits a neighbourhood basis
consisting of open connected sets. In otherwords, for any x ∈ X , every neighborhood of x contains
a connected open neighborhood of x.

(2) ¬ Since R is uncountable, there are no disjoint non-empty open subsets in (R,Tcocountable), so it
is connected.

 For any open neighbourhood U of x and any two open sets A,B ⊂ R such that U ∩ A 6= ∅
and U ∩B 6= ∅, we have U ∩A,U ∩B ∈ Tcocountable. Hence A∩B ∩U = (U ∩A)∩ (U ∩B) is
the intersection of two nonempty open sets, which is nonempty for the same reason as in ¬.
Therefore any open neighbourhood of x is connected, so (R,Tcocountable) is locally connected.

® For any f ∈ C([0, 1], (R,Tcocountable)), f([0, 1]) is compact. However, as we have shown in the
proof of Problem 58 (4), compact sets in (R,Tcocountable)must be finite. Since the topology on
any finite set in (R,Tcocountable) is discrete, f([0, 1])would be totally disconnected if it hasmore
than one point. But now it is the continuous image of [0, 1], so f([0, 1]) must be a singleton.
Therefore f must be constant, which means (R,Tcocountable) is not path-connected.

¯ Since (R,Tcocountable) is connected but not path-connected, it is not locally path-connected by
Proposition 3.2.10.

(3) ¬ Q is neither C nor LC.

 R is both PC and LPC.

® The topologist’s sine curve is C but neither PC nor LC.

¯ The topologist’s sine curve with an additional path from (0, 0) to (1, 0) is PC but not LC.

° (R,Tcocountable) is C and LC but not PC, as shown in (2).

± (0, 1) ∪ (1, 2) is LPC but not PC.

² Let L∗ be the one-point compactification of the Long line L defined similarly as in Problem
72 (4) with (0, 1] replaced by [0, 1). Equivalently, L∗ is the space Ω× [0, 1)∪{(ω1, 0)}with the
lexicographic order topology, whereΩ = [0, ω1) is the minimal uncountable well-ordered set.
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Denote by C the quotient of L∗ identifying its initial point (0, 0) and final point (ω1, 0). Then
C is PC, LC, but not LPC. (It is not locally path-connected at [(ω1, 0)].)

³ The disjoint union of two copies of °-type space is LC but neither C nor LPC.

(4) SinceX is compact and locally connected, it can be covered by finitely many connected open sets.
ThereforeX has finitely many connected components. The local connectedness condition is neces-
sary. For example, the Cantor set is compact, but it has uncountably many connected components.

(5) (⇒) Let C be a connected component of U . Since any point in C has a connected open neighbour-
hood, which must lie in C, C is open.

(⇐) For any x ∈ X and any neighbourhood V of x, V contains an open neighbourhood U of x.
Then the connected component of U containing x is the desired connected open neighbour-
hood of x which is contained in V .

(6) We shall use the characterization of local connectedness in (5). By Problem 23 (1), f : X → f(X)

is a quotient map. Let V be an open set in f(X) andC be a connected component of V . We want to
show that C is open, i.e., f−1(C) is open in X . For any x ∈ f−1(C), we have x ∈ f−1(V ), which is
open inX . SinceX is locally connected, there exists a connected open neighbourhood U of x such
that U ⊂ f−1(V ). Then f(U) is also connected and f(U)∩C 3 f(x), so f(U)∪C is connected and
contained in V . SinceC is a connected component of V , wemust have f(U)∪C = C, i.e., f(U) ⊂ C.
Therefore x ∈ U ⊂ f−1(C), which implies f−1(C) is open. It follows that C is connected and by
(5) we see that f(X) is locally connected.

The assumption “f is either open or closed” is necessary. Let (X,TX) be any non-locally connected
space. Then (X,Tdiscrete) is locally connected and the identity map IdX : (X,Tdiscrete) → (X,TX)

is continuous. However, the image is not locally connected.

Problem 79 (Components and path components)

(1) Find the components and path components for the following space:

¬ The Sorgenfrey line.

 (R,Tcocountable).

®
(
RN,Tuniform

)
(see Problem 20).

(2) Prove Proposition 3.2.22 and Proposition 3.2.23 (π0 and πc are functors).

Proof (1) ¬ We have shown in Example 3.1.4 (4) that the Sorgenfrey line is totally disconnected.
Therefore each point is a component and a path component.

 By Problem 78 (2), (R,Tcocountable) is connected. In part ® of the proof of Problem 78 (2), we
have seen that only singletons are path-connected. Therefore each point is a path component.

® Consider the equivalence relation ∼ on X :

(xn) ∼ (yn) ⇐⇒ the sequence (xn − yn) is bounded.

We shall show that the (path) component of (xn) ∈ X is [xn] := {(yn) ∈ X : (yn) ∼ (xn)},
and it suffices to prove that each such [xn] is clopen and path-connected.
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� For any (yn) ∈ [xn], we have B((yn), 1) ⊂ [xn], so [xn] is open. The complement of [xn] is
the union of all other equivalence classes, which is open as well. Therefore [xn] is clopen.

� For any (yn), (zn) ∈ [xn], there existsM > 0 such that |yn − zn| < M for all n. Consider

γ : [0, 1] → RN, t 7→ (γn(t)) := (tzn + (1− t)yn).

Then γ(0) = (yn) and γ(1) = (zn). We are left to show that γ is continuous. It suffices
to show that the preimage of any basic open set B((wn), ε) (0 < ε < 1) is open. Suppose
t ∈ γ−1(B((wn), ε)). Then δ := sup

n∈N
|γn(t)− (wn)| < ε. Note that each γn is linear, hence

|γn(t′)− γn(t)| = |zn − yn| · |t′ − t| ⩽M · ε− δ

2M
< ε− δ

for all t′ ∈ B
(
t, ε−δ2M

)
and n ∈ N. It follows that

d(γ(t′), (wn)) ⩽ d(γ(t′), γ(t)) + d(γ(t), (wn)) < (ε− δ) + δ = ε.

Therefore t ∈ B
(
t, ε−δ2M

)
⊂ γ−1(B((wn), ε)). This shows that γ is continuous, so [xn] is

path-connected.

(2) πc(f) ∈ C(πc(X), πc(Y )) Let V be open in πc(Y ). Then π−1
c (V ) is open in Y . Since f is con-

tinuous, f−1
(
π−1
c (V )

)
is open in X . Note that f−1

(
π−1
c (V )

)
is the union of all connected

components ofX whose images under f are contained in π−1
c (V ), hence πc

(
f−1

(
π−1
c (V )

))
=

πc(f)
−1(V ) is open in πc(X). Therefore πc(f) is continuous.

πc(IdX) = Idπc(X) The identity map preserves connected components.

πc(g ◦ f) = πc(g) ◦ πc(f) Suppose πc(f)([u]) = [v] and πc(g)([v]) = [w]. Then there exist con-
nected componentsU ⊂ X , V ⊂ Y andW ⊂ Z, such that u ∈ U , v ∈ V ,w ∈W and f(U) ⊂ V ,
g(V ) ⊂W . Since g(f(U)) ⊂ g(V ) ⊂W , we have πc(g ◦ f)([u]) = [w] = πc(g) ◦ πc(f)([u]).

π0(IdX) = Idπ0(X) The identity map preserves path components.

π0(g ◦ f) = π0(g) ◦ π0(f) Suppose πc(f)([u]) = [v] and πc(g)([v]) = [w]. Then there exist path
components U ⊂ X , V ⊂ Y , W ⊂ Z, such that u ∈ U , v ∈ V , w ∈ W and f(U) ⊂ V ,
g(V ) ⊂W . Since g(f(U)) ⊂ g(V ) ⊂W , we have πc(g ◦ f)([u]) = [w] = πc(g) ◦ πc(f)([u]).

Problem 80 (Divisible properties) We say a topological property (P) is a divisible property if

X satisfies (P), Y is a quotient of X =⇒ Y satisfies (P).

(1) Prove: compactness, connectedness, path-connectedness are divisible.

(2) Is (T1), (T2), (T3), (T4) divisible? Is local compactness divisible?

(3) Is (A1), (A2) divisible? Is separability, Lindelöf property divisible?

Proof (1) Quotient maps are continuous, hence they preserve compactness / connectedness / path-
connectedness.
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(2) Consider the map

p : X = [0, 2] → Y = {0, 1, 2}, x 7→


0, ifx = 0,

1, if 0 < x < 2,

2, ifx = 2.

Endow Y with the quotient topology induced by p so that

TY = {∅, {0, 1}, {1}, {1, 2}, {0, 1, 2}}.

Y is not (T1)/(T2) Consider the points 1 and 2. Any open neighbourhood of 2 must contain 1,
so Y is not (T1) and then not (T2).

Y is not (T3) Y is the only open set containing {0, 2}, so {0, 2} and 1 cannot be separated by
disjoint open sets.

Y is not (T4) The closed sets {0} and {2} cannot be separated by disjoint open sets.

Local compactness is not divisible Consider the map

q : X = R → Y = (R \Q) t {Q}, x 7→

Q, ifx ∈ Q,

x, ifx /∈ Q.

Endow Y with the quotient topology induced by q. We shall show that the point Q ∈ Y has no
compact neighbourhood. Let U be any open set containing Q. Then (U \ {Q}) ∪ Q is open in X .
Let K be any compact set containing U . Since (K \ {Q}) ∪ Q contains the unbounded open set
(U \ {Q})∪Q, we can choose an increasing sequence (xn) in (K \ {Q})∪Q consisting of irrational

numbers that tends to infinity. For each n ∈ N, let Un = R \
∞⋃
k=n

{xk}. Then Un is open and

contains Q, so q(Un) is open in Y . Now {q(Un)}∞n=1 is an open cover of K with no finite subcover
for (K \ {Q}) ∪Q cannot be covered by finitely many Un. This contradicts the assumption thatK
is compact. Therefore Q has no compact neighbourhood and Y is not locally compact.

(3) (A1)/(A2) is not divisible Let X = R and consider the equivalence relation ∼ defined by

x ∼ y ⇐⇒ x = y orx, y ∈ Z.

Denote by q the quotient map X → Y . We shall show that the quotient space Y = X/ ∼ is
admits no countable neighbourhood basis at q(0). Let {Un}∞n=1 be a countable collection of
open neighbourhoods of q(0). For each n, q−1(Un) is open in R and contains Z, so there exists
{εn,k}k∈Z ⊂ (0, 1) such that

Un ⊃ q

(⋃
k∈Z

B(k, εn,k)

)
.

Let δk = 1
2εk,k for each k ∈ Z and consider

V = q

(⋃
k∈Z

B(k, δk)

)
.
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Then V is an open neighborhood of q(0) by the construction of q. Moreover, Un 6⊂ V for all n
since q(n+ δn) ∈ Un \ V . Therefore any countable collection of open neighbourhoods of q(0)
cannot form a neighbourhood basis, so Y is not (A1) and then not (A2).

Separability is divisible It suffices to show that the continuous image of a separable space is sep-
arable. LetX be separable and A be a countable dense subset ofX . For any continuous map
f : X → Y , by Proposition 1.6.23,

f(A) ⊃ f
(
A
)
= f(X).

Therefore f(A) is a countable dense subset of f(X) and f(X) is separable.

Lindelöf property is divisible ByProposition 2.7.15 (2), the continuous image of a Lindelöf space
is Lindelöf.

PSet 11, Part 1

Problem 81 (Constructing homotopies)

(1) Prove Proposition 3.3.3:

¬ If fi ∈ C(X,Y ), gi ∈ C(Y, Z) (i = 0, 1), and f0 ∼ f1, g0 ∼ g1, then g0 ◦ f0 ∼ g1 ◦ f1.

 If ϕ ∈ C(X0, X1), fi ∈ C(X1, Y ) (i = 0, 1), and f0 ∼ f1, then f0 ◦ ϕ ∼ f1 ◦ ϕ.

® If ψ ∈ C(Y0, Y1), fi ∈ C(X,Y0) (i = 0, 1), and f0 ∼ f1, then ψ ◦ f0 ∼ ψ ◦ f1.

(2) Prove that “homotopy equivalence between topological spaces” is an equivalence relation.

Proof (1) ¬ Take F ∈ C([0, 1]×X,Y ) and G ∈ C([0, 1]× Y, Z) such that

F (0, x) = f0(x), F (1, x) = f1(x), G(0, y) = g0(y), G(1, y) = g1(y).

Then H(t, x) ∈ C([0, 1]×X,Z) defined by H(t, x) = G(t, F (t, x)) satisfies

H(0, x) = G(0, F (0, x)) = g0(f0(x)), H(1, x) = g1(f1(x)).

 Since ϕ ∼ ϕ, this follows directly from ¬.

® Since ψ ∼ ψ, this follows directly from ¬.

(2) (Reflexivity) The identity map gives the homotopy equivalence.

(Symmetry) This follows from the definition of homotopy equivalence.

(Transitivity) Suppose f ∈ C(X,Y ), g ∈ C(Y,X), h ∈ C(Y, Z) and k ∈ C(Z, Y ) satisfy

g ◦ f ∼ IdX , f ◦ g ∼ IdY , k ◦ h ∼ IdY , h ◦ k ∼ IdZ .

Then by  and ® of (1),

g ◦ k ◦ h ◦ f ∼ g ◦ IdY ◦ f = g ◦ f ∼ IdX ,
h ◦ f ◦ g ◦ k ∼ h ◦ IdY ◦ k = h ◦ k ∼ IdZ .
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Problem 82 (Homotopy v.s. subspace/product)

(1) Prove: if f0, f1 ∈ C(X,Y ) are homotopic, and A ⊂ X , then f0|A, f1|A ∈ C(A, Y ) are homotopic.

(2) Let Y =
∏
α

Yα. Prove: f0, f1 ∈ C(X,Y ) are homotopic if and only if for each α, the maps πα ◦

f0, πα ◦ f1 ∈ C(X,Yα) are homotopic.

Proof (1) If F is a homotopy between f0 and f1, then F |[0,1]×A is a homotopy between f0|A and f1|A.

(2) By the universal mapping property of the product topology, we have

(⇒) If F is a homotopy between f0 and f1, then Fα(t, x) = πα ◦ F (t, x) is a homotopy between
πα ◦ f0 and πα ◦ f1.

(⇐) If Fα is a homotopy between πα ◦ f0 and πα ◦ f1 for each α, then F (t, x) = (Fα(t, x))α is a
homotopy between f0 and f1.

Problem 83 (Maps to Sn)

(1) Prove: any non-surjective continuous map f : X → Sn is null-homotopic.

(2) Let f, g : X → Sn be continuousmaps. Suppose they are never anti-podal, i.e., g(x) 6= −f(x) holds
for all x. Prove: f is homotopic to g.

(3) Prove: f ∈ C(X,Y ) is null-homotopic if and only if f has a continuous extension F ∈ C(C(X), Y ),
where C(X) is the cone over X .

(4) Let Dn+1 be the closed unit ball in Rn+1. Prove: there exists a retraction f ∈ C
(
Dn+1, Sn

)
if and

only if IdSn is null-homotopic.

Proof (1) Without loss of generality, assume N = (0, · · · , 0, 1) /∈ f(X) and consider the stereo-
graphic projection

σ : Sn \ {N} → Rn, (x1, · · · , xn+1) 7→
1

1− xn+1
(x1, · · · , xn).

It is a homeomorphism with inverse

σ−1 : Rn → Sn \ {N}, (u1, · · · , un) 7→
1

|u|2 + 1

(
2u1, · · · , 2un, |u|2 − 1

)
.

Then F (t, x) = σ−1((1− t)σ(f(x))) is a homotopy from f to the constant map x 7→ (0, · · · , 0,−1).

(2) Since f(x) and g(x) are never anti-podal, their convex combination (1−t)f(x)+tg(x) is never zero.
Thus the map H(t, x) =

(1− t)f(x) + tg(x)

‖(1− t)f(x) + tg(x)‖
is well-defined and is a homotopy from f to g.

(3) For convenience, let C(X) = ([0, 1]×X)/({1} ×X).

(⇒) Let H : [0, 1] ×X → Y be a homotopy from f to a constant map cy0 , for some y0 ∈ Y . Then
H(0, x) = f(x) andH(1, x) = cy0 for all x ∈ X . SinceH is constant on the subspace {1} ×X ,
it induces a continuous map H̃ : C(X) → Y which agrees with f on {0} ×X . Thus H̃ is an
extension of f to C(X).

(⇐) Suppose F ∈ C(C(X), Y ) is an extension of f . ThenH : [0, 1]×X → Y defined byH(t, x) =

F ([(t, x)]) is a homotopy from f to the constant map x 7→ F ([(1, x)]).
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(4) (⇒) Suppose f ∈ C
(
Dn+1, Sn

)
is a retraction. Then F : [0, 1] × Sn → Sn defined by F (t, x) =

f((1− t)x) is a homotopy from IdSn to the constant map x 7→ f(0) ∈ Sn.

(⇐) Suppose F : [0, 1] × Sn → Sn is a homotopy from IdSn to a constant map. Fix any point
p0 ∈ Sn. Then f ∈ C

(
Dn+1, Sn

)
defined by

f(x) =

F (1, p0), x = 0,

F
(
1− ‖x‖, x

∥x∥

)
, x 6= 0

is a retraction. It is continuous since F (1, x) is constant for all x ∈ Sn.

Problem 84 (Relative homotopy) LetX,Y be topological spaces, and A ⊂ X . Let f1, f2 ∈ C(X,Y ) be
continuous maps such that f1 = f2 on A. We say f1, f2 are homotopic relative to A, denoted as f1 A∼ f2, if
there exists a continuous map F : [0, 1]×X → Y such that

F (0, x) = f1(x), F (1, x) = f2(x), ∀x ∈ X,

F (t, x) = f1(x), ∀x ∈ A.

(1) Prove: relative homotopy is an equivalence relation.

(2) Let X,Y, Z be topological spaces, A ⊂ X , f1, f2 ∈ C(X,Y ) and g1, g2 ∈ C(Y, Z). Prove: if f1 A∼ f2

and g1
f1(A)∼ g2, then g1 ◦ f1 A∼ g2 ◦ f2.

(3) Define “pull-back” and “push-forward” for relative homotopy classes, and check thewell-definedness.

Proof (1) (Reflexivity) The identity map gives the relative homotopy.

(Symmetry) If F (t, x) is a relative homotopy from f1 to f2, then F (1− t, x) is a relative homotopy
from f2 to f1.

(Transitivity) Suppose f1 A∼ f2 and f2 A∼ f3. If G(t, x) is a relative homotopy from f1 to f2, and
H(t, x) is a relative homotopy from f2 to f3, then

F : [0, 1]×X → Y, (t, x) 7→

G(2t, x), 0 ⩽ t ⩽ 1
2 ,

H(2t− 1, x), 1
2 ⩽ t ⩽ 1

is a relative homotopy from f1 to f3.

(2) Suppose F (t, x) and G(t, y) are the corresponding relative homotopies for f1 A∼ f2 and g1
f1(A)∼ g2.

Then G(t, F (t, x)) is a homotopy from g1 ◦ f1 to g2 ◦ f2 relative to A.

(3) Any map ϕ ∈ C(X0, X1) induces a pull-back defined by

ϕ∗ : [X1, Y ]A → [X0, Y ]φ−1(A), [f ] 7→ [f ◦ ϕ].

Any map ψ ∈ C(Y0, Y1) induces a push-forward defined by

ψ∗ : [X,Y0]A → [X,Y1]A, [f ] 7→ [ψ ◦ f ].

For the well-definedness, as in the proof of Proposition 3.3.3 / Problem 81 (1), we only need to
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verify that if fi ∈ C(X,Y ), gi ∈ C(Y, Z) (i = 1, 2), and for A ⊂ X , f1 A∼ f2, g1
f1(A)∼ g2, then

g1 ◦ f1
A∼ g2 ◦ f2.

This is exactly the statement in (2).

PSet 11, Part 2

Problem 85 (Simple connectedness)

(1) Let X be path-connected. Prove that the following statements are equivalent:

¬ X is simply connected, i.e., π1(X) = {e}.

 Any loop in X can be continuously deformed to a point in X .

® For any x0, x1 ∈ X , any paths γ1, γ2 ∈ Ω(X;x0, x1) are path-homotopic.

(2) Show that “simple connectedness” is a topological property. Is it multiplicative / preserved under
continuous maps / hereditary?

Proof (1) ¬ ⇒  For any loop inX , fix a point x0 on it. Since π0(Ω(X,x0)) = π1(X,x0) = {e}, this
loop can be continuously deformed to x0 in X .

 ⇒ ® Since γ1 ∗ γ2 ∈ Ω(X,x0), it can be continuously deformed to x0, i.e., γ1 ∗ γ2 ∼
p
γx0 . Then

γ1 ∼
p
γ1 ∗ γ2 ∗ γ2 ∼

p
γx0

∗ γ2 ∼
p
γ2.

® ⇒ ¬ Take x0 = x1, then π1(X,x0) = Ω(X,x0)/ ∼
p
= {e}.

(2) ¬ Suppose f : X1 → X2 is a homeomorphism and H : [0, 1] × [0, 1] → X1 is a path-homotopy.
Then f ◦ H is continuous and thus a path-homotopy in X2. Therefore, any loop in X2 with
base point f(x0) (where x0 ∈ X1) are path-homotopic, and X2 is simply connected.

 SupposeXα is simply connected for each α and letX =
∏
α

Xα. Then for any γ ∈ Ω(X, (xα)),

πα ◦ γα is a loop in Xα for each α. Since Xα is simply connected, πα ◦ γα ∼
p
γxα

. By Problem
82 (2), γ ∼

p
γ(xα). ThusX is simply connected. Hence simple connectedness is multiplicative.

® Simple connectedness may not be preserved under continuous maps. For example, the map
f : [0, 1] → S1 ⊂ C, t 7→ e2πit turns a simply connected space into a non-simply connected
one.

¯ Simple connectedness is not hereditary. For example, R2 is simply connected, but the punc-
tured plane R2 \ {0} is not simply connected.

Problem 86 (Fundamental group of a product space)

(1) Prove: π1(X × Y, (x0, y0)) ' π1(X,x0)× π1(Y, y0).

(2) Write down a formula for the fundamental group of an arbitrary product, π1

(∏
α

Xα, (xα)

)
, and

prove your formula.
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Proof We shall prove

π1

(∏
α

Xα, (xα)

)
'
⊗
α

π1(Xα, xα).

Let pα denote projection on the α-th factor so as not to create confusion with the notation π1 for the
fundamental group. Choosing base points xα ∈ Xα, we get maps

pα∗ : π1

(∏
α

Xα, (xα)

)
→ π1(Xα, xα).

Putting these together, we define a map

P : π1

(∏
α

Xα, (xα)

)
→
⊗
α

π1(Xα, xα), [γ] 7→ (pα∗[γ])α.

This is a well-defined map by Problem 82 (2), and we claim it is an isomorphism.

P is injective Suppose γ is a loop in
∏
α

Xα such that P [γ] is the identity element of
⊗
α

π1(Xα, xα).

Writing γ in terms of its component functions as γ(t) = (γα(t))α, the assumption means that
[γxα ]p = pα∗[γ]p = [pα ◦ γ]p = [γα]p for each α. If we choose homotopies Hα : γα ∼

p
γxα , it follows

that the map
H : [0, 1]× [0, 1] →

∏
α

Xα, (t, x) 7→ (Hα(t, x))α

is a homotopy from γ to the constant loop γ(xα).

P is surjective Let [γα]p ∈ π1(Xα, xα) be arbitrary for each α. By the universal mapping property of
the product space, we can define a loop γ in

∏
α

Xα by γ(t) = (γα(t))α. Then

P [γ]p = (pα∗[γ]p)α = ([pα ◦ γ]p)α = ([γα]p)α.

P is a group homomorphism For any [γ1]p, [γ2]p ∈ π1

(∏
α

Xα, (xα)

)
, we have

P ([γ1]p ∗ [γ2]p) = (pα∗([γ1]p ∗ [γ2]p))α = ([pα ◦ (γ1 ∗ γ2)]p)α = ([γ1,α]p ∗ [γ2,α]p)α = P [γ1]pP [γ2]p.

Problem 87 (Base point change isomorphism) Let X be path-connected, x0, x1 ∈ X . We have seen
in Proposition 3.4.9 that any path λ from x0 to x1 induces a group isomorphism Γλ : π1(X,x0) →
π1(X,x1).

(1) Suppose λ1 is a path from x0 to x1, and λ2 is a path from x1 to x2. Prove: Γλ1∗λ2 = Γλ2 ◦ Γλ1 .

(2) Prove: π1(X,x0) is abelian if and only if for any two paths λ1, λ2 from x0 to x1, we have Γλ1
= Γλ2

.

(3) Suppose X,Y are path-connected, and f ∈ C(X,Y ). I have a vague intuition that “the group
homomorphism f∗ : π1(X,x0) → π1(Y, f(x0)) is independent of the choice of x0”. Please write
down an explicit formula/rigorous statement and prove it.

Proof (1) Γλ1∗λ2([γ]p) =
[
λ1 ∗ λ2 ∗ γ ∗ λ1 ∗ λ2

]
p
=
[
λ2 ∗ λ1 ∗ γ ∗ λ1 ∗ λ2

]
p
= Γλ2 ◦ Γλ1([γ]p).
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(2) (⇒) If there exist two paths λ1, λ2 from x0 to x1 such that Γλ1
([γ]p) 6= Γλ2

([γ]p) for some [γ]p ∈
π1(X,x0), i.e.,

[
λ1 ∗ γ ∗ λ1

]
p
6=
[
λ2 ∗ γ ∗ λ2

]
p
, then

[
λ2 ∗ λ1 ∗ γ

]
p
6=
[
γ ∗ λ2 ∗ λ1

]
p
. This shows

that
[
λ2 ∗ λ1

]
p
, [γ]p ∈ π1(X,x0) do not commute, a contradiction.

(⇐) For any two loops γ1, γ2 based at x0, by assumption Γγ1([γ2]p) = Γγ2([γ2]p), that is,

[γ1 ∗ γ2 ∗ γ1]p = [γ2 ∗ γ2 ∗ γ2]p = [γ2]p.

Then [γ2]p ∗ [γ1]p = [γ1]p ∗ [γ2]p, so π1(X,x0) is abelian.

(3) Suppose λ is a path from x0 to x1. Then the following diagram commutes:

π1(X,x0) π1(Y, f(x0))

π1(X,x1) π1(Y, f(x1))

(fx0
)∗

Γλ Γf◦λ

(fx1
)∗

Proof Note that
[
f ◦ λ ∗ (f ◦ γ) ∗ (f ◦ λ)

]
p
=
[
f ◦
(
λ ∗ γ ∗ λ

)]
p
for any loop γ inX based at x0, so

[γ]p [f ◦ γ]p

[
λ ∗ γ ∗ λ

]
p

[
f ◦
(
λ ∗ γ ∗ λ

)]
p

(fx0
)∗

Γλ Γf◦λ

(fx1
)∗

Problem 88 (Fundamental group of topological groups) Let (G, •) be a path-connected topological
group. We want to prove that π1(G, e) is an abelian group. Let γ1, γ2 be two loops in G based at e.

(1) (First proof) Denote by γe the constant loop at e. Check:

F (s, t) = (γ1 ∗ γe)
(
max

{
0, t− s

2

})
• (γe ∗ γ2)

(
min

{
1, t+ s

2

})
is a path-homotopy between γ1 ∗ γ2 and γ2 ∗ γ1, where • is the group multiplication.

(2) (Second proof) Construct explicit path-homotopies to verify

¬ γ1(t) • γ2(t) ∼
p
γ2(t) • γ1(t).

 (γ1 ∗ γ2)(t) ∼
p
γ1(t) • γ2(t).

(3) (Third proof, the Eckmann–Hilton argument)

¬ Let S be a set on which there are two “semigroup with unitary” structures, (S, ◦, 1◦) and
(S, •, 1•). Moreover, suppose

(g ◦ h) • (g′ ◦ h′) = (g • g′) ◦ (h • h′), ∀g, g′, h, h′ ∈ S.

Prove: 1◦ = 1•, g • h = g ◦ h, and g ◦ h = h ◦ g.

 Define [γ1]p • [γ2]p = [γ1 • γ2]p. Show that • is well-defined on π1(G, e).

® Use ¬ to prove that π1(G) is abelian.
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Proof (1) Clearly F (s, t) ∈ C([0, 1]× [0, 1], G). When s = 0, we have

F (0, t) = (γ1 ∗ γe)(t) • (γe ∗ γ2)(t)

=

γ1(2t) • γe(2t) = γ1(2t), 0 ⩽ t ⩽ 1
2 ,

γe(2t− 1) • γ2(2t− 1) = γ2(2t− 1), 1
2 ⩽ t ⩽ 1,

= γ1 ∗ γ2(t).

When s = 1, we have

F (1, t) = (γ1 ∗ γe)
(
max

{
0, t− 1

2

})
• (γe ∗ γ2)

(
min

{
1, t+ 1

2

})
=

(γ1 ∗ γe)(0) • (γe ∗ γ2)
(
t+ 1

2

)
= γ2(2t), 0 ⩽ t ⩽ 1

2 ,

(γ1 ∗ γe)
(
t− 1

2

)
• (γe ∗ γ2)(1) = γ1(2t− 1), 1

2 ⩽ t ⩽ 1,

= γ2 ∗ γ1(t).

(2) ¬ Consider F (s, t) = (γ1(ts))
−1 • γ1(t) • γ2(t) • γ1(ts). We have

F (0, t) = γ1(t) • γ2(t), F (1, t) = γ2(t) • γ1(t).

 Consider F (s, t) = (γ1 ∗ γe)
(
t
(
1− s

2

))
• (γe ∗ γ2)

(
t
(
1− s

2

)
+ s

2

)
. We have

F (0, t) = (γ1 ∗ γe)(t) • (γe ∗ γ2)(t)
(1)

γ1 ∗ γ2(t),

F (1, t) = (γ1 ∗ γe)
(
t
2

)
• (γe ∗ γ2)

(
t+1
2

)
= γ1(t) • γ2(t).

(3) ¬ The units of the two operations coincide:

1◦ = 1◦ ◦ 1◦ = (1• • 1◦) ◦ (1◦ • 1•) = (1• ◦ 1◦) • (1◦ ◦ 1•) = 1• • 1• = 1•.

For any g, h ∈ S, we have

g ◦ h = (1 • g) ◦ (h • 1) = (1 ◦ h) • (g ◦ 1) = h • g

= (h ◦ 1) • (1 ◦ g) = (h • 1) ◦ (1 • g) = h ◦ g .

 Suppose γi (i = 1, 2, 3, 4) are loops in G based at e such that γ1 ∼
p
γ2 and γ3 ∼

p
γ4. Let F,G be

their respective path-homotopies. Then F •H is a path-homotopy between γ1 •γ3 and γ2 •γ4.

® Now (π1(G, e), ∗, γe) and (π1(G, e), •, γe) are two “semigroup with unitary” structures on
π1(G, e). Moreover, for any [γi]p ∈ π1(G, e) (i = 1, 2, 3, 4), we have

([γ1]p ∗ [γ2]p) • ([γ3]p ∗ [γ4]p) = ([γ1]p • [γ3]p) ∗ ([γ2]p • [γ4]p).

By ¬, π1(G) ' (π1(G, e), ∗, γe) is abelian.
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PSet 12, Part 1

Problem 89 (Fundamental group of T2 = S1 × S1) Repeat the proof of π1
(
S1, x0

)
' Z to show that

π1
(
T2, x0

)
' Z× Z, and explicitly write down the generators.

Proof Fix x0 = (1, 1) ∈ T2. Form,n ∈ Z, consider the loop

γ(m,n) : [0, 1] → T2, t 7→
(
e2πimt, e2πint

)
.

Define the map
Φ : Z× Z → π1

(
T2, x0

)
, (m,n) 7→

[
γ(m,n)

]
p
.

Note that T2 ' R2/Z2, where the quotient map is given by

p : R2 → T2, (x, y) 7→
(
e2πix, e2πiy

)
.

The liftedmap γ̃(m,n) is a path γ̃(m,n) : [0, 1] → R2 with γ̃(m,n)(0) = (0, 0) such that the following diagram
commutes (i.e., p ◦ γ̃(m,n) = γ(m,n)):

R2

[0, 1] T2

p
γ̃(m,n)

γ(m,n)

Comparing the expressions of γ(m,n) and p, we see that γ̃(m,n)(t) = (mt, nt).

Φ is a group homomorphism By defintion, Φ((m1, n1) + (m2, n2)) is represented by the loop

γ(m1+m2,n1+n2)(t) =
(
e2πi(m1+m2)t, e2πi(n1+n2)t

)
.

To relate the lifting of γ(m1+m2,n1+n2) with the liftings of γ(m1,n1) and γ(m2,n2), we introduce the
translation map

T(m1,n1) : R
2 → R2, (x, y) 7→ (x+m1, y + n1).

Then the paths γ̃(m1+m2,n1+n2) and γ̃(m1,n1) ∗
(
T(m1,n1) ◦ γ̃(m2,n2)

)
are path-homotopic since R2 is

simply connected. It follows that

γ(m1+m2,n1+n2) = p ◦ γ̃(m1+m2,n1+n2) ∼p p ◦
(
γ̃(m1,n1) ∗

(
T(m1,n1) ◦ γ̃(m2,n2)

))
= γ(m1,n1) ∗ γ(m2,n2).

In other words,

Φ((m1, n1) + (m2, n2)) =
[
γ(m1+m2,n1+n2)

]
p
=
[
γ(m1,n1) ∗ γ(m2,n2)

]
p
=
[
γ(m1,n1)

]
p
·
[
γ(m2,n2)

]
p

= Φ((m1, n1)) · Φ((m2, n2)).

Φ is surjective Let γ : [0, 1] → T2 be any loop with γ(0) = γ(1) = (1, 1). We need the following lemma.

(Path lifting) For any path γ : [0, 1] → T2 with γ(0) = (1, 1), there exists a unique path
γ̃ : [0, 1] → R2 with γ̃(0) = (0, 0) such that p ◦ γ̃ = γ.
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Assume the lemma for now. Then the fact that (1, 1) = γ(1) = p ◦ γ̃(1) implies γ̃(1) ∈ Z2. In other
words, there existm,n ∈ Z such that

γ̃(0) = (0, 0), γ̃(1, 1) = (m,n).

Since R2 is conctractible, we must have γ̃ ∼
p
γ̃(m,n). Let F̃ : [0, 1]× [0, 1] → R2 be a path-homotopy

connecting γ̃ and γ̃(m,n). Then

F = p ◦ F̃ : [0, 1]× [0, 1] → T2

is a path-homotopy connecting γ and γ(m,n). So [γ]p =
[
γ(m,n)

]
p
= Φ((m,n)).

Φ is injective SupposeΦ((m1, n1)) = Φ((m2, n2)), i.e., there exists a path-homotopy F : [0, 1]× [0, 1] →
T2 connecting γ(m1,n1) and γ(m2,n2). We need the following lemma.

(Homotopy lifting) For any homotopy F : [0, 1] × [0, 1] → T2 with fixed starting point
F (s, 0) ≡ (1, 1), there exists a unique homotopy F̃ : [0, 1]×[0, 1] → R2 with fixed starting point
F̃ (s, 0) ≡ (0, 0) such that p◦F̃ = F . If further F is a path-homotopy, i.e., it has a fixed end point
F (s, 1) ≡ (x0, y0) ∈ T2, then F̃ is also a path-homotopy, i.e., there exists (x, y) ∈ p−1((x0, y0))

such that F̃ (s, 1) ≡ (x, y).

Assume the lemma for now. Then there exists a homotopy F̃ : [0, 1] × [0, 1] → R2 such that
p ◦ F̃ = F . It follows that

p ◦ F̃ (0, t) = γ(m1,n1)(t), p ◦ F̃ (1, t) = γ(m2,n2)(t).

Since F̃ (0, 0) = (0, 0) = F̃ (1, 0), by uniqueness of path lifting above, we must have

F̃ (0, t) = γ̃(m1,n1)(t), F̃ (1, t) = γ̃(m2,n2)(t).

So by the second part of the homotopy lifting lemma, we have

(m1, n1) = γ̃(m1,n1)(1) = F̃ (0, 1) = F̃ (1, 1) = γ̃(m2,n2)(1) = (m2, n2).

The proof is complete, and we see that the generators of π1
(
T2, x0

)
are [γ(1,0)]p and [γ(0,1)]p.

Problem 90 (Fundamental group of X = U ∪ V ) Suppose U, V are open subsets ofX andX = U ∪
V . Suppose U ∩ V is path-connected and x0 ∈ U ∩ V . Let ι : U ↪→ X and  : V ↪→ X be inclusion maps.
Prove: π1(X,x0) is generated by Im(ι∗ : π1(U, x0) → π1(X,x0)) and Im(∗ : π1(V, x0) → π1(X,x0)). (We
don’t require U or V to be path-connected.)

Proof We begin by showing that there is a subdivision a0 < a1 < · · · < an of [0, 1] such that γ(ai) ∈
U ∩ V and γ([ai−1, ai]) is contained either in U or in V , for each i. First, choose a subdivision b0, · · · , bm
of [0, 1] such that for each i, the set γ([bi−1, bi]) is contained in either U or V . (Use the Lebesgue number
lemma, as in the proof of Proposition 3.5.1.) If γ(bi) belongs to U ∩ V for each i, we are finished. If not,
let i be an index such that γ(bi) /∈ U ∩ V . Each of the sets γ([bi−1, bi]), γ([bi, bi+1]) lies either in U or in
V . If γ(bi) ∈ U , then both of these sets must lie in U ; and if γ(bi) ∈ V , both of them must lie in V . In
either case, we may delete bi, obtaining a new subdivision c0, · · · , cm−1 that still satisfies the condition
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that γ([ci−1, ci]) is contained either in U or V , for each i. A finite number of repetitions of this process
leads to the desired subdivision.

Given any loop γ in X based at x0, let a0, · · · , an be the subdivision constructed above. Define
γi = f ◦ ki, where

ki : [0, 1] → [ai−1, ai], t 7→ (ai − ai−1)t+ ai−1.

Then γi is a path that lies either in U or in V , and

[γ]p = [γ1]p ∗ [γ2]p ∗ · · · ∗ [γn]p.

For each i, since U ∩ V is path-connected, we can choose a path λi in U ∩ V from x0 to γ(ai). Since
γ(a0) = γ(an) = x0, we can set λ0 = λn = γx0

.
Now we set

βi = (λi−1 ∗ γi) ∗ λi

for each i. Then βi is a loop in X based at x0 whose image lies either in U or in V . Direct computation
shows that

[β1]p ∗ [β2]p ∗ · · · ∗ [βn]p = [γ1]p ∗ [γ2]p ∗ · · · ∗ [γn]p.

This shows that any loop in X based at x0 is path-homotopic to a product of the form β1 ∗ β2 ∗ · · · ∗ βn,
where each βi is a loop inX based at x0 that lies either inU or in V . This leads to the desired conclusion.

Problem 91 (Induced group homomorphisms) For each of the followingmaps, compute f∗ on the cor-
responding fundamental groups (with base points 1 or (1, 1)).

(1) f : S1 → S1, z 7→ zn.

(2) f : S1 → S1 × S1, z 7→ (zm, zn).

(3) f : S1 × S1 → S1, (z1, z2) 7→ zm1 z
n
2 .

Solution (1) π1
(
S1, 1

)
= Z is generated by [γ1]p where γ1 : [0, 1] → S1, t 7→ e2πit, and

f∗([γ1]p) = [f ◦ γ1]p,

which is represented by the loop γn : [0, 1] → S1, t 7→ e2πint. When considering the group Z, this
shows f∗ is multiplication by n, i.e., f∗ : Z → Z, k 7→ nk.

(2) Similar to (1), we have f∗ : Z → Z× Z, k 7→ (mk, nk).

(3) In Problem 89 we showed that π1
(
S1 × S1, (1, 1)

)
= Z×Z is generated by [γ(1,0)]p and [γ(0,1)]p. The

map f∗ take them to [γm]p and [γn]p, respectively. Hence f∗ : Z× Z → Z, (k, l) 7→ mk + nl.

Problem 92 (Not-so-fundamental group) Let X be a path-connected topological space, and x0 ∈ X

be a base point. Given any two loops γ0, γ1 based at x0, we define a pseudo-homotopy between γ0 and γ1
to be a map (not necessarily continuous) F : [0, 1]× [0, 1] → X such that

� For any fixed t, the map γt(s) := F (t, s) is continuous in s.

� For any fixed s, the map λs(t) := F (t, s) is continuous in t.

� For any s, F (0, s) = γ0(s), F (1, s) = γ1(s).
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� For any t, F (t, 0) = F (t, 1) = x0.

We define the “NOT-SO-Fundamental group” of X at x0 to be the pseudo-homotopy classes.

(1) Show that the “NOT-SO-Fundamental group” of S1 is the trivial group {e}.

(2) Show that the “NOT-SO-Fundamental group” is not so interesting, since it is always the trivial
group {e}.

(3) In proving π1
(
S1
)
' Z, where did we use the continuity of the homotopy?

Proof (1) Fix x0 = 1 ∈ S1. Since π1
(
S1, x0

)
= Z is generated by the loop γ1 : [0, 1] → S1, t 7→ e2πit, it

suffices to show that γ1 is pseudo-homotopic to the constant loop γx0 . Consider the map

F : [0, 1]× [0, 1] → S1, (t, s) 7→

γ1
(
s1−t

)
, (t, s) 6= (1, 0),

1, (t, s) = (1, 0).
(92–1)

Then F (t, s) is continuous in s for any fixed t, continuous in t for any fixed s, and satisfies

F (0, s) = γ1(s), F (1, s) = γ1(1) = γx0
(s).

Hence γ1 is pseudo-homotopic to γx0 .

(2) For any loop γ in X based at x0, the F defined in (92–1) (replace S1 with X and γ1 with γ) is
always a pseudo-homotopy between γ and the constant loop γx0

.

(3) The continuity of F is crucial in the proof of the lifting lemma (Lemma 3.5.8).

PSet 12, Part 2

Problem 93 (More fundamental groups) Find the fundamental groups of the following spaces:

(1) Rn+k \ (Rn × {(0, · · · , 0)}) (k ⩾ 2).

(2) R3 \ Z3.

(3) S2 ∨ S2.

(4) S1 ∨ S2.

(5) {(x, y, 0) : x, y ∈ R} ∪
{
(0, y, z) : y2 + z2 = 1, z ⩾ 0

}
.

(6) R3 \
(
{(0, 0, z) : z ∈ R} ∪

{
(x, y, 0) : x2 + y2 = 1

})
.

(7) R3 \
{
(x, y, 0) : x2 + y2 = 1

}
.

(8) R3 \ ({(0, 0, 0)} ∪ {(1, 1, z) : z ∈ R}).

Solution Let X denote the space in question.

(1) Let A =
(
{0, · · · , 0} × Rk

)
\ {0}. Consider the map

F : [0, 1]×X → X, (x, t) 7→ ((1− t)x1, · · · , (1− t)xn, xn+1, · · · , xn+k).
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We have
F (0, x) = x, F (1, x) ∈ A, ∀x ∈ X

and
F (t, a) = a, ∀a ∈ A, ∀t ∈ [0, 1].

That is, A is a strong deformation retract of X . So X ∼ A ∼ Rk \ {0} ∼ Sk−1. Thus

π1(X) ' π1
(
Sk−1

)
'

Z, k = 2,

{e}, k ⩾ 3.

(2) We first show that R3 minus finitely many (say, n) points is simply connected. When n = 1, this
follows from R3 \ {0} ∼ S2. Assume the statement holds for n − 1. For Y = R3 \ {x1, · · · , xn},
without loss of generality, assume the third coordinates of these n points are not all equal, and let
m denote the smallest andM the largest. Take ε = M−m

3 > 0, and let

U = {(x, y, z) ∈ Y : z > m+ ε}, V = {(x, y, z) ∈ Y : z < M − ε}.

ThenU ∩V is path-connected, andU, V are both simply connected by induction. Hence Y = U ∪V
is simply connected by Proposition 3.5.1.

Now for any loop γ : [0, 1] → X , since γ([0, 1]) is compact in R3, there exists R > 0 such that
γ([0, 1]) ⊂ B(0, R)\Z3. Note that only finitelymanypoints are removed fromB(0, R), soB(0, R)\Z3

is homeomorphic to R3 minus finitely many points, which is simply connected. Thus γ is path-
homotopic to a constant loop, and π1(X) = {e}.

(3) Regard X as ∂B((0, 0, 1), 1) ∪ ∂B((0, 0,−1), 1) and let

U =
{
(x, y, z) ∈ X : z > 1

3

}
,

V =
{
(x, y, z) ∈ X : − 2

3 < z < 2
3

}
,

W =
{
(x, y, z) ∈ X : z < − 1

3

}
.

Both U and V are homeomorphic to the open disk, hence simply connected. Note that {0} is the
strong deformation retract of V , so V is also simply connected. Since U ∩ V is homeomorphic to a
ring, which is path-connected, by Proposition 3.5.1, U ∪ V is simply connected. Now (U ∪ V )∩W
is again path-connected, by the same proposition, X = U ∪ V ∪W is simply connected. Hence
π1(X) = {e}.

(4) Regard X as ∂B((0, 0,−1), 1) ∪
{
(0, y, z) ∈ R3 : y2 + (z − 1)2 = 1

}
and let

U = X \ {(0, 0, 2)}, V = X \ {(0, 0,−2)}.

Then both U and V are open in X , and U ∩ V is path-connected. Since 0 ∈ U ∩ V , by Problem 90,
any loop in X based at 0 is path-homotopic to a product of the form γ1 ∗ · · · ∗ γn, where each γi
is a loop in X based at 0 that lies either in U or in V . Note that S2 is a strong deformation retract
of U and S1 is a strong deformation retract of V , and since π1

(
S2
)
' {e}, the loop γ1 ∗ · · · ∗ γn is

path-homotopic to a loop in S1 =
{
(0, y, z) ∈ R3 : y2 + (z − 1)2 = 1

}
. Hence π1(X) ' Z.
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(5) Let A =
{
(0, y, z) ∈ R3 : y2 + z2 = 1, z ⩾ 0

}
∪
{
(0, y, 0) ∈ R3 : −1 ⩽ y ⩽ 1

}
. Consider the map

F : [0, 1]×X → X, (t, x, y, z) 7→ ((1− t)x, (1− t)y + sgn(y)tmin{|y|, 1}, z).

We have

F (0, x, y, z) = (x, y, z), F (1, x, y, z) = (0, sgn(y)min{|y|, 1}, z) ∈ A, ∀(x, y, z) ∈ X

and
F (t, 0, y, z) = (0, (1− t)y + sgn(y)t|y|, z) = (0, y, z), ∀(0, y, z) ∈ A.

That is, A is a strong deformation retract of X . So X ∼ A ∼ S1. Thus π1(X) ' Z.

(6) Consider R3 minus the z-axis in cylindrical coordinates (ρ, ϕ, z) where

� ρ is the Euclidean distance from the z-axis to the point,

� ϕ is the angle between the x direction and the line from the origin to the projection of the
point on the x-y plane,

� z is the signed distance from the x-y plane to the point.

Then X = R3 \ ({(1, ϕ, 0) : ϕ ∈ [0, 2π)} ∪ {(0, 0, z) : z ∈ R}). Define the map

F : [0, 1]×X → X, (ρ, ϕ, z) 7→ (1− t)(ρ, ϕ, z) + t

(
1 +

ρ− 1

2
√

(ρ− 1)2 + z2
, ϕ,

z

2
√

(ρ− 1)2 + z2

)
.

Then we have
F (0, ρ, ϕ, z) = (ρ, ϕ, z), F (1, ρ, ϕ, z) ∈ T2, ∀(ρ, ϕ, z) ∈ X

and
F (t, ρ, ϕ, z) = (1− t)(ρ, ϕ, z) + t(1 + (ρ− 1), ϕ, z) = (ρ, ϕ, z), ∀(ρ, ϕ, z) ∈ T2,

where the 2-torus is represented by

T2 =
{
(ρ, ϕ, z) ∈ X : (ρ− 1)2 + z2 = 1

4

}
.

That is, T2 is a strong deformation retract of X . Thus π1(X) ' π1
(
T2
)
' Z× Z.

(7) Let A =
{
(x, y, 0) : x2 + y2 = 1

}
.

46 Chapter 1 The Fundamental Group

we can choose this Aij for all the segments of γr and γr+1 in Rr+1 .

We can arrange that the factorization associated to γ0 is equivalent to the factor-

ization [f1] ··· [fk] by choosing the path gv for each vertex v along the lower edge

of I×I to lie not just in the two Aij ’s corresponding to the Rs ’s containing v , but also

to lie in the Aα for the fi containing v in its domain. In case v is the common end-

point of the domains of two consecutive fi ’s we have F(v) = x0 , so there is no need

to choose a gv for such v ’s. In similar fashion we may assume that the factorization

associated to the final γmn is equivalent to [f ′1] ··· [f
′
ℓ] . Since the factorizations as-

sociated to all the γr ’s are equivalent, we conclude that the factorizations [f1] ··· [fk]

and [f ′1] ··· [f
′
ℓ] are equivalent. ⊔⊓

Example 1.23: Linking of Circles. We can apply van Kampen’s theorem to calculate

the fundamental groups of three spaces discussed in the introduction to this chapter,

the complements in R3 of a single circle, two unlinked circles, and two linked circles.

The complement R3−A of a single circle A

deformation retracts onto a wedge sum S1∨S2

embedded in R3−A as shown in the first of the

two figures at the right. It may be easier to see

that R3−A deformation retracts onto the union

of S2 with a diameter, as in the second figure,

where points outside S2 deformation retract onto S2 , and points inside S2 and not in

A can be pushed away from A toward S2 or the diameter. Having this deformation

retraction in mind, one can then see how it must be modified if the two endpoints

of the diameter are gradually moved toward each other along the equator until they

coincide, forming the S1 summand of S1∨S2 . Another way of seeing the deformation

retraction of R3 − A onto S1 ∨ S2 is to note first that an open ε neighborhood of

S1 ∨ S2 obviously deformation retracts onto S1 ∨ S2 if ε is sufficiently small. Then

observe that this neighborhood is homeomorphic to R
3 − A by a homeomorphism

that is the identity on S1 ∨ S2 . In fact, the neighborhood can be gradually enlarged

by homeomorphisms until it becomes all of R3 −A .

In any event, once we see that R3 − A deformation retracts to S1 ∨ S2 , then we

immediately obtain isomorphisms π1(R
3 −A) ≈ π1(S

1 ∨ S2) ≈ Z since π1(S
2) = 0.

In similar fashion, the complement R3 − (A ∪ B)

of two unlinked circles A and B deformation retracts

onto S1∨S1∨S2∨S2 , as in the figure to the right. From

this we get π1

(
R

3 − (A ∪ B)
)
≈

Z ∗ Z . On the other hand, if A

and B are linked, then R
3 − (A ∪ B) deformation retracts onto

the wedge sum of S2 and a torus S1×S1 separating A and B ,

as shown in the figure to the left, hence π1

(
R

3 − (A ∪ B)
)
≈

π1(S
1×S1) ≈ Z×Z .
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immediately obtain isomorphisms π1(R
3 −A) ≈ π1(S

1 ∨ S2) ≈ Z since π1(S
2) = 0.

In similar fashion, the complement R3 − (A ∪ B)

of two unlinked circles A and B deformation retracts

onto S1∨S1∨S2∨S2 , as in the figure to the right. From

this we get π1

(
R

3 − (A ∪ B)
)
≈

Z ∗ Z . On the other hand, if A

and B are linked, then R
3 − (A ∪ B) deformation retracts onto

the wedge sum of S2 and a torus S1×S1 separating A and B ,

as shown in the figure to the left, hence π1

(
R

3 − (A ∪ B)
)
≈

π1(S
1×S1) ≈ Z×Z .

Figure 5: S2 ∪ {diameter} and S1 ∨ S2

As shown in the first picture of Figure 5, R3 \ A deformation retracts onto the union of S2 with
a diameter, where points outside S2 deformation retract onto S2, and points inside S2 and not in
A can be pushed away from A toward S2 or the diameter. Then we can gradually move the two
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endpoints of the diameter toward each other along the equator until they coincide, forming S1∨S2,
as shown in the second picture. Thus by (4), π1(X) ' π1

(
S1 ∨ S2

)
' Z.

(8) Let
U =

{
(x, y, z) ∈ R3 : x > 1

3

}
, V =

{
(x, y, z) ∈ R3 : x < 2

3

}
.

Then both U and V are open in X , and U ∩ V is path-connected. Let p =
{
( 12 , 0, 0)

}
∈ U ∩ V . By

Problem 90, any loop inX based at p is path-homotopic to a product of the form γ1 ∗· · ·∗γn, where
each γi is a loop in X based at p that lies either in U or in V . Note that S1 is a strong deformation
retract ofU and S2 is a strong deformation retract of V , and since π1

(
S2
)
' {e}, the loop γ1∗· · ·∗γn

is path-homotopic to a loop in U . Hence π1(X) ' π1(U) ' π1
(
S1
)
' Z.

Problem 94 (Maps with trivial induced homomorphism)

(1) Suppose h : S1 → X is a continuous map. Prove that the following are equivalent.

¬ The induced homomorphism h∗ : π1
(
S1, 1

)
→ π1(X,h(1)) is the trivial homomorphism.

 h is null-homotopic.

® h can be extended to a continuous map H : D2 → X .

(2) Now suppose X = S1. Prove: ¬-® are equivalent to

¯ h can be lifted to a continuous map h̃ : S1 → R so that p ◦ h̃ = h.

Proof (1) ¬ ⇒  Denote γ1 : [0, 1] → S1, t 7→ e2πit. By ¬, the loop h ◦ γ1 is path-homotopic to
the constant loop at h(1), so there exists a path-homotopy F : [0, 1] × [0, 1] → X such that
F (0, t) = h ◦ γ1(t) and F (1, t) = h(1). Then

G : [0, 1]× S1 → X,
(
s, e2πit

)
7→ F (s, t)

is a homotopy from h to the constant map h(1). It is well-defined since F (s, 0) = F (s, 1).

 ⇒ ® Suppose F : [0, 1]× S1 → X is a homotopy from h to a constant map. Then

H : D2 → X, reiθ 7→ F
(
1− r, eiθ

)
is a continuous extension of h. It is well-defined at 0 ∈ D2 since F

(
1, eiθ

)
is constant.

® ⇒ ¬ Denote γ1 : [0, 1] → S1, t 7→ e2πit. Then

F : [0, 1]× [0, 1] → X, (s, t) 7→ H
(
(1− s)e2πit + s

)
is a path-homotopy from h ◦ γ1 to the constant loop at h(1), i.e., h∗([γ1]p) = e. Since [γ1]p is
the generator of π1

(
S1, 1

)
, h∗ is the trivial homomorphism.

(2)  ⇒ ¯ Suppose F : [0, 1]×S1 → X = S1 is a homotopy from a constant map to h. Since F |{0}×S1

is constant, it lifts to a continuous map F̃0 : {0} × S1 → R such that p ◦ F̃0 = F |{0}×S1 . By the
lifting lemma (Lemma 3.5.8), there is a lifting F̃ : [0, 1] × S1 → R of F such that p ◦ F̃ = F .
Then h̃ : S1 → R defined by h̃(x) := F̃ (1, x) satisfies p ◦ h̃(x) = p ◦ F̃ (1, x) = F (1, x) = h(x).

¯ ⇒  If h̃ : S1 → R satisfies p ◦ h̃ = h, then F (t, x) := p
(
(1− t)h̃(x)

)
is a homotopy from h to

the constant map p(0) = 1.
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Problem 95 (Degree of maps between circles) For any continuous map f : S1 → S1, there exists
n ∈ Z such that f∗([γ1]p) = [γn]p. The integer n is called the degree of the map f , and is denoted by
deg(f).

(1) Prove: if f ∈ C
(
S1, S1

)
is not surjective, then deg(f) = 0.

(2) Prove: if f, g ∈ C
(
S1, S1

)
, then deg(f ◦ g) = deg(f)deg(g).

(3) Prove: f is homotopic to g if and only if deg(f) = deg(g).

(4) Read the following paragraph which gives a descriptive definition of the winding number.

Suppose γ : S1 → R2 is a continuous map and p /∈ Im(γ). Thewinding numberW (γ, p) of
the closed curve γ around the point p is defined to be the integer representing the total
number of times that curve travels counterclockwise around the point.

Use the language of mapping degree to give a rigorous definition of winding numberW (γ, p).

Proof (1) If f ∈ C
(
S1, S1

)
is not surjective, then so is f ◦ γ1 : [0, 1] → S1. By Problem 83 (1), f ◦ γ1 is

null-homotopic, so deg(f) = 0.

(2) We have

(f ◦ g)∗([γ1]p) = f∗ ◦ g∗([γ1]p) = f∗

([
γdeg(g)

]
p

)
= f∗(deg(g)[γ1]p) = deg(g)f∗([γ1]p)

= deg(g)
[
γdeg(f)

]
p
= deg(f)deg(g)[γ1]p =

[
γdeg(f) deg(g)

]
p
.

Hence deg(f ◦ g) = deg(f)deg(g).

(3) (⇒) Suppose F : [0, 1]× S1 → S1 is a homotopy from f to g. Then

H : [0, 1]× [0, 1] → S1, (s, t) 7→ F (s, γ1(t))

is a homotopy from f ◦ γ1 to g ◦ γ1. Hence deg(f) = deg(g).

(⇐) If deg(f) = deg(g), then f ◦ γ1 ∼ g ◦ γ1. By rotation we can assume f ◦ γ1 ∼
p
g ◦ γ1. Suppose

F : [0, 1]× [0, 1] → S1 is a path-homotopy from f ◦ γ1 to g ◦ γ1. Then

H : [0, 1]× S1 → S1,
(
s, e2πit

)
7→ F (s, t)

is a homotopy from f to g. It is well-defined since F (s, 0) = F (s, 1) for all s ∈ [0, 1].

(4) Consider the map
r : R2 \ {p} → ∂B(p, 1), x 7→ p+

x− p

‖x− p‖
.

Then we can defineW (γ, p) := deg(r ◦ γ).

Problem 96 (Equivalent statements of Borsuk–Ulam) Prove the equivalent statements stated in Re-
mark 3.5.19:

(1) There exists no antipodal-preserving continuous map f : Sn → Sn−1.

(2) For any antipodal-preserving continuous map f : Sn → Rn, there exists x0 ∈ Sn such that f(x0) = 0.
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(3) There exists no continuous map f : Dn → Sn−1 such that the restriction to the boundary of f , f |Sn−1 :

Sn−1 → Sn−1, is antipodal-preserving.

(4) LetF1, · · · , Fn+1 be a covering of Sn by closed sets, then there exists 1 ⩽ i ⩽ n+1 such thatFi∩(−Fi) 6= ∅.

(5) LetU1, · · · , Un+1 be a covering of Sn by open sets, then there exists 1 ⩽ i ⩽ n+1 such thatUi∩(−Ui) 6= ∅.

Proof We prove by the implications
(B–U) (2)

(5) (4) (1) (3)

.

(B–U) ⇒ (2) If f ∈ C(Sn,Rn) is antipodal-preserving, then by the Borsuk–Ulam theorem, there exists
x0 ∈ Sn such that f(x0) = f(−x0) = −f(x0), so f(x0) = 0.

(2) ⇒ (B–U) Apply (2) to the antipodal-preserving map given by g(x) := f(x)− f(−x).

(2) ⇒ (1) An antipodal-preserving map Sn → Sn−1 is also a nowhere zero antipodal-preserving map
Sn → Rn.

(1) ⇒ (2) Assume that f ∈ C(Sn,Rn) is nowhere zero and antipodal-preserving. Then the antipodal-

preserving map g : Sn → Sn−1 given by g(x) := f(x)

‖f(x)‖
contradicts (1).

(1) ⇔ (3) Note that the projection π : (x1, · · · , xn+1) 7→ (x1, · · · , xn) is a homomorphism of the upper
closed hemisphere U of Sn with Dn. An antipodal-preserving map f : Sn → Sn−1 as in (1) would
yield a map g : Dn → Sn−1 antipodal on ∂Dn = Sn−1 by g(x) = f

(
π−1(x)

)
.

Conversely, for g : Dn → Sn−1 as in (3) we can define f(x) = g(π(x)) and f(−x) = −g(π(x)) for
x ∈ U . This specifies f on the whole of Sn; it is consistent because g is antipodal on the equator of
Sn. The resulting f is continuous by Problem 16 (1).

(B–U) ⇒ (4) For a closed cover F1, · · · , Fn+1 of Sn, we define f ∈ C(Sn,Rn) by

f(x) := (dist(x, F1), · · · ,dist(x, Fn)).

By the Borsuk–Ulam theorem, there exists x ∈ Sn with f(x) = f(−x) =: y. If the i-th coordinate
of y is 0, then by Problem 7 (2), both x and −x are in Fi. If all coordinates of y are nonzero, then
both x and −x lie in Fn+1.

(4) ⇒ (1) Consider an n-simplex in Rn containing 0 in its interior, and we project the facets centrally
from 0 on Sn−1. Then we obtain a covering of Sn−1 by closed sets F1, · · · , Fn+1 such that no Fi
contains a pair of antipodal points. Then if a continuous antipodal-preserving map f : Sn → Sn−1

exists, the closed cover f−1(F1), · · · , f−1(Fn+1) of Sn would contradict (4).

(4) ⇒ (5) Given any open cover U1, · · · , Un+1 of Sn, since Sn is a topological manifold, by Lemma
2.10.12, there exists a closed cover F1, · · · , Fn+1 of Sn such that Fi ⊂ Ui. Then the existence of i
such that Fi ∩ (−Fi) 6= ∅ implies Ui ∩ (−Ui) 6= ∅.

(5) ⇒ (4) Suppose F1, · · · , Fn+1 form a closed cover of Sn with Fi ∩ (−Fi) = ∅ for all i. Since each
Fi is compact and every two points of it have distance strictly smaller than 2, there exists ε > 0

such that all the Fi have diameter at most 2− ε. Then the open cover F
ε
2
1 , · · · , F

ε
2
n+1, where F

ε
2
i :={

x ∈ Sn : dist(x, Fi) < ε
2

}
, contradicts (5).
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PSet 13, Part 1

Problem 97 (Smallest normal subgroup) Let G be a group and S ⊂ G be a subset.

(1) Show that the smallest normal subgroup of G containing S is

NS =
⋂

H is a normal subgroup ofG andS⊂H
H.

(2) Prove: NS is generated by all conjugates of elements of S in G, i.e.,

NS =
{
c1 · · · cn : n ⩾ 0, ci = gisig

−1
i for some gi ∈ G, si ∈ S ∪ S−1

}
.

Proof (1) It suffices to show that the intersection of normal subgroups is normal. First, NS is a sub-
group of G since it is an intersection of subgroups. For any g ∈ G and any normal subgroup H of
G, gNSg−1 ⊂ gHg−1 = H . Hence gNSg−1 ⊂ NS and gNS ⊂ NSg. Similarly, from g−1NSg ⊂ NS

we deduce NSg ⊂ gNS . Therefore gNS = NSg, and NS is normal.

(2) By definition, RHS ⊂ NS . Since it is clear that RHS is a subgroup of G and g(RHS)g−1 ⊂ RHS for
all g ∈ G, we have RHS ⊃ NS . Thus the equality holds.

Problem 98 (Abelianization) Let G be a group.

(1) Let [G,G] be the subgroup of G that is generated by all elements of the form xyx−1y−1 for all
x, y ∈ G. Prove: [G,G] is a normal subgroup of G.

(2) Prove: the group Ab(G) := G/[G,G] is abelian (called the abelianization of G).

(3) Prove: the abelianization defines a functor from Grp to Ab.

(4) What is the abelianization of Z ∗ · · · ∗ Z?

(5) Prove: Ab
(〈
a1, b1, · · · , an, bn

∣∣ a1b1a−1
1 b−1

1 · · · anbna−1
n b−1

n = 1
〉)

= Z2n.

(6) Prove: Ab
(〈
a1, · · · , an

∣∣ a21 · · · a2n = 1
〉)

= Zn−1 × Z2.

Proof (1) For any u ∈ [G,G] and g ∈ G, we have gug−1 = u
(
u−1gug−1

)
∈ [G,G]. Thus g[G,G]g−1 ⊂

[G,G] and [G,G] is normal.

(2) Since [g][h][g]−1[h]−1 =
[
ghg−1h−1

]
= [e], we have [g][h] = [h][g] for all [g], [h] ∈ Ab(G).

(3) ¬ By (2), Ab associates each object G in Grp to an object Ab(G) in Ab.

 For any group homomorphism f : G → H , define Ab(f) : Ab(G) → Ab(H) by Ab(f)([g]) =

[f(g)]. If g1, g2 ∈ G satisfy [g1] = [g2], then g1g−1
2 =

n∏
k=1

xkykx
−1
k y−1

k for some xi, yi ∈ G and

f(g1)f(g2)
−1 =

n∏
k=1

f(xk)f(yk)f(xk)
−1f(yk)

−1 ∈ [H,H].

So [f(g1)] = [f(g2)], and Ab(f) : Ab(G) → Ab(H) is a well-defined morphism in Ab.
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® Ab(IdG) = IdAb(G) for every G ∈ Grp, and Ab(g ◦ f) = Ab(g) ◦ Ab(f) for all morphisms
f : G→ H and g : H → K in Grp.

(4) Ab(Z ∗ · · · ∗ Z︸ ︷︷ ︸
n

) = 〈a1, · · · , an | aiaj = ajai, 1 ⩽ i < j ⩽ n 〉 = Zn.

(5) Ab
(〈
a1, b1, · · · , an, bn

∣∣ a1b1a−1
1 b−1

1 · · · anbna−1
n b−1

n = 1
〉)

= Ab(〈a1, b1, · · · , an, bn〉) = Z2n.

(6) Ab
(〈
a1, · · · , an

∣∣ a21 · · · a2n = 1
〉)

= Zn/〈(2, · · · , 2)〉. Since the Smith normal form of the matrix
2 0 · · · 0
...

... . . . ...
2 0 · · · 0

 is diag(2, 0, · · · , 0︸ ︷︷ ︸
n−1

), we have

Zn/〈(2, · · · , 2)〉 ' Zn/(2Z× 0Z× · · · × 0Z︸ ︷︷ ︸
n−1

) ' (Z/2Z)× (Z/{0})× · · · × (Z/{0})︸ ︷︷ ︸
n−1

' Z2 × Zn−1.

Problem 99 (Wedge sum of circles)

(1) (Finite wedge sum and applications)

¬ Prove: π1
(
S1 ∨ S1 ∨ · · · S1

)
' Z ∗ Z ∗ · · · ∗ Z.

 What is the fundamental group of R2 \ {finitely many points}?
® What is the fundamental group of R2 \ Z2?
¯ Find the fundamental group of R3 \ {finitely many lines passing 0}.
° A group is called finitely presented if it has a presentationG = 〈S |R 〉where both S and R are

finite sets. Prove: any finitely presented group is the fundamental group of some compact
Hausdorff space.

(2) (Infinite wedge sum)

¬ Let X =
⋃
n⩾1

Cn, where Cn is the circle in R2 of radius n centered at (n, 0). Compute π1(X).

 Let Y = {(x, 0) : x ∈ R} ∪
⋃
n⩾1

C̃n, where C̃n is the circle in R2 of radius 1
3 centered at

(
n, 13

)
.

Compute π1(Y ). Are X and Y homeomorphic?

Proof (1) ¬ View
∞∨
n=1

S1 as a connected graph with 1 vertex and n edges. By Example 3.6.13,

π1

( ∞∨
n=1

S1
)

' Z ∗ · · · ∗ Z︸ ︷︷ ︸
n−1+1=n

.

 R2 \ {n points} is homotopy equivalent to the connected graph with 2n − 2

vertices and 3n− 3 edges. By Example 3.6.13, its fundamental group is Z ∗ · · · ∗ Z︸ ︷︷ ︸
(3n−3)−(2n−2)+1=n

.

® R2 \ Z2 is homotopy equivalent to an “infinite grid” (the union of all lines x = m and y = n,
m,n ∈ Z), which admits a maximal subtree consisting of all lines x = m (m ∈ Z) together
with y = 0. The entire grid has countably many edges and the maximal subtree misses in-
finitely many edges. By Example 3.6.13, its fundamental group is ∗n∈NZ.
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¯ R3 \ {n lines passing 0} is homotopy equivalent to S2 \ {2n points}, which is homeomorphic
to R2 \ {(2n− 1) points}. By (2), its fundamental group is Z ∗ · · · ∗ Z︸ ︷︷ ︸

2n−1

.

° By (1), we can first construct a wedge sum of S1 with fundamental group 〈S〉, where the
circle Ci corresponds to the generator si ∈ S. For each relation st11 · · · stnn = 1, take a 2-cell
and attach its boundary to the loop that goes around C1 for t1 times, ..., and around Cn for
tn times. Do this for all relations. The resulting space is a compact Hausdorff space with
fundamental group 〈S |R 〉.

(2) ¬ LetU be an open ball centred at (0, 0)with radius less than 1. Then V := X∩U is contractible.
Let An = V ∪ (Cn \ {0}). Then An is open in X since it is the union of two open sets, and

Am∩An = V for distinctm,n. NowX =

∞⋃
n=1

An, where eachAn is a path-connected open set,

andAk∩Am∩An is path-connected for all k,m, n. By vanKampen’s theorem, π1(X) ' ∗n∈NZ.

 Y is a strong deformation retract ofR2\
{(
n, 13

)
: n ⩾ 1

}
, and the latter is homotopy equivalent

to the graph {(x, 0) : x ⩾ 0} ∪ {(x, 1) : x ⩾ 0} ∪ {(m, y) : m ∈ N ∪ {0}, 0 ⩽ y ⩽ 1}, which
admits a maximal subtree consisting of all the two horizontal rays together with {0} × [0, 1].
The entire graph has countably many edges and the maximal subtree misses infinitely many
edges. By Example 3.6.13, its fundamental group is ∗n∈NZ. However,X\{(0, 0)} has infinitely
many path components, while Y minus a point has at most 3 path components. ThereforeX
and Y are not homeomorphic.

Problem 100 (Application of van Kampen) Use van Kampen’s theorem to compute the fundamental
group of the following spaces.

(1) RP2.

(2) The Klein bottle.

(3) Σg = T2# · · · #T2︸ ︷︷ ︸
g

.

(4) The n-fold dunce cap. [Split the boundary circle of a closed disk into n parts (by n red dots), and
identify the boundary segments according to the picture below (but keep the interior of the disk
unchanged).]

a a

b

b

The Klein bottle

a

a

a

a

a

a

The n-fold dunce cap

(5) The surface X obtained by gluing the sides of a star as shown below (a “letter edge” is glued
counterclockwise, and an “inverse letter edge” is glued clockwise).
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a e
d e−1

b c−1

a b−1

c d

(6) RP2# · · · #RP2.

Solution (1) If we form RP2 by identifying antipodal points of S2, and obtain a hemisphere with
antipodal points on the equator identified, then it reduces to the case in (4) where n = 2. So
π1
(
RP2

)
' Z2.

(2) We first write the Klein bottle K as the union of two open sets U1 = K \D and U2 = D̃, where D
is a small disc and D̃ is a small disc containing D. Since

U1 ' a a

b

b

∼ a a

b

b

' ba

we have
π1(U1) ' π1

(
S1 ∧ S1

)
' Z ∗ Z = 〈a, b〉.

Since U2 is contractible, and U1 ∩ U2 is an annulus, which is homotopy equivalent to S1, we have

π1(U2) ' {e} and π1(U1 ∩ U2) ' π1
(
S1
)
' Z.

Consider the inclusion-induced group homomorphism

ι∗ : π1(U1 ∩ U2) → π1(U1).

The generator of π1(U1 ∩ U2), that is, the circle, can be deformed inside U1 to the boundary loop
baba−1. In other words,

ι∗(1) = baba−1.

Hence by van Kampen’s theorem,

π1(K) ' (Z ∗ Z) ∗Z {e} =
〈
a, b
∣∣ baba−1 = 1

〉
.

(3) Consider the polygonal presentation of Σg :
a1b−1

1

b−1
g

ag

b1a−1
1

a−1
gbg

· · ·

We first write Σg as the union of two open sets U1 = Σg \D and U2 = D̃, where D is a small disc
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and D̃ is a small disc containing D. Since

U1 '
a1b−1

1

b−1
g

ag

b1a−1
1

a−1
gbg

· · · ∼
a1b−1

1

b−1
g

ag

b1a−1
1

a−1
gbg

· · · '
2g∨
k=1

S1

we have

π1(U1) ' π1

(
2g∨
k=1

S1
)

' Z ∗ · · · ∗ Z︸ ︷︷ ︸
2g

= 〈a1, b1, · · · , ag, bg〉.

Since U2 is contractible, and U1 ∩ U2 is an annulus, which is homotopy equivalent to S1, we have

π1(U2) ' {e} and π1(U1 ∩ U2) ' π1
(
S1
)
' Z.

Consider the inclusion-induced group homomorphism

ι∗ : π1(U1 ∩ U2) → π1(U1).

The generator of π1(U1 ∩ U2), that is, the circle, can be deformed inside U1 to the boundary loop
a1b1a

−1
1 b−1

1 · · · agbga−1
g b−1

g . In other words,

ι∗(1) = a1b1a
−1
1 b−1

1 · · · agbga−1
g b−1

g .

Hence by van Kampen’s theorem,

π1(Σg) ' (Z ∗ · · · ∗ Z︸ ︷︷ ︸
2g

) ∗Z {e} =
〈
a1, b1, · · · , ag, bg

∣∣ a1b1a−1
1 b−1

1 · · · agbga−1
g b−1

g = 1
〉
.

(4) This is exactly the way we used to construct a presentation complex in Problem 99 (1) °, so the
fundamental group of the n-fold dunce cap is 〈a | an = 1 〉 ' Zn.

(5) We first write X as the union of two open sets U1 = X \ D and U2 = D̃, where D is a small disc
and D̃ is a small disc containing D. Since

U1 '
c−1b

b−1a

da

dc

∼
c−1b

b−1a

da

dc

'

b d

c

da

ab

'

b d

c

db

aa

'

b d

c

db a

'

db a

c
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we have

π1(U1) ' π1

( )
' Z ∗ Z ∗ Z =

〈
α := , β := , γ :=

〉
by Example 3.6.13, for the last graph has 2 vertices and 4 edges.

Since U2 is contractible, and U1 ∩ U2 is an annulus, which is homotopy equivalent to S1, we have

π1(U2) ' {e} and π1(U1 ∩ U2) ' π1
(
S1
)
' Z.

Consider the inclusion-induced group homomorphism

ι∗ : π1(U1 ∩ U2) → π1(U1).

The generator of π1(U1 ∩ U2), that is, the circle, can be deformed inside U1 to the boundary loop
dabacdb−1c−1, which is represented by the loop αβγαβ−1γ−1 in the last graph. In other words,

ι∗(1) = αβγαβ−1γ−1.

Hence by van Kampen’s theorem,

π1(X) ' (Z ∗ Z ∗ Z) ∗Z {e} =
〈
α, β, γ

∣∣αβγαβ−1γ−1 = 1
〉
.

(6) Consider the polygonal presentation of RP2# · · · #RP2︸ ︷︷ ︸
n

:
a1a2

an

· · ·

a1a2

an· · ·

We first write RP2# · · · #RP2︸ ︷︷ ︸
n

as the union of two open sets U1 = RP2# · · · #RP2︸ ︷︷ ︸
n

\D and U2 = D̃,

where D is a small disc and D̃ is a small disc containing D. Since

U1 '
a1a2

an

· · ·

a1a2

an· · ·

∼
a1a2

an

· · ·

a1a2

an· · ·

'
n∨
k=1

S1

we have

π1(U1) ' π1

(
n∨
k=1

S1
)

' Z ∗ · · · ∗ Z︸ ︷︷ ︸
n

= 〈a1, · · · , an〉.

Since U2 is contractible, and U1 ∩ U2 is an annulus, which is homotopy equivalent to S1, we have

π1(U2) ' {e} and π1(U1 ∩ U2) ' π1
(
S1
)
' Z.

Consider the inclusion-induced group homomorphism

ι∗ : π1(U1 ∩ U2) → π1(U1).
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The generator of π1(U1 ∩ U2), that is, the circle, can be deformed inside U1 to the boundary loop
a21a

2
2 · · · a2n. In other words,

ι∗(1) = a21a
2
2 · · · a2n.

Hence by van Kampen’s theorem,

π1

(
RP2# · · · #RP2︸ ︷︷ ︸

n

)
' (Z ∗ · · · ∗ Z︸ ︷︷ ︸

n

) ∗Z {e} =
〈
a1, · · · , an

∣∣ a21a22 · · · a2n = 1
〉
.

PSet 13, Part 2

Problem 101 (Products of coverings)

(1) Prove: if X is connected, X̃ 6= ∅, then p is surjective, and the cardinality of p−1(x) is independent
of x.

(2) Prove: if p : X̃ → X and p′ : X̃ ′ → X ′ are covering maps, so is their product p × p′ : X̃ × X̃ ′ →
X ×X ′.

(3) Construct a covering map p : H = {x+ yi : y > 0} → C∗ = C \ {0} by identifying C∗ with S1 ×R+

(via polar coordinates).

(4) Let p : R → S1 be the standard covering map. Prove: the infinite product
∏
n∈N

p :
∏
n∈N

R →
∏
n∈N

S1 is

not a covering map.

Proof (1) Anyx ∈ X has an openneighborhoodUx homeomorphic to an openneighborhoodVα in X̃
and p(Vα) = Ux. Hence p is surjective. Note that for any y ∈ Ux, we have

∣∣p−1(y)
∣∣ = ∣∣p−1(x)

∣∣, since
p−1(y)∩Uα contains exactly onepoint. Nowfixx0 ∈ X and letA =

{
x ∈ X :

∣∣p−1(x)
∣∣ = ∣∣p−1(x0)

∣∣}.
The above remark shows that both A and Ac are open. Since X is connected and A 6= ∅, we must
have A = X , i.e., the cardinality of p−1(x) is constant.

(2) For any (x, x′) ∈ X ×X ′, let U be an open neighborhood of x in X such that p−1(U) is a disjoint
union of open sets Vα in X̃ and p|Vα : Vα → U is a homeomorphism for each α. Similarly, let U ′ be
an open neighborhood of x′ in X ′ such that p′−1(U ′) is a disjoint union of open sets V ′

β in X̃ ′ and
p′|V ′

β
: V ′

α → U ′ is a homeomorphism for each β. Then U × U ′ is an open neighborhood of (x, x′)
inX ×X ′, and (p× p′)−1(U × U ′) = p−1(U)× p′−1(U ′) is a disjoint union of open sets Vα × V ′

β in
X̃ × X̃ ′. Also, (p× p′)|Vα×V ′

β
= (p|Vα)× (p′|V ′

β
) is a homeomorphism for all α, β.

(3) Consider
p : H → C∗, x+ yi 7→ yeix.

For any z = r0eiθ0 ∈ C∗, consider the open neighborhood

Uz =
{
reiθ : r02 < r < 2r0, θ0 − 1 < θ < θ0 + 1

}
.

Then p−1(Uz) is a disjoint union of open sets Vk (k ∈ Z) in H where

Vk = (θ0 − 1 + 2kπ, θ0 + 1 + 2kπ)×
(
r0
2 , 2r0

)
,

林晓烁 Fall 2024



108

and p|Vk
: Vk → Uz is a homeomorphism for all k ∈ Z.

(4) If it were a coveringmap, then some open neighborhood U of (0, 0, · · · ) in
∏
n∈N

Rwould bemapped

homeomorphically to some neighborhood V of (1, 1, · · · ) in
∏
n∈N

S1. By restricting we can assume

that U = (−a1, a1) × · · · × (−ak, ak) × R × R × · · · . Note that this U is contractible, and p(U) has
infinitely many S1 factors. By Problem 86 (2), π1(U) ' π1(p(U)) is nontrivial, a contradiction.

Problem 102 (Covering over subspace)

(1) Let p : X̃ → X be a covering map, and A ⊂ X a subset. Denote Ã = p−1(A). Show that pA = p|Ã :

Ã→ A is a covering map.

(2) Recall that S1 ∨ S1 (the figure 8) can be realized as the subspace
(
S1 × {a0}

)
∪
(
{a0} × S1

)
in T2.

What is the restricted covering of “the standard covering p : R2 → T2” to S1 ∨ S1?

Proof (1) By Problem 13 (4) and (5), the map pA = p|Ã : Ã→ A is continuous. For any a ∈ A, let U
be an open neighborhood of a in X such that p−1(U) is a disjoint union of open sets Vα in X̃ and
p|Vα

: Vα → U is a homeomorphism for each α. Then U ∩ A is an open neighborhood of a in A,
and p−1

A (U ∩ A) = p−1(U) ∩ Ã is a disjoint union of open sets Vα ∩ Ã in Ã, and pA|Vα∩Ã = pVα∩Ã
is a homeomorphism from Vα ∩ Ã to U ∩A for each α.

(2) For the standard covering p : R2 → T2, (x, y) 7→
(
e2πix, e2πiy

)
, the preimage of S1 ∨ S1 is given by

Ã = p−1
((
S1 × {a0}

)
∪
(
{a0} × S1

))
= p−1

(
S1 × {a0}

)
∪ p−1

(
{a0} × S1

)
=
(
R×

{
1
2π arg a0 + k : k ∈ Z

})
∪
({

1
2π arg a0 + k : k ∈ Z

}
× R

)
.

So p|Ã : Ã→ S1 ∧ S1 ⊂ T2 is the restricted covering of p.

Problem 103 (Fundamental groups of covering spaces) Suppose X, X̃ are path-connected, p : X̃ →
X is a covering map, and p(x̃0) = x0.

(1) Prove: the index of the subgroup p∗
(
π1

(
X̃, x̃0

))
in π1(X,x0) is the cardinality of p−1(x0).

(2) Prove: if the base space X is simply connected, then p is a homeomorphism.

(3) Suppose x̃1 ∈ p−1(x0). Prove: as subgroups of π1(X,x0), the two groups p∗
(
π1

(
X̃, x̃0

))
and

p∗

(
π1

(
X̃, x̃1

))
are conjugate to each other.

Proof (1) Let p−1(x0) = {xα : α ∈ Λ}. For each α ∈ Λ, choose a path γ̃α in X̃ from x̃0 to xα. We
shall show that {[p(γ̃α)]p : α ∈ Λ} is a set of representatives for the right coset of p∗

(
π1

(
X̃, x̃0

))
in

π1(X,x0).

� If [p(γ̃α)]p and [p(γ̃β)]p are in the same right coset, then there exists γ0 ∈ Ω(X,x0) such
that γ0 ∗ p(γ̃α) is path-homotopic to p(γ̃β). By homotopy lifting property (Corollary 3.7.10),
p−1(γ0 ∗ p(γ̃α)) and p−1(p(γ̃β)) are path-homotopic in X̃ , which requires α = β.

� For any γ ∈ Ω(X,x0), suppose its lifting γ̃ ends at xα. Then γ̃ ∗ γ̃α ∈ Ω
(
X̃, x̃0

)
. Hence

[γ̃]p ∗ [γ̃α]−1
p ∈ π1

(
X̃, x̃0

)
and then [γ]p ∗ [p(γ̃α)]−1

p ∈ p∗

(
π1

(
X̃, x̃0

))
, i.e., [γ]p is in the right

coset with representative [p(γ̃α)]p.
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Therefore, the index of p∗
(
π1

(
X̃, x̃0

))
in π1(X,x0) is |Λ|, the cardinality of p−1(x0).

(2) Since π1(X,x0) = {e}, by (1),
∣∣p−1(x0)

∣∣ = 1. And since x0 ∈ X is arbitrary, p is bijective. By the
definition of a covering map, p is a local homeomorphism, in particular, p−1 is continuous at each
point. Hence p is a homeomorphism.

(3) Let γ̃1 be a path in X̃ from x̃0 to x̃1. The same argument as in (1) shows that p∗
(
π1

(
X̃, x̃0

))
∗

[p(γ̃1)]p is the class of all loops inX based at x0 whose liftings are from x̃0 to x̃1, and it is the same
for [p(γ̃1)]p ∗ p∗

(
π1

(
X̃, x̃1

))
. Thus these two cosets are the same, and it follows that

p∗

(
π1

(
X̃, x̃0

))
= [p(γ̃1)]p ∗ p∗

(
π1

(
X̃, x̃1

))
∗ [p(γ̃1)]−1

p .

Therefore, the two subgroups p∗
(
π1

(
X̃, x̃0

))
and p∗

(
π1

(
X̃, x̃1

))
are conjugate.

Problem 104 (Covering of topological groups)

(1) Let G be a topological group which is path-connected and locally path-connected, and p : G̃→ G

be a covering map. Suppose G̃ is path-connected and fix ẽ ∈ p−1(e). Prove: there exists a unique
group structure on G̃with ẽ its identity element, such that p is a group homomorphism.

(2) Suppose G̃ and G are connected topological groups, and suppose p : G̃ → G is a covering map.
Moreover, suppose p is also a group homomorphism. Prove: G is abelian if and only if G̃ is abelian.

Proof (1) Consider the map

µ : G̃× G̃→ G, (g̃1, g̃2) 7→ p(g̃1)p(g̃2).

We want to lift this map to a map µ̃ : G̃× G̃→ G̃ such that the following diagram commutes:

(
G̃, ẽ

)
(
G̃× G̃, (ẽ, ẽ)

)
(G, e)

p

µ

µ̃ (104–1)

Observe that

� Since G̃ is path-connected, so is G̃× G̃.
� Since G is locally path-connected, so is G × G. And since p × p is a local homeomorphism

from G̃× G̃ to G×G, G̃× G̃ is also locally path-connected.

By Theorem 3.7.14, the lift in (104–1) exists if and only if

µ∗

(
π1

(
G̃× G̃, (ẽ, ẽ)

))
⊂ p∗

(
π1

(
G̃, ẽ

))
. (104–2)

To prove (104–2), first note that images of paths in Ω
(
G̃× G̃, (ẽ, ẽ)

)
under µ are of the form γ1 ·γ2,

where γ1, γ2 ∈ Ω(G, e) and · denotes the multiplication in G. By Problem 88 (2) , γ1 · γ2 is path-
homotopic to γ1 ∗ γ2, thus

µ∗

(
π1

(
G̃× G̃, (ẽ, ẽ)

))
= p∗

(
π1

(
G̃, ẽ

))
· p∗
(
π1

(
G̃, ẽ

))
= p∗

(
π1

(
G̃, ẽ

))
,
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where the last equality follows since p∗
(
π1

(
G̃, ẽ

))
is a subgroup of π1(G, e). Hence (104–2) holds,

and the lift µ̃ exists. With µ̃ as the multiplication map on G̃, let us verify the group axioms:

(Associativity) Consider the maps

α : G̃× G̃× G̃→ G̃, (g̃1, g̃2, g̃3) 7→ µ̃(µ̃(g̃1, g̃2), g̃3),

β : G̃× G̃× G̃→ G̃, (g̃1, g̃2, g̃3) 7→ µ̃(g̃1, µ̃(g̃2, g̃3)).

Using the commutativity in (104–1), we have

p(α(g̃1, g̃2, g̃3)) = p(µ̃(µ̃(g̃1, g̃2), g̃3))

= µ(µ̃(g̃1, g̃2), g̃3)

= p(µ̃(g̃1, g̃2))p(g̃3)

= µ(g̃1, g̃2)p(g̃3)

= p(g̃1)p(g̃2)p(g̃3),

and similarly
p(β(g̃1, g̃2, g̃3)) = p(g̃1)p(g̃2)p(g̃3).

So we obtain p◦α = p◦β. As before, G̃× G̃× G̃ is path-connected, and p◦α(ẽ, ẽ, ẽ) = p(ẽ)3 =

e3 = e. The diagram

(
G̃, ẽ

)

(
G̃× G̃× G̃, (ẽ, ẽ, ẽ)

)
(G, e)

p

p◦α=p◦β

α

β

together with the uniqueness of lifting with base point (Proposition 3.7.13) implies α = β.

(Identity element) Define the maps f1, f2 : G̃→ G̃ by f1(g̃) = g̃ and f2(g̃) = µ̃(ẽ, g̃). Then

p(f2(g̃)) = p(µ̃(ẽ, g̃)) = µ(ẽ, g̃) = p(ẽ)p(g̃) = ep(g̃) = p(g̃) = p(f1(g̃)).

So we obtain p ◦ f1 = p ◦ f2. Since p ◦ f1(ẽ) = p(ẽ) = e and G̃ is path-connected, the diagram

(
G̃, ẽ

)

(
G̃, ẽ

)
(G, e)

p

p◦f1=p◦f2

f1

f2

together with the uniqueness of lifting with base point (Proposition 3.7.13) implies f1 = f2.
Hence ẽg̃ = g̃ for all g̃ ∈ G̃. Similarly, g̃ẽ = g̃ for all g̃ ∈ G̃.

(Inverse element) Consider the map

i : G̃→ G, g̃ 7→ p(g̃)−1.
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We want to lift this map to a map ĩ : G̃→ G̃ such that the following diagram commutes:

(
G̃, ẽ

)
(
G̃, ẽ

)
(G, e)

p

i

ĩ (104–3)

Since G̃ is path-connected and locally path-connected, by Theorem 3.7.14, the lift in (104–3)
exists if and only if

i∗

(
π1

(
G̃, ẽ

))
⊂ p∗

(
π1

(
G̃, ẽ

))
. (104–4)

By the definition of i, we have

i∗

(
π1

(
G̃, ẽ

))
⊂ p∗

(
π1

(
G̃, ẽ

))−1

= p∗

(
π1

(
G̃, ẽ

))
,

where the last equality follows since p∗
(
π1

(
G̃, ẽ

))
is a subgroup of π1(G, e). Hence (104–4)

holds, and the lift ĩ exists. By Proposition 3.7.13, ĩ is unique, so we can define the inverse of
any g̃ ∈ G̃ as ĩ(g̃). Now define the maps `1, `2 : G̃ → G̃ by `1(g̃) = µ̃

(̃
i(g̃), g̃

)
and `2(g̃) = ẽ.

Then

p(`1(g̃)) = p
(
µ̃
(̃
i(g̃), g̃

))
= µ

(̃
i(g̃), g̃

)
= p
(̃
i(g̃)

)
p(g̃) = i(g̃)p(g̃) = p(g̃)−1p(g̃)

= e = p(`2(g̃)).

So we obtain p ◦ `1 = p ◦ `2. Since p ◦ `2(ẽ) = e and G̃ is path-connected, the diagram

(
G̃, ẽ

)

(
G̃, ẽ

)
(G, e)

p

p◦ℓ1=p◦ℓ2

ℓ1

ℓ2

together with the uniqueness of lifting with base point (Proposition 3.7.13) implies `1 = `2.
Hence µ̃

(̃
i(g̃), g̃

)
= ẽ for all g̃ ∈ G̃. Similarly, µ̃

(
g̃, ĩ(g̃)

)
= ẽ for all g̃ ∈ G̃.

Therefore, G̃ admits a group structure with ẽ as the identity element. The fact that p is a group
homomorphism is just the commutativity in (104–1), i.e., p(µ̃(g̃1, g̃2)) = µ(g̃1, g̃2) = p(g̃1)p(g̃2).
The uniqueness of the group structure follows from the uniqueness of the lift in (104–1).

(2) (⇒) Consider the map
d : G̃× G̃→ G̃, (g̃1, g̃2) 7→ g̃1g̃2g̃

−1
1 g̃−1

2 .

IfG is abelian, then p(d(g̃1, g̃2)) = eG, whichmeans that the image of d is contained in p−1(eG).
Since p is a covering, p−1(eG) is discrete. Since d is continuous and G̃ × G̃ is connected, the
image of dmust be connected. Thus d

(
G̃× G̃

)
= d
(
eG̃, eG̃

)
= eG̃, i.e., G̃ is abelian.

(⇐) Since G is connected, by Problem 101 (1), p is a surjective group homomorphism. Hence G
is abelian whenever G̃ is abelian.
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PSet 14, Part 1

Problem 105 (Properly discontinuous action)

(1) Let G =
〈
a, b
∣∣ a−1bab = 1

〉
. Consider the action of G on R2 generated by

a · (x, y) := (−x, y − 1), b · (x, y) = (x+ 1, y).

¬ Show that this action is properly discontinuous, and the quotient space is the Klein bottle.
What is the fundamental group of the Klein bottle?

 Also check that the quotient space in Example 3.7.6 is the Klein bottle, and thus T2 is a double
covering of the Klein bottle.

(2) Suppose group G acts on X̃ . We say the action is free if

for any g 6= e and any x ∈ X̃ , g · x 6= x.

Prove: if X̃ is Hausdorff, G is a finite group, and the G-action on X̃ is free, then the action is
properly discontinuous.

(3) More generally, let X̃ be a LCH space. Suppose theG-action on X̃ is free, and satisfies the following
condition (known as proper action):

for any compact subset C ⊂ X̃ , the set {g ∈ G : g · C ∩ C 6= ∅} is finite.

Prove: the G-action is properly discontinuous, and X̃/G is a LCH space.

Proof (1) ¬ For any (x, y) ∈ R2, choose U = B∞
(
(x, y), 13

)
, then g ·U ∩U = ∅ for any g ∈ G \ {e}.

Thus the action is properly discontinuous. For any (x, y) ∈ R2, first apply a or a−1 tomake y ∈
[0, 1), then apply b or b−1 to make x ∈ [0, 1). Thus [0, 1)× [0, 1) is a fundamental domain. The
identifications on its boundary are (0, y) ∼ (1, y) for y ∈ [0, 1) and (x, 1) ∼ (−x, 0) ∼ (1−x, 0)
for x ∈ [0, 1). Thus the quotient space is the Klein bottle. Since R2 is simply connected, by
Proposition 3.7.20 (3), the fundamental group of the Klein bottle is G.

 Regard T2 as [0, 2π] × [0, 2π] with identifications (0, y) ∼ (2π, y) and (x, 0) ∼ (x, 2π). The
G-action further identifies (x, y) with (2π − x, y + π), which gives the Klein bottle.

(2) Suppose G = {e, g1, · · · , gn}. For any x̃ ∈ X̃ , gix̃ 6= x̃. Since X̃ is Hausdorff, there exist open

neighborhoods Ui of x̃ and Vi of gix̃ such that Ui ∩ Vi = ∅. Then U =

n⋂
i=1

Ui ∩ g−1
i (Vi) is an open

neighborhood of x̃ such that gi ·U∩U = ∅ for 1 ⩽ i ⩽ n. Thus the action is properly discontinuous.

(3) G-action is properly discontinuous For any x̃ ∈ X̃ , since X̃ is LCH, there exists a precompact
open neighborhoodU of x̃. Since the action is proper, the set

{
g ∈ G : g · U ∩ U 6= ∅

}
is finite,

and thus the set {g ∈ G : g · U ∩ U 6= ∅} is finite. Let g1, · · · , gn be the elements in this set
that are not identity (if this set contains more than one element). Since the action is free, the
same argument as in (2) shows that the action is properly discontinuous.
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X̃/G is locally compact Let p : X̃ → X̃/G be the covering map. For any x ∈ X̃/G, choose an
open neighborhood U of x such that p−1(U) =

⋃
α

Vα is a disjoint union of open sets Vα and

p|Vα
: Vα → U is a homeomorphism. Fix any x̃ ∈ p−1(x) and suppose x̃ ∈ Vβ . Since X̃ is

LCH, by Proposition 2.4.16, we can find a compact neighborhood K of x̃ that is contained in
Vβ . Then p(K) is a compact neighborhood of x.

X̃/G is Hausdorff For any x, y ∈ X̃/G with x 6= y, fix x̃ ∈ p−1(x) and ỹ ∈ p−1(y). Since X̃
is LCH, there exist precompact open neighborhoods Ux of x̃ and Uy of ỹ. Since Ux ∪ Uy is
compact, from the proper action condition, there are only finitely many g ∈ G such that
g ·
(
Ux ∪ Uy

)
∩
(
Ux ∪ Uy

)
6= ∅. It follows that there are only finitely many g ∈ G such that

g · Uy ∩ Ux 6= ∅.

Call these exceptional elements g1, · · · , gn. For each j = 1, · · · , n, since X̃ is Hausdorff and
x 6= y (which means x̃ 6= gj ỹ), there exist disjoint open neighborhoods V ′

j of x̃ andW ′
j of gj ỹ.

Let Vj = V ′
j ∩Ux andWj = g−1

j ·W ′
j ∩Uy . Then for all 1 ⩽ j ⩽ n, the sets Vj andWj are open,

x ∈ Vj ⊂ Ux, y ∈Wj ⊂ Uy , and Vj ∩ gj ·Wj = ∅. Define

V =

n⋂
j=1

Vj , W =

n⋂
j=1

Wj .

Now x ∈ V and y ∈W . By construction, for any g ∈ G, we have V ∩ g ·W = ∅ and then

V ∩
⋃
g∈G

g ·W = ∅.

Thus for any h ∈ Gwe have

∅ = h ·

V ∩
⋃
g∈G

g ·W

 = (h · V ) ∩

h ·
⋃
g∈G

g ·W

 = (h · V ) ∩
⋃
g∈G

g ·W.

Hence (⋃
h∈G

h · V

)
∩

⋃
g∈G

g ·W

 = ∅.

Let Ṽ =
⋃
h∈G

h · V and W̃ =
⋃
g∈G

g ·W . Then Ṽ and W̃ are disjoint open neighborhoods of x

and y, and
p−1
(
p
(
Ṽ
))

= Ṽ , p−1
(
p
(
W̃
))

= W̃ .

Hence p
(
Ṽ
)
and p

(
W̃
)
are disjoint open neighborhoods of x and y, and X̃/G is Hausdorff.

Problem 106 (SU(2) and SO(3)) Let SU(2) be the special unitary group, i.e., the group of 2× 2 uni-
tary matrices with determinant 1, and SO(3) the special orthogonal group, i.e., the group of 3 × 3 or-
thogonal matrices with determinant 1.

(1) Prove: SU(2) is homeomorphic to S3 (and thus simply connected).

(2) Prove: SU(2) is a double covering of SO(3) (and thus SO(3) ' RP3).
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(3) Find the fundamental group of SO(3). (Try to find a video on Dirac’s belt trick from internet and
try to understand it.)

Proof (1) Elements in SU(2) are of the form
(
z w

−w z

)
, where |z|2 + |w|2 = 1. Thus the map

f : SU(2) → S3 ⊂ C2,

(
z w

−w z

)
7→ (z, w)

is well-defined and is clearly a homeomorphism.

(2) There is a group isomorphism f : SU(2) → {unit quaternions}, generated by(
1 0

0 1

)
7→ 1,

(
0 −i
−i 0

)
7→ i,

(
0 −1

1 0

)
7→ j,

(
−i 0

0 i

)
7→ k.

Now identify R3 with the space of pure quaternions {bi + cj + dk : b, c, d ∈ R}. For any unit
quaternion q, observe that

q(bi+ cj+ dk)q̄ = qbi+ cj+ dkq̄ = −q(bi+ cj+ dk)q̄,

so q(bi + cj + dk)q̄ is also a pure quaternion. Thus we can consider the group action of SU(2) on
R3 ' Ri⊕ Rj⊕ Rk defined by

A · (bi+ cj+ dk) = f(A)(bi+ cj+ dk)f(A).

If f(A) = e θ
2 (uxi+uy j+uzk) = cos θ2 + sin θ

2 (uxi + uy j + uzk), then the action of A on R3 is in fact
a rotation of angle θ around the axis defined by the unit vector uxi + uy j + uzk, which can be
represented by an element in SO(3). Thus we obtain a covering map SU(2) → SO(3), and since
the actions of f(A) and f(−A) = −f(A) on R3 are the same, this is a double covering.

(3) By (1), π1(SU(2)) = {e}. By (2) andProblem103 (1), the index of the subgroup p∗(π1(SU(2), x̃0)) =

{e} in π1(SO(3), x0) is 2. Thus π1(SO(3)) has order 2, which implies π1(SO(3)) ' Z2.

Problem 107 (Covering of covering spaces) LetX,Y, Z bepath-connected and locally path-connected
spaces, and f : X → Y , g : Y → Z be continuous maps.

(1) Suppose both g and g ◦ f are covering maps. Prove: f is a covering map.

(2) Suppose both f and g ◦ f are covering maps. Prove: g is a covering map.

(3) Suppose f is a covering, and g is a finite covering. Prove: g ◦ f is a covering.

(4) Suppose f and g are coverings, and suppose Z is semi-locally simply connected. Prove: g ◦ f is a
covering.

(5) Let X be the second space below, Y be the first space below, and Z be the Hawaiian earring.
Construct a natural covering map g : Y → Z, and a natural double covering map f : X → Y

(as a double covering), so that the composition g ◦ f is not a covering map. (So in general the
composition of covering maps may fail to be a covering map.)
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Covering Spaces Section 1.3 79

Exercises

1. For a covering space p : X̃→X and a subspace A ⊂ X , let Ã = p−1(A) . Show that

the restriction p : Ã→A is a covering space.

2. Show that if p1 : X̃1→X1 and p2 : X̃2→X2 are covering spaces, so is their product

p1×p2 : X̃1×X̃2→X1×X2 .

3. Let p : X̃→X be a covering space with p−1(x) finite and nonempty for all x ∈ X .

Show that X̃ is compact Hausdorff iff X is compact Hausdorff.

4. Construct a simply-connected covering space of the space X ⊂ R3 that is the union

of a sphere and a diameter. Do the same when X is the union of a sphere and a circle

intersecting it in two points.

5. Let X be the subspace of R2 consisting of the four sides of the square [0,1]×[0,1]

together with the segments of the vertical lines x = 1/2,
1/3,

1/4, ··· inside the square.

Show that for every covering space X̃→X there is some neighborhood of the left

edge of X that lifts homeomorphically to X̃ . Deduce that X has no simply-connected

covering space.

6. Let X be the shrinking wedge of circles in Example 1.25, and let X̃ be its covering

space shown in the figure below.

Construct a two-sheeted covering space Y→X̃ such that the composition Y→X̃→X
of the two covering spaces is not a covering space. Note that a composition of two

covering spaces does have the unique path lifting property, however.

7. Let Y be the quasi-circle shown in the figure, a closed subspace

of R2 consisting of a portion of the graph of y = sin(1/x) , the

segment [−1,1] in the y axis, and an arc connecting these two

pieces. Collapsing the segment of Y in the y axis to a point

gives a quotient map f :Y→S1 . Show that f does not lift to

the covering space R→S1 , even though π1(Y ) = 0. Thus local

path-connectedness of Y is a necessary hypothesis in the lifting criterion.

8. Let X̃ and Ỹ be simply-connected covering spaces of the path-connected, locally

path-connected spaces X and Y . Show that if X ≃ Y then X̃ ≃ Ỹ . [Exercise 11 in

Chapter 0 may be helpful.]

9. Show that if a path-connected, locally path-connected space X has π1(X) finite,

then every map X→S1 is nullhomotopic. [Use the covering space R→S1 .]

10. Find all the connected 2 sheeted and 3 sheeted covering spaces of S1∨S1 , up to

isomorphism of covering spaces without basepoints.

Proof (1) Fix x0 ∈ X and set y0 = f(x0), z0 = g(y0). We first show that f is surjective. Given y ∈ Y ,
choose a path α̃ in Y from y0 to y. Then α = g ◦ α̃ is a path in Z beginning at z0. Let ˜̃α be a lifting of
α to a path inX beginning at x0. Then f ◦ ˜̃α is a lifting of α to Y that begins at y0. By uniqueness of
path liftings, α̃ = f ◦ ˜̃α. Then f maps the end point of ˜̃α to the end point y of α̃. Thus f is surjective.
Given y ∈ Y , we find an open neighborhood of y that is evenly covered by f . Let z = g(y). Since
g ◦ f and g are covering maps, and Z is locally path-connected, we can find a path-connected open
neighborhood U of z that is evenly covered by both g ◦ f and g. Let V be the slice of g−1(U) that
contains the point y; we show V is evenly covered by f . Let {Uα} be the collection of slices of
(g ◦ f)−1(U). Now f maps each set Uα into the set g−1(U); because Uα is connected, it must be
mapped by f into a single one of the slices of g−1(U). Therefore, f−1(V ) equals the union of those
slices Uα that are mapped by f into V . Let f0 = f |Uα , g0 = g|V , and h = (g ◦ f)|Uα . Since h0 and
g0 are homeomorphisms, so is f0 = g−1

0 ◦ h0.

(2) Since g ◦ f is surjective, g is also surjective. Given z ∈ Z, let U be a path-connected open neigh-
borhood of z that is evenly covered by g ◦ f . We show that U is also evenly covered by g. Let {Vβ}
be the collection of path components of g−1(U); these sets are disjoint and open in Y (see remarks
on page 181). We show that for each β, the map g carries Vβ homeomorphically onto U . Let {Uα}
be the collection of slices of (g ◦ f)−1(U); they are disjoint, open, and path-connected, so they are
the path-components of (g ◦ f)−1(U). Now f maps each Uα into the set g−1(U); because Uα is
connected, it must be mapped by f into one of the sets Vβ . Therefore f−1(Vβ) equals the union of
a subcollection of the collection {Uα}. By Remark 3.7.2, for each α, since Uα is a path component
of q−1(Vβ), the map f0 : Uα → Vβ obtained by restricting f is a covering map. In particular, f0
is surjective. Hence f0 is a homeomorphism, being continuous, open, and injective as well. Let
g0 = g|Vβ

and h0 = h|Uα
. Then both h0 and f0 are homeomorphisms, so is g0 = h0 ◦ f−1

0 .

(3) Suppose g : Y → Z is an n-sheeted covering map. Given z ∈ Z, letW be an open neighborhood of
z that is evenly covered by g and let {V1, · · · , Vn} be the slices of g−1(W ). For each 1 ⩽ k ⩽ n, find
yk ∈ Vk such that g(yk) = z. Let V ′

k ⊂ Vk be an open neighborhood of yk that is evenly covered by

f . ThenW ′ :=

n⋂
k=1

g(V ′
k) is an open neighborhood of z that is evenly covered by g ◦ f .

(4) Since Z is path-connected, locally path-connected and semi-locally simply connected, it admits a
universal covering space Ẑ. Suppose pZ : Ẑ → Z is the covering map. By Theorem 3.8.9, there
exists a covering map pY : Ẑ → Y such that pZ = g ◦ pY . It follows that there exists a covering
map pX : Ẑ → X such that pY = f ◦ pX . Now pZ = g ◦ f ◦ pX and pX are both covering maps, by
(2), g ◦ f is a covering map.

(5) ¬ Wrapping the horizontal line around the outermost circle of the Hawaiian earring gives a
natural covering map g : Y → Z.
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 By gluing the two horizontal lines of X in the same direction, we obtain a double of Y (note
that those curves connecting the two horizontal lines will become cicrles).

® Any open neighborhood of the intersection point of theHawaiian earring contains some small
circle, whose preimage under g ◦ f is a curve connecting the two horizontal lines. Thus there
is a slice of the preimage that is not homeomorphic to the given open neighborhood.

Problem 108 (Covering of topological manifolds) LetM be a connected topological manifold.

(1) Prove: any topological manifold admits a universal covering.

(2) Prove: the fundamental group of any topological manifold is countable.

(3) Prove: any covering space of a topological manifold is still a topological manifold.

Proof (1) SinceM is locally Euclidean, it is also locally path-connected and semi-locally simply con-
nected. By Theorem 3.8.3,M admits a universal covering space.

(2) By Proposition 2.7.14 / Problem 58 (1), any second countable space is Lindelöf. So we can take
a countable cover U of M by coordinate balls. For each U,U ′ ∈ U , the intersection U ∩ U ′ has at
most countably many path components, since M is separable. Choose a point in each such path
component and let X denote the (countable) set consisting of all the chosen points as U,U ′ range
over all the sets in U . For each U ∈ U and x, x′ ∈ X such that x, x′ ∈ U , choose a definite path γUx,x′

from x to x′ in U .

Now choose any point p ∈ X as base point. Let us say that a loop based at p is special if it is a
finite product of paths of the form γUx,x′ . Because both U and X are countable sets, there are only
countably many special loops. Each special loop determines an element of π1(M,p). If we can
show that every element of π1(M,p) is obtained in this way, we are done, because we will have
exibited a surjective map from a countable set onto π1(M,p).

So suppose γ is any loop based at p. By the Lebesgue number lemma there is an integer n such
that γ maps each subinterval

[
k−1
n , kn

]
into one of the balls in U ; call this ball Uk. Let γk = γ|[ k−1

n , kn ]
reparametrized on the unit interval, so that [γ]p = [γ1]p ∗ · · · ∗ [γn]p.

For each k = 1, · · · , n − 1, the point γ
(
k
n

)
lies in Uk ∩ Uk+1. Therefore, there is some xk ∈ X that

lies in the same path component of Uk ∩ Uk+1 as γ
(
k
n

)
. Choose a path δk in Uk ∩ Uk+1 from xk to

γ
(
k
n

)
, and set γ̃k = δk−1 ∗ γk ∗ δk (taking xk = p and δk = γp when k = 0 or n). It is immediate

that [γ]p = [γ̃1]p ∗ · · · ∗ [γ̃n]p, because all the δk’s cancel out. But for each k, γ̃k is a path in Uk from
xk−1 to xk, and since Uk is simply connected, γ̃k is path-homotopic to γUk

xk−1,xk
. This shows that γ

is path-homotopic to a special loop and completes the proof.

(3) Let M̃ be a path-connected covering space ofM and let p : M̃ →M be the covering map.

Locally Euclidean Since every point x̃ ∈ M has an open neighborhood homeomorphic to an
open neighborhood of p(x̃), and p(x̃) has an open neighborhood homeomorphic to an open
subset in Rn (for some n), it follows by restriction that x̃ has an open neighborhood homeo-
morphic to an open subset in Rn.

(T2) For any distinct x̃, ỹ ∈ M̃ , if p(x̃) = p(ỹ), then choose an open neighborhood U of p(x̃) that
is evenly covered by p. Then p−1(U) is a disjoint union of open sets, and two of them contain
x̃ and ỹ, respectively. If p(x̃) 6= p(ỹ), then we can find disjoint open neighborhoods U and V
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of p(x̃) and p(ỹ), respectively. Then p−1(U) and p−1(V ) are disjoint open neighborhoods of x̃
and ỹ, respectively.

(A2) For each x ∈ M , choose an open neighborhood Ux of x that is evenly covered by p. Since
M is (A2), it is Lindelöf, so we can take a countable subcover {Un}∞n=1 of {Ux : x ∈M}. Since
M̃ is path-connected, by Proposition 3.7.16, the degree of the covering is not greater than the
cardinality of π1(M), which is countable by (2). Thus M̃ is a countable union of open sets
Vk, each of which is homeomorphic to Un for some n. Since M is (A2) and by Problem 59
(1) (A2) is hereditary, Vk is (A2) as well. For each k, let Bk be a countable basis for Vk. Then
∞⋃
k=1

Bk is a countable basis for M̃ since each Vk is open in M̃ and M̃ =

∞⋃
k=1

Vk.

PSet 14, Part 2

Problem 109 (Applications of Brouwer’s fixed point theorem)

(1) (A special case of Poincaré–Hopf theorem, proved by Hadamard) Let f : Dn → Rn be a continu-
ous map (i.e., f is a vector field on Dn) such that x · f(x) > 0 for all x ∈ Sn−1 = ∂Dn. Prove: there
exists x ∈ Bn such that f(x) = 0.

(2) (Poincaré–Bohl) Let f : Dn → Rn be a continuous map such that f(x) /∈ {αx : α > 0} for any
x ∈ Sn−1. Prove: there exists x ∈ Dn such that f(x) = 0.

(3) (Perron–Frobenius)Any n×n real matrix with positive entries has a positive eigenvalue, and the
corresponding eigenvector can be chosen to have strictly positive entries.

(4) (Kuratowski–Steinhaus) Let f : Dn → Dn be a continuous map such that f
(
Sn−1

)
⊂ Sn−1, and

suppose for any x ∈ Sn−1, f(x) 6= x. Prove: f(Dn) = Dn.

Proof (1) If f(x) 6= 0 for all x ∈ Bn, then let g(x) = − f(x)

‖f(x)‖
∈ C

(
Dn, Sn−1

)
. By Brouwer’s fixed

point theorem, there exists x0 ∈ Sn−1 such that g(x0) = x0, i.e., f(x0) = −‖f(x0)‖x0. Then
x0 · f(x0) = −‖f(x0)‖ < 0, a contradiction.

(2) If f(x) 6= 0 for all x ∈ Dn, then let g(x) =
f(x)

‖f(x)‖
∈ C

(
Dn, Sn−1

)
. By Brouwer’s fixed point

theorem, there exists x0 ∈ Sn−1 such that g(x0) = x0, i.e., f(x0) = ‖f(x0)‖x0, a contradiction.

(3) Let K = {x ∈ Rn : ‖x‖ = 1, xi ⩾ 0, ∀i}. Then by Problem 110 (1), K ' Dn−1 has the fixed point
property. Since all entries of A are positive, the map f(x) =

Ax

‖Ax‖
is a well-defined continuous

map from K to K, so it has a fixed point x0, i.e., Ax0 = ‖Ax0‖x0. To see that x0 /∈ ∂K, just notice
that all components of Ax are strictly positive for any x ∈ K.

(4) For any x ∈ Bn, we show that there is a homeomorphism : ϕx : Dn → Dn with ϕx(x) = 0 and
ϕx|Sn−1 = IdSn−1 . First, consider the homeomorphism

ψ : Bn → Rn, x 7→ x · arctan π‖x‖
2

.

Then define

ϕx : Dn,→ Dn, a 7→

a, a ∈ Sn−1,

ψ−1 ◦ Tψ(x),0 ◦ ψ(a), a ∈ Bn,
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where Tψ(x),0 : Rn → Rn denotes the translation from ψ(x) to 0. It is easy to check that ϕx is a
homeomorphism (via sequential continuity), as desired. Now apply (2) toϕx◦f , we see that there
exists x0 ∈ Dn such that ϕx(f(x0)) = 0, and since ϕx is a homeomorphism, this implies f(x0) = x.
Since x ∈ Bn is arbitrary, we obtain Bn ⊂ f(Dn). Finally, since f(Dn) is compact, we must have
f(Dn) = Dn.

Problem 110 (Fixed point property) We say a topological space X has the fixed point property if for
every continuous map f : X → X , there exists p ∈ X such that f(p) = p.

(1) Show that the fixed point property is a topological property.

(2) Prove: if X is disconnected, then X cannot have the fixed point property.

(3) Suppose X,Y have the fixed point property. Prove: X ∨ Y has the fixed point property.

(4) Prove: if X × Y has the fixed point property, then X and Y have the fixed point property. (There
exist complicated examples: X , Y have the fixed point property, while X × Y does not.)

(5) Prove: if X has the fixed point property, and A ⊂ X is a retract of X , then A has the fixed point
property.

(6) Let X be the subset of R2 that consists of the union of the line segment from (0, 0) to (1, 0) and all
line segments from

(
1
n , 0
)
to
(
1
n , 1
)
. Show thatX has the fixed point property. (As a result,X has

the fixed point property does not imply X is compact.)

Proof (1) Suppose X has the fixed point property, and h : X → Y is a homeomorphism. Then for
any continuous map f : Y → Y , the composition h−1 ◦ f ◦ h : X → X has a fixed point p ∈ X , i.e.,
f(h(p)) = h(p), so h(p) ∈ Y is a fixed point of f . Therefore, Y has the fixed point property.

(2) IfX is disconnected, thenX can be written as the disjoint union of two nonempty open sets U and
V . Fix u ∈ U and v ∈ V , then the map

f : X → X, x 7→

v, x ∈ U,

u, x ∈ V

is continuous and has no fixed point.

(3) Suppose f : X ∨ Y → X ∨ Y is continuous and let p denote the intersection. Without loss of
generality, assume f(p) ∈ X . Let g be the natural map X → X ∨ Y , and consider the map

h : X t Y → X, z 7→

z, z ∈ X,

pX , z ∈ Y.

Here pX is the base point for X . The map h descends to a continuous map h̃ : X ∨ Y → X , thus
we get a continuous map by the composition

X
g
X ∨ Y

f
X ∨ Y

h̃
Y, x 7→

f(x), if f(x) ∈ X,

p, if f(x) /∈ X.
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By assumption, there exists x0 ∈ X such that f(x0) = x0, which implies f(x0) = x0 ∈ X or
f(x0) /∈ X and x0 = p. But the latter is impossible since we assumed f(p) ∈ X . Hence x0 is a fixed
point of f .

(4) If f : X → X is continuous, then the map

g : X × Y → X × Y, (x, y) 7→ (f(x), y)

is continuous. By assumption, there exists (x0, y0) ∈ X × Y such that g(x0, y0) = (x0, y0), which
implies f(x0) = x0. Similarly, we can show that Y has the fixed point property.

(5) By Problem 67 (2), any continuous map f : A → A has an extension f̃ : X → A. By assumption,
there exists p ∈ X such that f̃(p) = p, which implies p ∈ A and then f(p) = p.

(6) Let f : X → X be an arbitrary continuous map. Let I = [0, 1]× {0} be the bottom interval and let
π : X → I be the projection π(x, y) = (x, 0). The map π ◦ f maps I to I , so it has a fixed point in I .
Hence, there exist x0 and y0 such that f(x0, 0) = (x0, y0). If y0 = 0 then we are done. Otherwise,
0 < y0 ⩽ 1, then by the continuity of f , there exists ε > 0 such that {x0} × [0, ε] is mapped into
{x0} × [0, 1]. Thus, we define

y1 := max{y ∈ [0, 1] : f({x0} × [0, y]) ⊂ {x0} × [0, 1]} ⩾ ε > 0.

If y1 = 1, then f maps {x0} × [0, 1] to itself, so it has a fixed point. Now assume 0 < y0 < 1 and
consider the retraction

r : {x0} × [0, 1] → {x0} × [0, y1], (x0, y) 7→ (x0,min{y, y1}).

Since r ◦ f maps {x0} × [0, y1] to itself, it has a fixed point (x0, y∗) in {x0} × [0, y1]. If y∗ < y1, then
we are done. Otherwise, y∗ = y1, and r(f(x0, y1)) = (x0, y1) implies f(x0, y1) ∈ {x0} × [y1, 1].
But then, by the continuity of f , there exists δ > 0 such that {x0} × [y1 − δ, y1 + δ] is mapped into
{x0} × [0, 1]. This contradicts the maximality of y1 and completes the proof.

Problem 111 (Brouwer’s fixed point theorem, the second version) Let K ⊂ Rn be any nonempty
compact convex set.

(1) SupposeK has nonempty interior. Prove: K is homeomorphic to Dn.

(2) Prove: K has nonempty interior if and only ifK is not contained in a proper hyperplane (i.e., a set
of the form x0 + V , where V ⊂ Rn is a linear subspace).

(3) Prove Theorem 4.1.8:

Let K ⊂ Rn be nonempty, compact and convex. Then any continuous map f : K → K has a
fixed point.

Proof (1) By translation we may assume 0 ∈ IntK. SinceK ⊂ Rn is compact, we can define

p : Rn → [0,+∞), x 7→ inf
{
λ > 0 :

x

λ
∈ K

}
.

It is easy to check that
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� p(x+ y) ⩽ p(x) + p(y), ∀x, y ∈ Rn.

� p(λx) = λp(x), ∀λ > 0, ∀x ∈ Rn.

� p(x) = 0 if and only if x = 0.

Therefore, there exist C1, C2 > 0 such that

C1‖x‖ ⩽ p(x) ⩽ C2‖x‖, ∀x ∈ Rn,

where ‖ · ‖ denotes the Euclidean norm. Now define

ϕ : K → Dn, x 7→


p(x)x

‖x‖
, x 6= 0,

0, x = 0.

Since 0 ∈ IntK, there exists r > 0 such that B(0, r) ⊂ K. Then

rx

2‖x‖
∈ K, ∀x ∈ Rn \ {0}.

It follows that p(x) ⩽ 2‖x‖
r

for all x ∈ Rn. Hence

|p(x)− p(y)| ⩽ max{p(x− y), p(y − x)} ⩽ 2

r
‖x− y‖, ∀x, y ∈ Rn,

which implies that ϕ is uniformly continuous. Thus ϕ is a continuous bijection from the compact
setK to the Hausdorff space Dn, so it is a homeomorphism.

(2) The “only if” part is trivial. For the “if” part, first assume 0 ∈ K. By assumption, K contains a

basis {e1, · · · , en} of Rn. Now the point p0 :=
1

2n

n∑
k=1

ek must lie in IntK, since p0 ∈ K and

{
p0 +

n∑
k=1

λkek : |λk| ⩽
1

2n

}
⊂ K.

(3) By lowering the dimension, we may assumeK ⊂ Rm (m ⩽ n) andK is not contained in a proper
hyperplane of Rm. By (2), K has nonempty interior in Rm. Then by (1), K is homeomorphic to
Dm. By Problem 110 (1),K has the fixed point property.

Problem 112 (A proof or not?) Here is a proof of two-dimensional Brouwer’s fixed point theorem:

Proof We first observe (by the intermediate value theorem) that

Lemma Any continuous map h : [0, 1] → [0, 1] has a fixed point.

Now write F = (f, g), where both f and g are continuous functions from [0, 1]2 to [0, 1]. For
each y ∈ [0, 1], we define a function f̃y : [0, 1] → [0, 1] by f̃y(x) = f(x, y). According to
the lemma above, there exists a(y) ∈ [0, 1] such that f̃y(a(y)) = a(y), i.e., f(a(y), y) = a(y)

for any y ∈ [0, 1]. Using the function a(y) we can define another function g̃ : [0, 1] → [0, 1]

by g̃(y) = g(a(y), y). Again according to the lemma above, we can find b ∈ [0, 1] such that
g̃(b) = b, i.e., g(a(b), b) = b. It follows that F (a(b), b) = (a(b), b). In other words, the point
(a(b), b) is a fixed point of F .
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Question Is this proof correct or wrong? If you think this is correct, then generalize this proof to give
a proof of the Brouwer’s fixed point theorem for n-dimensional cubes; if you think this is wrong, then
point out the mistake in the proof and also provide a counterexample for which the proof fails.

Solution This proof is wrong since the continuity of the function a(y) is not guaranteed. In general,
a(y) cannot be chosen to be continuous. A counterexample is given by the function

f : [0, 1]2 → [0, 1], (x, y) 7→

2xy, if y ⩽ 1
2 ,

1− 2(1− x)(1− y), if y ⩾ 1
2 .

Then following the “proof”, we find

a(y) =

0, if y < 1
2 ,

1, if y > 1
2 ,

andwhen y = 1
2 , all x ∈ [0, 1] are fixed points of f̃y . In this case, a(y) cannot be chosen to be continuous.

PSet 15, Part 1

Problem 113 (Continuity and injectivity does not imply homeomorphism)

(1) Suppose U ⊂ Rn is open, and f : U → Rn is continuous and injective. Prove: f : U → f(U) is a
homeomorphism.

(2) Construct a continuous and injective map f : R → R2 such that f : R → f(R) is not a homeomor-
phism.

Proof (1) By Brouwer’s invariance of domain theorem, f is an open map. So f : U → f(U) is a
continuous open bijection, hence a homeomorphism.

(2) Consider the curve β : (−π, π) → R2 defined by β(t) = (sin 2t, sin t). Its image is a set that looks
like a figure-eight in the plane (Figure 6). It is easy to see that β is continuous and injective.86 4 Submersions, Immersions, and Embeddings

Fig. 4.3 The figure-eight curve of Example 4.19

Example 4.19 (The Figure-Eight Curve). Consider the curve ˇ W .��;�/! R2

defined by

ˇ.t/D .sin2t; sin t/:

Its image is a set that looks like a figure-eight in the plane (Fig. 4.3),sometimes
called a lemniscate. (It is the locus of points .x; y/ where x2 D 4y2

�
1� y2

�
, as

you can check.) It is easy to see that ˇ is an injective smooth immersion because
ˇ0.t/ never vanishes; but it is not a topological embedding, because its image is
compact in the subspace topology, while its domain is not. //

Example 4.20 (A Dense Curve on the Torus). Let T2 D S1�S1 �C2 denote the
torus, and let ˛ be any irrational number. The map � W R! T2 given by

�.t/D
�
e2�it ; e2�i˛t

�

is a smooth immersion because � 0.t/ never vanishes. It is also injective, because
�.t1/D �.t2/ implies that both t1 � t2 and ˛t1 �˛t2 are integers, which is impossi-
ble unless t1 D t2.

Consider the set �.Z/D f�.n/ W n 2 Zg. It follows from Dirichlet’s approxima-
tion theorem (see below) that for every " > 0, there are integers n;m such that
j˛n�mj< ". Using the fact that

ˇ̌
ei t1 � ei t2

ˇ̌
� jt1 � t2j for t1; t2 2R (because the

line segment from ei t1 to ei t2 is shorter than the circular arc of length jt1 � t2j), we
have

ˇ̌
e2�i˛n � 1

ˇ̌
D
ˇ̌
e2�i˛n � e2�im

ˇ̌
�
ˇ̌
2�.˛n�m/

ˇ̌
< 2�". Therefore,

ˇ
ˇ�.n/� �.0/

ˇ
ˇD

ˇ
ˇ�e2�in; e2�i˛n

�
� .1; 1/

ˇ
ˇD

ˇ
ˇ�1; e2�i˛n

�
� .1; 1/

ˇ
ˇ< 2�":

Thus, �.0/ is a limit point of �.Z/. But this means that � is not a homeomorphism
onto its image, because Z has no limit point in R. In fact, it is not hard to show that
the image set �.R/ is actually dense in T2 (see Problem 4-4). //

The preceding example and Problem 4-4 depend on the following elementary
result from number theory.

Lemma 4.21 (Dirichlet’s Approximation Theorem). Given ˛ 2R and any posi-
tive integer N , there exist integers n;m with 1� n�N such that jn˛ �mj< 1=N .

Proof. For any real number x, let f .x/D x�bxc, where bxc is the greatest integer
less than or equal to x. Since the N C 1 numbers ff .i˛/ W i D 0; : : : ;N g all lie in

Figure 6: The figure-eight curve

Consider the homeomorphism α : R → (−π, π) given by α(x) = 2 arctanx. Since (−π, π) is non-
compact, but the image β((−π, π)) is compact, the map β is not a homeomorphism. It follows that
f := β ◦ α : R → R2 is continuous and injective, but f : R → f(R) is not a homeomorphism.

Problem 114 (Applications of Brouwer’s invariance of domain theorem)

(1) Suppose M and N are n-dimensional topological manifolds, and f : M → N is continuous and
locally injective (what is a reasonable definition of “locally injective”?). Prove: f is an open map.
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(2) Prove: there is no injective continuous map f : Sn → Rn.

(3) Show that there is no proper subset of Sn that is homeomorphic to Sn itself.

Proof (1) A function M → N is said to be locally injective at p ∈ M if there exists an open neigh-
borhood U of p in M such that f |U is injective, and f is said to be locally injective if it is locally
injective at every point in M . Suppose f : M → N is continuous and locally injective. For any
p ∈M , we can find a local chart (U,ϕ) around p and a local chart (V, ψ) around f(p). By restricting
U if necessary, we can assume that f |U is injective and f maps U into V . Then the composition
ψ ◦ f ◦ϕ−1 : ϕ(U) → ψ(V ) is an injective continuous map between open subsets of Rn. Since ϕ(U)

is open, by Brouwer’s invariance of domain theorem, ψ ◦ f ◦ ϕ−1 is an open map. It follows that f
is a locally open map and hence an open map.

(2) If there exists an injective continuousmap f : Sn → Rn, then by (1), f is an openmap. In particular,
f(Sn) is open in Rn. But f(Sn) is compact in Rn, which means f(Sn) is bounded and closed in Rn.
Since Rn is connected, there is no nonempty subset of Rn that is bounded and clopen. This is a
contradiction.

(3) IfA is a proper subset of Sn, thenAmisses at least one point of Sn, whichmeansA is homeomorphic
to a subset of Rn. By (2), there is no injective continuous map from Sn to A, so A cannot be
homeomorphic to Sn.

Problem 115 (Manifolds with boundary)

(1) Show that the concept of the boundary point is well-defined in the definition of “topological man-
ifold with boundary”.

(2) Prove: if X is an n-dimensional topological manifold with boundary, then its boundary ∂X is an
(n− 1)-dimensional topological manifold (without boundary).

(3) Let f : M → N be a homeomorphism, where M,N are topological manifolds of dimension n.
Show that f : ∂M → ∂N is a homeomorphism.

(4) Show that [0, 1]× R is not homeomorphic to [0,∞)× R.

Proof (1) Let M be an n-manifold with boundary and denote Hn = {(x1, · · · , xn) ∈ Rn : xn ⩾ 0}.
If p ∈ M is a boundary point via a chart (U,ϕ) and also an interior point via a chart (V, ψ), then
consider an open neighborhoodW ⊂ U ∩ V of p such that ϕ(W ) = B(ϕ(p), r)∩Hn for some r > 0

and ψ(W ) is an open subset of Rn. Now ϕ ◦ ψ−1 : ψ(W ) → ϕ(W ) is a homeomorphism. Let
ι : ϕ(W ) ↪→ Rn be the inclusion map. Then ι ◦ ϕ ◦ ψ−1 : ψ(W ) → Rn is a continuous injection,
which is impossible by Brouwer’s invariance of domain theorem, for ι ◦ ϕ(W ) is not open in Rn.

(2) By Problem 59, both (A2) and (T2) are hereditary properties. If p ∈ ∂X and (U,ϕ) is a lcoal chart
around p inX , then ϕ|U∩∂M is a homeomorphism from U ∩∂M to an open subset ofRn−1×{0} '
Rn−1. Hence ∂X is an (n− 1)-manifold without boundary.

(3) By (1), f(∂M) = ∂N . So by restricting f to ∂M , we get a homeomorphism f : ∂M → ∂N .

(4) If [0, 1]× R is homeomorphic to [0,∞)× R (as 2-manifolds), then by (3), their boundaries ({0} ×
R) ∪ ({1} × R) and {0} × R are homeomorphic. However, the former is disconnected while the
latter is connected, a contradiction.
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Problem 116 (Invariance of domain via Borsuk–Ulam) Assume the followingversion of Borsuk–Ulam
theorem:

(Borsuk–Ulam) There does not exist any continuous map f : Dn → Sn−1 such that f |Sn−1

preserves antipodal points (i.e., f(−x) = −f(x)).

Prove the invariance of domain theorem.

Proof In Problem 96, we have shown that the Borsuk–Ulam theorem is equivalent to the following
statement:

There exists no continuous map f : Dn → Sn−1 such that the restriction to the boundary of f ,
f |Sn−1 : Sn−1 → Sn−1, is antipodal-preserving.

And recall from Problem 83 (3) that

f ∈ C(X,Y ) is null-homotopic if and only if f has a continuous extension F ∈ C(C(X), Y ), where
C(X) is the cone over X .

Note that the cone over Sn−1 is homeomorphic to Dn. Thus the above statements together imply that

There exists no continuous map f : Sn−1 → Sn−1 that is null-homotopic and antipodal-preserving.

To prove the invariance of domain theorem, it suffices to prove its local version (Theorem 4.1.14):

Let f : Dn → Rn be continuous and injective. Then f(0) ∈ Int f(Dn).

Suppose to the contrary that f(0) /∈ Int f(Dn). Since f is injective, f(0) /∈ f
(
Sn−1

)
, so there exists ε > 0

scuh thatB(f(0), ε) ⊂ Rn\f
(
Sn−1

)
. And since f(0) /∈ Int f(Dn), we canfind c ∈ B(f(0), ε)∩(Rn \ f(Dn)).

Now consider the map
g : Sn−1 → Sn−1, s 7→ f(s)− c

|f(s)− c|
.

and the constant map
g0 : Sn−1 → Sn−1, s 7→ f(0)− c

|f(0)− c|
.

Also, define
H1 : [0, 1]× Sn−1 → Sn−1, (t, s) 7→ f(ts)− c

|f(ts)− c|
.

Since c /∈ f(Dn), these maps are all well-defined, andH1 is a homotopy from g0 to g. On the other hand,
consider the antipodal-preserving map

h : Sn−1 → Sn−1, s 7→ f(s)− f(−s)
|f(s)− f(−s)|

,

which is well-defined and continuous since f is injective. Define the map

h0 : Sn−1 → Sn−1, s 7→ f(s)− f(0)

|f(s)− f(0)|

and choose a path λ(t) from c to f(0) in B(f(0), ε). Then the map

H2 : [0, 1]× Sn−1 → Sn−1, (t, s) 7→ f(s)− λ(t)

|f(s)− λ(t)|
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is a homotopy from g to h0. This map is well-defined since B(f(0), ε) ∩ f
(
Sn−1

)
= ∅. At the same time,

the map
H3 : [0, 1]× Sn−1 → Sn−1, (t, s) 7→ f(s)− f(−st)

|f(s)− f(−st)|

is a homotopy from h0 to h. This map is well-defined since f is injective. Thus h ∼ h0 ∼ g ∼ g0, which
means h : Sn−1 → Sn−1 is null-homotopic and antipodal-preserving, a contradiction.

PSet 15, Part 2

Problem 117 (Poincaré–Miranda theorem) The following theoremwasfirst announced byH. Poincaré
in 1883, which can be viewed as a higher dimensional generalization of the intermediate value theorem.
Miranda showed in 1940 that the theorem was equivalent to Brouwer’s fixed point theorem.

(Poincaré–Miranda) Let f = (f1, · · · , fn) : [0, 1]n → Rn be continuous. Suppose for any
1 ⩽ i ⩽ n, we have

fi ⩽ 0 on {x ∈ [0, 1]n : xi = 0},

fi ⩾ 0 on {x ∈ [0, 1]n : xi = 1}.

Then there exists p ∈ [0, 1]n such that f(p) = 0.

(1) Prove the Poincaré–Miranda theorem via Brouwer’s fixed point theorem.

(2) Prove Brouwer’s fixed point theorem via the Poincaré–Miranda theorem.

Proof (1) Let r0 : R → [0, 1] be the retraction with r0((−∞, 0)) = {0}, r0((1,+∞)) = {1}, and define

r : Rn → [0, 1]n, (x1, · · · , xn) 7→ (r0(x1), · · · , r0(xn)).

Consider the map h(x) = r(x)− f(r(x)). Since f is continuous and [0, 1]n is compact, f([0, 1]n) is
bounded, and thus the image of h is also bounded. Since r0 is a retraction, the image of h is the
same as that of h|[0,1]n . So we can chooseR > 0 such that h(Rn)∪ [0, 1]n ⊂ B(0, R), and this implies
h
(
B(0, R)

)
⊂ B(0, R). By Brouwer’s fixed point theorem, there exists x = (x1, · · · , xn) ∈ B(0, R)

such that h(x) = x.

� If xi < 0, then r0(xi) = 0 and the i-th component of h(x) is r0(xi)− fi(r(x)) = −fi(r(x)) ⩾ 0,
which contradicts h(x) = x.

� If xi > 1, then r0(xi) = 1 and the i-th component of h(x) is r0(xi)−fi(r(x)) = 1−fi(r(x)) ⩽ 1,
which contradicts h(x) = x.

Therefore xi ∈ [0, 1] for all 1 ⩽ i ⩽ n and x ∈ [0, 1]n. So x = r(x)−f(r(x)) = x−f(x), i.e., f(x) = 0.

(2) Since [0, 1]n is homeomorphic toDn, it suffices to show that [0, 1]n has the fixed point property. Let
g : [0, 1]n → [0, 1]n be a continuous map and let f(x) = x− g(x). Then for any 1 ⩽ i ⩽ n,

fi(x) = xi − gi(x) = −gi(x) ⩽ 0, ∀x ∈ {x ∈ [0, 1]n : xi = 0},

fi(x) = xi − gi(x) = 1− gi(x) ⩾ 0, ∀x ∈ {x ∈ [0, 1]n : xi = 1}.

By the Poincaré–Miranda theorem, there exists p ∈ [0, 1]n such that f(p) = 0, i.e., g(p) = p.

林晓烁 Fall 2024



125

Problem 118 (Connectedness of the complement of a Jordan curve) Let M be a surface, and J a
Jordan curve in M . Can we conclude that M \ J is disconnected? If yes, prove it; if no, give a coun-
terexample.

(1) M = S1 × R.

(2) M = Σg (g ⩾ 1).

(3) M = Möbius strip.

(4) M = RP2.

Solution (1) 4 The map
f : S1 × R → S1 × R>0, (s, t) 7→

(
s, et

)
is a homeomorphism. Also note that S1 ×R>0 is homeomorphic to R2 \ {0} via polar coordinates.
Therefore S1×R is homeomorphic to R2 \{0}, and by the Jordan curve theorem for R2 we see that
M \ J is disconnected.

(2) 8 The complement of a meridian is connected.

(3) 8 Cutting a Möbius strip along the middle line gives a single loop, which is still connected.

(4) 8 If we remove the Jordan curve ab from a a

b

b

, we end up with only one connected

component homeomorphic to an open ball.

Problem 119 (Brouwer’s invariance of domain theorem revisited)

(1) (Higher dimensional analogue of “arc non-separation” theorem) Prove: if K ⊂ Rn is compact
and is a retract of Rn, then Rn \K is connected.

(2) Use the Jordan curve theorem to prove: if f : D2 → R2 is continuous and injective, then f(B(0, 1))
is the interior of the Jordan curve f

(
S1
)
(i.e., the bounded component).

(3) Assume the Jordan–Brouwer separation theorem holds. State a higher dimensional analogue of
(2) and prove it.

Proof (1) Suppose to the contrary thatRn\K is disconnected. SinceK is compact,Rn\K has at least
one bounded connected componentA. Take any x0 ∈ A and chooseR > 0 such thatK ⊂ B(x0, R).
SinceK is a retract of Rn, there exists a retraction r : B(x0, R) → K. Define the map

h : B(x0, R) → B(x0, R), x 7→

r(x), x ∈ A,

x, x ∈ Ac ∩ B(x0, R).

Since K is closed, if x /∈ K, then there exists ε > 0 such that B(x, ε) is contained in a connected
component of Rn \K. Then x /∈ ∂A and we get ∂A ⊂ K. Since x0 ∈ A, we haveA ⊂ B(x0, R), thus

A ∩
(
Ac ∩ B(x0, R)

)
= ∂A ∩ B(x0, R) = ∂A ⊂ K,
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on which r(x) = x. Then by Problem 16 (1), h is continuous on B(x0, R) (note that A is open by
the remarks on page 181). Moreover, since x0 /∈ K and x0 ∈ A, we have

x0 /∈ h
(
A
)

and x0 /∈ h
(
Ac ∩ B(x0, R)

)
⊂ Ac.

So h is in fact a continuous map into B(x0, R) \ {x0}. Composing hwith the retraction

h1 : B(x0, R) \ {x0} → ∂B(x0, R), x 7→ x0 +R
x− x0
|x− x0|

,

we obtain a continuous map

h̃ := h1 ◦ h : B(x0, R) → ∂B(x0, R)

which is a retraction since for x ∈ ∂B(x0, R) we have h(x) = x and thus h̃(x) = x. This is a
contradiction since there is no retraction from Dn to Sn−1.

(2) The map f : D2 → f
(
D2
)
is a continuous bijection from a compact space to a Hausdorff space,

hence a homeomorphism. By Remark 2.9.7, we can extend f−1 : f
(
D2
)
→ D2 to a continuous

map ϕ : R2 → R2. Let r be the retraction from R2 to D2. Then f ◦ r ◦ ϕ is a retraction from R2

to f
(
D2
)
. By the Jordan curve theorem, R2 \ f

(
S1
)
consists of exactly two connected components.

Since f(B(0, 1)) is connected, it suffices to show that the bounded component of R2 \ f
(
S1
)
is

contained in f(B(0, 1)). Suppose to the contrary that there exists x0 in the bounded component of
R2 \f

(
S1
)
but not in f(B(0, 1)). Then there is a retraction from f(D2) to f

(
S1
)
. It follows that there

is a retraction from R2 to f
(
S1
)
, which is a contradiction.

(3) If f : Dn → Rn is continuous and injective, then f(B(0, 1)) is the bounded component of Rn \ f
(
Sn−1

)
.

Similar to (2), we can show that f(Dn) is a retract of Rn. By the Jordan–Brouwer separation theo-
rem, if f(B(0, 1)) is not the bounded component ofRn\f

(
Sn−1

)
, then there exists a retraction from

f(Dn) to f
(
Sn−1

)
, and thus one gets a retraction from Rn to f

(
Sn−1

)
, which is a contradiction.

Problem 120 (Application to the square peg problem) Let J ⊂ R2 be a Jordan curve that is symmet-
ric about the origin (i.e., P ∈ J if and only if −P ∈ J). Moreover, assume the origin O lies in the
bounded connected component of R2 \ J . Prove: J has an inscribed square, i.e., there exist four points
on J that are the vertices of a square.

Proof Rotate the curve J by π
2 and denote the rotated curve by J0. If we can show that J ∩ J0 is

nonempty, then by symmetry there exist four points (±x,±y) on J that are the vertices of a square. For
this, we need the following lemma.
Lemma If J1, J2 are two Jordan curves in R2 such that J1 ∩ J2 = ∅ and J1 is contained in the bounded
connected component of R2 \ J2 (denoted by A2), then the bounded connected component of R2 \ J1 (denoted by
A1) is contained in A2.
Proof Suppose to the contrary that there exists x0 ∈ A1∩Ac

2. SinceAc
2 is the closure of the unbounded

connected component of R2 \ J2, by Proposition 3.1.12, Ac
2 is connected, unbounded, and does not in-

tersect J1. Thus the connected component of R2 \ J1 in which x0 lies must contain Ac
2, a contradiction

to the assumption that A1 is bounded.
Nowwe show that J∩J0 is nonempty. If they are disjoint, then by the Jordan curve theorem, J0 must

be entirely contained in the interior or exterior of J . Without loss of generality, assume J0 is contained
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in the interior of J (otherwise J is contained in the interior of J0). Then rotate J0 by π
2 again to get J1.

By symmetry, J1 is contained in the interior of J0, and the lemma above implies that J1 is contained in
the bounded connected component of R2 \ J . However, since J is symmetric about the origin, we have
J1 = J , which is a contradiction. Therefore J ∩ J0 is nonempty, and the proof is complete.
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