Riemannian Geometry

Xiaoshuo Lin, Spring 2025

https://xiaoshuo-lin.github.io

Homework 1

Exercise 1 The sphere

$$\mathbb{S}^n = \left\{ \left(x^1, \cdots, x^{n+1} \right) \in \mathbb{R}^{n+1} : \sum_{i=1}^{n+1} (x^i)^2 = 1 \right\}$$

is an embedded submanifold of \mathbb{R}^{n+1} with the induced metric $g_{\mathbb{S}^n}$. Consider the coordinate chart $U = \mathbb{S}^n \setminus \{(0, \cdots, 0, 1)\}$, given by the stereographic projection from the north pole:

$$\varphi(x^1,\cdots,x^{n+1}) \coloneqq \left(\frac{x^1}{1-x^{n+1}},\cdots,\frac{x^n}{1-x^{n+1}}\right).$$

Write down the metric $g_{\mathbb{S}^n}$ in this chart.

Solution The inverse map $\varphi^{-1}: \mathbb{R}^n \to \mathbb{S}^n \setminus \{(0, \dots, 0, 1)\}$ is given by

$$\varphi^{-1}(u^1,\dots,u^n) = \left(\frac{2u^1}{|u|^2+1},\dots,\frac{2u^n}{|u|^2+1},\frac{|u|^2-1}{|u|^2+1}\right).$$

Then, we obtain the following coordinate representation of $g_{\mathbb{S}^n}$ in stereographic coordinates:

$$(\varphi^{-1})^* g_{\mathbb{S}^n} = \sum_{j=1}^n \left(\mathsf{d} \left(\frac{2u^j}{|u|^2 + 1} \right) \right)^2 + \left(\mathsf{d} \left(\frac{|u|^2 - 1}{|u|^2 + 1} \right) \right)^2.$$

If we expand each of these terms individually, we get

$$d\left(\frac{2u^j}{|u|^2+1}\right) = \frac{2 du^j}{|u|^2+1} - \frac{4u^j}{(|u|^2+1)^2} \sum_{i=1}^n u^i du^i$$

and

$$\mathrm{d}\bigg(\frac{|u|^2-1}{|u|^2+1}\bigg) = -2\,\mathrm{d}\bigg(\frac{1}{|u|^2+1}\bigg) = \frac{4}{\big(|u|^2+1\big)^2}\sum_{i=1}^n u^i\,\mathrm{d}u^i.$$

Therefore,

$$(\varphi^{-1})^* g_{\mathbb{S}^n} = \frac{4}{(|u|^2 + 1)^2} \sum_{j=1}^n (\mathrm{d}u^j)^2 - \frac{16}{(|u|^2 + 1)^3} \left(\sum_{i=1}^n u^i \, \mathrm{d}u^i\right)^2 + \frac{16|u|^2}{(|u|^2 + 1)^4} \left(\sum_{i=1}^n u^i \, \mathrm{d}u^i\right)^2$$

$$+ \frac{16}{(|u|^2 + 1)^4} \left(\sum_{i=1}^n u^i \, \mathrm{d}u^i\right)^2$$

$$= \frac{4}{(|u|^2 + 1)^2} \sum_{j=1}^n (\mathrm{d}u^j)^2$$

$$= \frac{4}{(|u|^2 + 1)^2} g_E,$$

where g_E is the Euclidean metric on \mathbb{R}^n .

Exercise 2 Consider the connection ∇ defined on \mathbb{R}^3 so that with respect to the standard frame e_1, e_2, e_3 ,

$$\nabla_{e_i} e_j = e_i \times e_j,$$

where \times denotes the cross product. Find the vector field X which is the parallel transport of e_2 along the e_1 -axis.

Solution Write *X* as a linear combination of the standard basis vectors:

$$X(t) = a(t)e_1 + b(t)e_2 + c(t)e_3,$$

where t is the coordinate along the e_1 -axis and a(t), b(t), c(t) are functions of t. Then, the parallel transport equation is

$$0 = \nabla_{e_1}(a(t)e_1 + b(t)e_2 + c(t)e_3)$$

= $a'(t)e_1 + a(t)\nabla_{e_1}e_1 + b'(t)e_2 + b(t)\nabla_{e_1}e_2 + c'(t)e_3 + c(t)\nabla_{e_1}e_3$
= $a'(t)e_1 + b'(t)e_2 + c'(t)e_3 + b(t)e_3 - c(t)e_2$.

Therefore, we have the system of differential equations

$$a'(t) = 0$$
, $b'(t) = c(t)$, $c'(t) = -b(t)$,

with the initial condition $X(0) = e_2$, that is,

$$a(0) = 0$$
, $b(0) = 1$, $c(0) = 0$.

Solving this system, we find that

$$a(t) = 0$$
, $b(t) = \cos t$, $c(t) = -\sin t$,

and hence

$$X(t) = (\cos t)e_2 - (\sin t)e_3.$$

In the following, all connections are Levi-Civita connections with respect to the given metrics.

Exercise 3 Let N^n be an embedded submanifold of M^m . Given a metric \bar{g} on M with Levi-Civita connection $\bar{\nabla}$, we define the connection ∇ on TN by

$$\nabla_X Y = \pi_{TN} (\overline{\nabla}_X Y)$$

for any vector fields $X, Y \in \Gamma(TN)$, where π_{TN} denotes the orthogonal projection onto TN. Prove that ∇ is the Levi-Civita connection of the induced metric $g = \bar{g}|_N$ on N.

Proof For any vector fields $X,Y \in \Gamma(TN)$, we can extend them smoothly to an open neighborhood of N in M and still denote them by X,Y. It is immediate from the definition that $\nabla_X Y$ is linear over $\mathfrak{C}^{\infty}(M)$ in X and over \mathbb{R} in Y, so to show that ∇ is a connection, only the product rule needs to be checked. Let $f \in \mathfrak{C}^{\infty}(M)$, and let \tilde{f} be an extension of f to an open neighborhood of N in M. Then $\tilde{f}Y$ is a smooth extension of f to an open neighborhood of N, so

$$\nabla_X(fY) = \pi_{TN}(\overline{\nabla}_X(fY)) = \pi_{TN}((X\tilde{f})Y) + \pi_{TN}(\tilde{f}\overline{\nabla}_XY) = (Xf)Y + f\nabla_XY.$$

Since

$$\nabla_X Y - \nabla_Y X - [X, Y] = \pi_{TN} (\overline{\nabla}_X Y - \overline{\nabla}_Y X - [X, Y]) = \pi_{TN}(0) = 0,$$

we have that ∇ is torsion-free. Finally, to see that ∇ is compatible with g, we compute

$$\begin{split} \nabla_X \langle Y, Z \rangle &= \overline{\nabla}_X \langle Y, Z \rangle = \left\langle \overline{\nabla}_X Y, Z \right\rangle + \left\langle Y, \overline{\nabla}_X Z \right\rangle \\ &= \left\langle \nabla_X Y, Z \right\rangle + \left\langle Y, \nabla_X Z \right\rangle \end{split}$$

for any vector fields $X,Y,Z\in\Gamma(TN)$. Therefore, ∇ is the Levi-Civita connection of $g=\bar{g}|_N$.

Exercise 4 Let (M, g) and (N, h) be Riemannian manifolds. Show that the Levi-Civita connection ∇ of $(M \times N, g \times h)$ satisfies

$$\nabla_{X_1+X_2}(Y_1+Y_2) = \nabla^g_{X_1}Y_1 + \nabla^h_{X_2}Y_2$$

for all vector fields $X_1, Y_1 \in \Gamma(TM)$ and $X_2, Y_2 \in \Gamma(TN)$.

Proof Note that vector fields from TM and TN are orthogonal, with vanishing Lie brackets between them. Therefore, for any $Z_1 \in \Gamma(TM)$ and $Z_2 \in \Gamma(TN)$, we have by Koszul's formula that

$$\begin{split} 2\langle \nabla_{X_1+X_2}(Y_1+Y_2), Z_1+Z_2\rangle = & (X_1+X_2)\langle Y_1+Y_2, Z_1+Z_2\rangle + (Y_1+Y_2)\langle Z_1+Z_2, X_1+X_2\rangle \\ & - (Z_1+Z_2)\langle X_1+X_2, Y_1+Y_2\rangle - \langle Y_1+Y_2, [X_1+X_2, Z_1+Z_2]\rangle \\ & - \langle Z_1+Z_2, [Y_1+Y_2, X_1+X_2]\rangle + \langle X_1+X_2, [Z_1+Z_2, Y_1+Y_2]\rangle \\ = & X_1\langle Y_1, Z_1\rangle + X_2\langle Y_2, Z_2\rangle + Y_1\langle Z_1, X_1\rangle + Y_2\langle Z_2, X_2\rangle \\ & - Z_1\langle X_1, Y_1\rangle - Z_2\langle X_2, Y_2\rangle - \langle Y_1, [X_1, Z_1]\rangle - \langle Y_2, [X_2, Z_2]\rangle \\ & - \langle Z_1, [Y_1, X_1]\rangle - \langle Z_2, [Y_2, X_2]\rangle + \langle X_1, [Z_1, Y_1]\rangle + \langle X_2, [Z_2, Y_2\rangle \\ = & 2\langle \nabla^g_{X_1}Y_1, Z_1\rangle + 2\langle \nabla^h_{X_2}Y_2, Z_2\rangle \\ = & 2\langle \nabla^g_{X_1}Y_1 + \nabla^h_{X_2}Y_2, Z_1 + Z_2\rangle. \end{split}$$

Since this holds for all $Z_1 \in \Gamma(TM)$ and $Z_2 \in \Gamma(TN)$, the desired result follows.

Exercise 5 Let F be an isometry of (M^n, g) .

- (1) Show that $dF(\nabla_X Y) = \nabla_{dF(X)} dF(Y)$ for any vector fields $X, Y \in \Gamma(TM)$.
- (2) Use this fact to show that any isometry F of (\mathbb{R}^n, g_E) has the form F(x) = Ox + b, where $O \in O(n)$ and $b \in \mathbb{R}^n$.

Proof (1) We shall show that

$$\nabla_X Y = (\mathrm{d}F)^{-1} \left(\nabla_{\mathrm{d}F(X)} \, \mathrm{d}F(Y) \right), \quad \forall X, Y \in \Gamma(TM). \tag{5-1}$$

By the uniqueness of the Levi-Civita connection, it suffices to show that the right-hand side of (5-1) defines a connection that is compatible with g and torsion-free.

♦ It is a connection because it satisfies the following properties:

- For $f_1, f_2 \in \mathcal{C}^{\infty}(M)$ and $X_1, X_2 \in \Gamma(TM)$,

$$(dF)^{-1} \left(\nabla_{dF(f_1 X_2 + f_2 X_2)} dF(Y) \right)$$

$$= (dF)^{-1} \left(\nabla_{(f_1 \circ F^{-1}) dF(X_1) + (f_2 \circ F^{-1}) dF(X_2)} dF(Y) \right)$$

$$= (dF)^{-1} \left(\left(f_1 \circ F^{-1} \right) \nabla_{dF(X_1)} dF(Y) + \left(f_2 \circ F^{-1} \right) \nabla_{dF(X_2)} dF(Y) \right)$$

$$= f_1 (dF)^{-1} \left(\nabla_{dF(X_1)} dF(Y) \right) + f_2 (dF)^{-1} \left(\nabla_{dF(X_2)} dF(Y) \right).$$

- For $a_1, a_2 \in \mathbb{R}$ and $Y_1, Y_2 \in \Gamma(M)$,

$$\begin{split} &(\mathrm{d}F)^{-1} \big(\nabla_{\mathrm{d}F(X)} \, \mathrm{d}F(a_1 Y_1 + a_2 Y_2) \big) \\ = &(\mathrm{d}F)^{-1} \big(a_1 \nabla_{\mathrm{d}F(X)} \, \mathrm{d}F(Y_1) + a_2 \nabla_{\mathrm{d}F(X)} \, \mathrm{d}F(Y_2) \big) \\ = &a_1 (\mathrm{d}F)^{-1} \big(\nabla_{\mathrm{d}F(X)} \, \mathrm{d}F(Y_1) \big) + a_2 (\mathrm{d}F)^{-1} \big(\nabla_{\mathrm{d}F(X)} \, \mathrm{d}F(Y_2) \big). \end{split}$$

- For $f \in \mathcal{C}^{\infty}(M)$,

$$\begin{split} & (\mathrm{d}F)^{-1} \big(\nabla_{\mathrm{d}F(X)} (\mathrm{d}F(fY)) \big) \\ = & (\mathrm{d}F)^{-1} \big(\nabla_{\mathrm{d}F(X)} \big(\big(f \circ F^{-1} \big) \, \mathrm{d}F(Y) \big) \big) \\ = & (\mathrm{d}F)^{-1} \big(\big(f \circ F^{-1} \big) \nabla_{\mathrm{d}F(X)} \, \mathrm{d}F(Y) + \big(\mathrm{d}F(X) \big(f \circ F^{-1} \big) \big) \, \mathrm{d}F(Y) \big) \\ = & f (\mathrm{d}F)^{-1} \big(\nabla_{\mathrm{d}F(X)} \, \mathrm{d}F(Y) \big) + (Xf) (\mathrm{d}F)^{-1} \circ \mathrm{d}F(Y) \\ = & f (\mathrm{d}F)^{-1} \big(\nabla_{\mathrm{d}F(X)} \, \mathrm{d}F(Y) \big) + (Xf)Y. \end{split}$$

 \diamond To see that it is compatible with g, we use the fact that F is an isometry:

$$\begin{split} & \left\langle (\mathrm{d}F)^{-1} \left(\nabla_{\mathrm{d}F(X)} \, \mathrm{d}F(Y) \right), Z \right\rangle + \left\langle Y, (\mathrm{d}F)^{-1} \left(\nabla_{\mathrm{d}F(X)} \, \mathrm{d}F(Z) \right) \right\rangle \\ = & \left\langle \nabla_{\mathrm{d}F(X)} \, \mathrm{d}F(Y), \mathrm{d}F(Z) \right\rangle + \left\langle \mathrm{d}F(Y), \nabla_{\mathrm{d}F(X)} \, \mathrm{d}F(Z) \right\rangle \\ = & \mathrm{d}F(X) \langle \mathrm{d}F(Y), \mathrm{d}F(Z) \rangle \\ = & X \langle Y, Z \rangle. \end{split}$$

⋄ To see that it is torsion-free, we use the naturality of the Lie bracket:

$$\begin{split} & (\mathrm{d}F)^{-1} \left(\nabla_{\mathrm{d}F(X)} \, \mathrm{d}F(Y) \right) - (\mathrm{d}F)^{-1} \left(\nabla_{\mathrm{d}F(Y)} \, \mathrm{d}F(X) \right) \\ = & (\mathrm{d}F)^{-1} \left(\nabla_{\mathrm{d}F(X)} \, \mathrm{d}F(Y) - \nabla_{\mathrm{d}F(Y)} \, \mathrm{d}F(X) \right) \\ = & (\mathrm{d}F)^{-1} [\mathrm{d}F(X), \mathrm{d}F(Y)] \\ = & [X,Y]. \end{split}$$

Therefore, the right-hand side of (5-1) is exactly the Levi-Civita connection of g, and hence (5-1) holds.

(2) Connections in \mathbb{R}^n are given by the directional derivatives, so by part (1) we have

$$0 = dF(D_{\partial_i}\partial_j) = D_{dF(\partial_i)} dF(\partial_j) = Jac(dF(\partial_j)) dF(\partial_i), \quad \forall i, j,$$

which implies that

$$\operatorname{Jac}(\operatorname{d}F(\partial_j))\operatorname{Jac}(F)=0.$$

Since F is an isometry, the Jacobian Jac(F) is invertible at each point, we obtain

$$Jac(dF(\partial_i)) = 0, \forall j.$$

Note that $dF(\partial_j)$ is the j-th column of Jac(F), so Jac(F) is a constant matrix. Therefore, F is an affine transformation of the form F(x) = Ax + b for some $A \in GL(n, \mathbb{R})$ and $b \in \mathbb{R}^n$. Finally, since F is an isometry, A must be orthogonal.

Exercise 6 Show that any isometry F of $(\mathbb{S}^n, g_{\mathbb{S}^n})$ can be given by F(x) = Ox, where $O \in O(n+1)$ and $x \in \mathbb{R}^{n+1}$ with |x| = 1.

Proof We begin by noting that any $F \in \text{Iso}(\mathbb{S}^n, g_{\mathbb{S}^n})$ preserves the \mathbb{R}^{n+1} -inner product of unit vectors, that is,

$$F(u) \cdot F(v) = u \cdot v, \quad \forall u, v \in \mathbb{S}^n.$$
 (6-1)

Indeed, the inner product $u \cdot v$ can be interpreted as the cosine of the Riemannian distance between u and v on \mathbb{S}^n , and similarly for $F(u) \cdot F(v)$. Therefore, by the isometry invariance of the Riemannian distance function, (6–1) holds.

Now, let us consider the map

$$\widetilde{F} \colon \mathbb{R}^{n+1} \to \mathbb{R}^{n+1}, \quad p \mapsto \begin{cases} 0, & \text{if } p = 0, \\ |p|F\left(\frac{p}{|p|}\right), & \text{if } p \neq 0. \end{cases}$$

It is immediate that \widetilde{F} preserves the \mathbb{R}^{n+1} -inner product:

$$\widetilde{F}(u) \cdot \widetilde{F}(v) = |u||v|F\left(\frac{u}{|u|}\right) \cdot F\left(\frac{v}{|v|}\right) = |u||v|\frac{u \cdot v}{|u||v|} = u \cdot v, \quad \forall u, v \in \mathbb{R}^{n+1} \setminus \{0\}.$$

Then, for any $\lambda \in \mathbb{R}$ and any $u, v \in \mathbb{R}^{n+1}$, we compute

$$\begin{split} \left| \widetilde{F}(\lambda u + v) - \lambda \widetilde{F}(u) - \widetilde{F}(v) \right|^2 &= \left\langle \widetilde{F}(\lambda u + v) - \lambda \widetilde{F}(u) - \widetilde{F}(v), \widetilde{F}(\lambda u + v) - \lambda \widetilde{F}(u) - \widetilde{F}(v) \right\rangle \\ &= \left\langle \widetilde{F}(\lambda u + v), \widetilde{F}(\lambda u + v) \right\rangle + \text{ more such terms} \\ &= \left\langle \lambda u + v, \lambda u + v \right\rangle + \text{ more such terms} \\ &= \left| \lambda u + v - \lambda u - v \right|^2 \\ &= 0, \end{split}$$

which shows that \widetilde{F} is linear, and is given by F(x) = Ox for some $O \in GL(n+1,\mathbb{R})$. Finally, since F is the restriction of \widetilde{F} to \mathbb{S}^n , the result follows.

Exercise 7 Let (M,g) be a Riemannian manifold and $f \in \mathcal{C}^{\infty}(M)$. Show that

$$\mathcal{L}_{\text{grad }f}g = 2\nabla^2 f,$$

where \mathcal{L} denotes the Lie derivative.

Proof By the product rule for the Lie derivative, for any $X, Y \in \Gamma(TM)$, we have

$$(\mathcal{L}_{\operatorname{grad}} fg)(X,Y) = \operatorname{grad} f(\langle X,Y \rangle) - \langle [\operatorname{grad} f,X],Y \rangle - \langle X, [\operatorname{grad} f,Y] \rangle.$$

Since ∇ is compatible with g, the first term is

$$\operatorname{grad} f(\langle X, Y \rangle) = \langle \nabla_{\operatorname{grad} f} X, Y \rangle + \langle X, \nabla_{\operatorname{grad} f} Y \rangle.$$

And since ∇ is torsion-free, the remaining terms expand as

$$\langle [\operatorname{grad} f,X],Y \rangle = \langle \nabla_{\operatorname{grad} f}X,Y \rangle - \langle \nabla_X \operatorname{grad} f,Y \rangle,$$
林晓烁 Spring 2025

$$\langle X, [\operatorname{grad} f, Y] \rangle = \langle X, \nabla_{\operatorname{grad} f} Y \rangle - \langle X, \nabla_Y \operatorname{grad} f \rangle.$$

Combining these, we obtain

$$(\mathcal{L}_{\operatorname{grad} f} g)(X, Y) = \langle \nabla_X \operatorname{grad} f, Y \rangle + \langle X, \nabla_Y \operatorname{grad} f \rangle. \tag{7-1}$$

Meanwhile, the Hessian of f is computed as

$$\begin{split} \left(\nabla^2 f\right)(X,Y) &= \nabla_X(\nabla_Y f) - \nabla_{\nabla_X Y} f = X(Yf) - (\nabla_X Y)f \\ &= X(\langle \operatorname{grad} f, Y \rangle) - \langle \operatorname{grad} f, \nabla_X Y \rangle \\ &= \langle \nabla_X \operatorname{grad} f, Y \rangle. \end{split} \tag{7-2}$$

Since $\nabla^2 f$ is a (0,2)-symmetric tensor, the result follows from (7–1) and (7–2).

Exercise 8 Let (M^n, g) be a Riemannian manifold with Laplace operator Δ . For the conformal metric $\bar{g} = e^{-2f}g$, prove that

$$\Delta_{\bar{q}}\varphi = e^{2f}(\Delta_q \varphi - (n-2)\langle \operatorname{grad} f, \operatorname{grad} \varphi \rangle).$$

Proof Let (x^i) be any smooth local coordinates on an open subset of M. Then, for any $\varphi \in \mathcal{C}^{\infty}(M)$,

$$\begin{split} &\Delta_{\overline{g}}\varphi = \frac{1}{\sqrt{\det \overline{g}}} \frac{\partial}{\partial x^i} \bigg(\overline{g}^{ij} \sqrt{\det \overline{g}} \frac{\partial \varphi}{\partial x^j} \bigg) \\ &= \frac{1}{\sqrt{e^{-2nf} \det g}} \frac{\partial}{\partial x^i} \bigg(e^{2f} g^{ij} \sqrt{e^{-2nf} \det g} \frac{\partial \varphi}{\partial x^j} \bigg) \\ &= \frac{e^{nf}}{\sqrt{\det g}} \frac{\partial}{\partial x^i} \bigg(e^{(2-n)f} g^{ij} \sqrt{\det g} \frac{\partial}{\partial x^j} \bigg) \\ &= \frac{e^{nf}}{\sqrt{\det g}} \bigg\{ \bigg((2-n) \frac{\partial f}{\partial x^i} e^{(2-n)f} \bigg) \bigg(g^{ij} \sqrt{\det g} \frac{\partial \varphi}{\partial x^j} \bigg) + e^{(2-n)f} \frac{\partial}{\partial x^i} \bigg(g^{ij} \sqrt{\det g} \frac{\partial \varphi}{\partial x^j} \bigg) \bigg\} \\ &= \bigg((2-n) \frac{\partial f}{\partial x^i} e^{2f} \bigg) \bigg(g^{ij} \frac{\partial \varphi}{\partial x^j} \bigg) + \frac{e^{2f}}{\sqrt{\det g}} \frac{\partial}{\partial x^i} \bigg(g^{ij} \sqrt{\det g} \frac{\partial \varphi}{\partial x^j} \bigg) \\ &= e^{2f} \bigg(\Delta_g \varphi - (n-2) g^{ij} \frac{\partial f}{\partial x^i} \frac{\partial \varphi}{\partial x^j} \bigg) \\ &= e^{2f} (\Delta_g \varphi - (n-2) \langle \operatorname{grad} f, \operatorname{grad} \varphi \rangle). \end{split}$$

Homework 2

In the following, connections are assumed to be Levi-Civita connections by default.

Exercise 9 Let (M^n, g) be a Riemannian manifold. Prove that for any $p \in M$, the closure of the geodesic ball $\mathbb{B}(p, r) = \{x \in M : d_g(p, x) < r\}$ is

$$\{x \in M : d_q(p, x) \leqslant r\}.$$

Proof (1) For any x with $d_g(p,x) > r$, we can find a geodesic ball centered at x which does not intersect $\mathbb{B}(p,r)$. This implies that $x \notin \overline{\mathbb{B}(p,r)}$ and hence $\overline{\mathbb{B}(p,r)} \subset \{x \in M : d_g(p,x) \leqslant r\}$. Here we use the fact that the metric topology induced by d_g is the same as the manifold topology.

(2) Suppose $x \in M$ satisfies $d_g(p,x) \leqslant r$. For any $n \geqslant 1$, we can take $x_n \in \mathbb{B}(x,\frac{1}{n}) \cap \mathbb{B}(p,r)$, for otherwise the triangle inequality would imply that $d_g(p,x) > r$. This shows that $x \in \overline{\mathbb{B}(p,r)}$.

Exercise 10 Let (M^n, g) be a Riemannian manifold. Prove that for any $p \in M$, there exists an open neighborhood U of p and n vector fields $E_1, \dots, E_n \in \Gamma(TU)$, orthonormal at each point of U, such that

$$\nabla_{E_i} E_j(p) = 0.$$

Proof Let U be a normal neighborhood of p. For each $q \in U$, there is a geodesic γ_q parametrized by arc length from p to q. Take an orthonormal basis $\{v_1, \cdots, v_n\}$ of T_pM and let $\{V_1, \cdots, V_n\}$ be their parallel transport along γ_q . For each $j=1,\cdots,n$, define the smooth vector field E_j on U by

$$E_j(q) = V_j(d_q(p,q)),$$

where d_g is the Riemannian distance function. Then the n vector fields E_1, \dots, E_n are orthonormal at each point of U. For each $i=1,\dots,n$, let $\gamma_i(s)$ be the geodesic such that $\gamma_i(0)=p$ and $\gamma_i'(0)=E_i(p)$. Then

$$\nabla_{E_i} E_j(p) = \nabla_{\gamma_i'(0)} E_j = \frac{\mathsf{D}(E_j \circ \gamma_i)}{\mathsf{d}s} \bigg|_{s=0}.$$

Since $E_j \circ \gamma_i(s) = V_j(d(p, \sigma_o(s))) = V_j(s)$ is parallel along γ_i , we have

$$\nabla_{E_i} E_j(p) = \frac{\mathrm{D}V_j}{\mathrm{d}s}(0) = 0.$$

Exercise 11 Let M^n be a smooth manifold (Hausdorff and paracompact). Prove that there exists a countable covering $\{U_\alpha\}$ of M such that for any elements $U_{\alpha_1}, U_{\alpha_2}, \cdots, U_{\alpha_k}$ in the covering, the intersection

$$\bigcap_{i=1}^{k} U_{\alpha_i}$$

deformation retracts to a point.

Proof Endow M with a Riemannian metric. Every point in M has a strongly convex neighborhood (i.e., a neighborhood U in which any two points can be joined by a unique minimizing geodesic contained in U), and the intersection of any two such neighborhoods is again strongly convex. For any strongly convex neighborhood U of $p \in M$, we can connect any point $q \in U$ to p by a unique minimizing geodesic in U. Hence, using normal coordinates, we see that any point in $\exp_p^{-1}(U)$ can be connected to 0 by a straight line. This implies that $\exp_p^{-1}(U)$ is a star-shaped neighborhood of 0 in T_pM , which is contractible. Since U is diffeomorphic to $\exp_p^{-1}(U)$, we conclude that U is contractible. Finally, since M is second-countable, and hence Lindelöf, we can cover it with a countable collection of strongly convex neighborhoods $\{U_\alpha\}$, which gives us the desired covering.

Exercise 12 Let (G, g) be a Lie group with a bi-invariant metric g.

(1) Prove that

$$\nabla_Y X = \frac{1}{2} [Y, X]$$

for any $X,Y\in\mathfrak{g}$, where the elements of \mathfrak{g} are identified with left-invariant vector fields on G.

(2) Prove that any geodesic $\phi(t)$ from the identity element e is defined for any $t \in \mathbb{R}$ and satisfies

$$\phi(t+s) = \phi(t) \cdot \phi(s)$$

for any $t, s \in \mathbb{R}$.

Proof (1) Since g is bi-invariant, the inner product of any two left-invariant vector fields is constant. In particular, Koszul's formula simplifies to

$$\langle \nabla_X Y, Z \rangle = \frac{1}{2} (\langle [X,Y], Z \rangle - \langle [X,Z], Y \rangle - \langle [Y,Z], X \rangle),$$

where X,Y,Z are left-invariant vector fields. Recall that for the adjoint representation $\mathrm{ad}\colon\mathfrak{g}\to\mathfrak{gl}(g)\coloneqq T_1\mathrm{GL}(\mathfrak{g})$, we have $\mathrm{ad}(X)Y=[X,Y]$. Therefore,

$$\begin{split} \langle \nabla_X Y, Z \rangle &= \frac{1}{2} (\langle [X,Y], Z \rangle - \langle \operatorname{ad}(X)Z, Y \rangle - \langle \operatorname{ad}(Y)Z, X \rangle) \\ &= \frac{1}{2} (\langle [X,Y], Z \rangle - \langle \operatorname{ad}^*(X)Y, Z \rangle - \langle \operatorname{ad}^*(Y)X, Z \rangle) \\ &= \frac{1}{2} \langle [X,Y] - \operatorname{ad}^*(X)Y - \operatorname{ad}^*(Y)X, Z \rangle. \end{split}$$

Since Z is an arbitrary left-invariant vector field, we have

$$\nabla_X Y = \frac{1}{2}([X, Y] - \mathrm{ad}^*(X)Y - \mathrm{ad}^*(Y)X). \tag{12-1}$$

Moreover, by definition,

$$ad(X)Y = \frac{d}{dt} \bigg|_{t=0} Ad(exp(tX))Y.$$

Hence, we have

$$\begin{split} 0 &= \frac{\mathrm{d}}{\mathrm{d}t} \bigg|_{t=0} \langle Y, Z \rangle \\ &= \frac{\mathrm{d}}{\mathrm{d}t} \bigg|_{t=0} \left\langle \left(L_{\exp(tX)} \right)_* \left(R_{\exp(-tX)} \right)_* Y, \left(L_{\exp(tX)} \right)_* \left(R_{\exp(-tX)} \right)_* Z \right\rangle \\ &= \frac{\mathrm{d}}{\mathrm{d}t} \bigg|_{t=0} \langle \mathrm{Ad}(\exp(tX)) Y, \mathrm{Ad}(\exp(tX)) Z \rangle \\ &= \left\langle \frac{\mathrm{d}}{\mathrm{d}t} \bigg|_{t=0} \mathrm{Ad}(\exp(tX)) Y, Z \right\rangle + \left\langle Y, \frac{\mathrm{d}}{\mathrm{d}t} \bigg|_{t=0} \mathrm{Ad}(\exp(tX)) Z \right\rangle \\ &= \left\langle \mathrm{ad}(X) Y, Z \right\rangle + \left\langle Y, \mathrm{ad}(X) Z \right\rangle \\ &= \left\langle \mathrm{ad}(X) Y + \mathrm{ad}^*(X) Y, Z \right\rangle. \end{split}$$

Since Y and Z are two arbitrary left-invariant vector fields, we find that

$$ad(X) = -ad^*(X).$$

With this, we obtain from (12-1) that

$$\nabla_X Y = \frac{1}{2}([X,Y] + \operatorname{ad}(X)Y + \operatorname{ad}(Y)X) = \frac{1}{2}([X,Y] + [X,Y] + [Y,X]) = \frac{1}{2}[X,Y].$$

(2) We need the following

Lemma For a Lie group G with a bi-invariant metric g, the inversion map $i: G \to G$ given by $i(\varphi) = \varphi^{-1}$ is an isometry.

Proof of the lemma Note that for any $x \in G$, we have

$$R_{\varphi^{-1}} \circ i \circ L_{\varphi^{-1}}(x) = (\varphi^{-1}x)^{-1}\varphi^{-1} = x^{-1}\varphi\varphi^{-1} = i(x).$$

Hence, using the chain rule, we get

$$\mathrm{d}i_{\varphi}=\mathrm{d}\big(R_{\varphi^{-1}}\big)_{e}\circ\mathrm{d}i_{e}\circ\mathrm{d}\big(L_{\varphi^{-1}}\big)_{\varphi}.$$

Since the differential of i at the identity element e is given by $di_e(X) = -X$, we have

$$di = -(dR_{\varphi})^{-1} \circ (dL_{\varphi})^{-1}.$$

Thus, by the bi-invariance of the metric, for any $X, Y \in T_{\varphi}G$,

$$\begin{split} \left\langle \operatorname{d}i(X),\operatorname{d}i(Y)\right\rangle_{\varphi^{-1}} &= \left\langle -(\operatorname{d}R_{\varphi})^{-1}\circ (\operatorname{d}L_{\varphi})^{-1}(X), -(\operatorname{d}R_{\varphi})^{-1}\circ (\operatorname{d}L_{\varphi})^{-1}(Y)\right\rangle_{\varphi^{-1}} \\ &= \left\langle X,Y\right\rangle_{\varphi}. \end{split}$$

This shows that i is an isometry.

By the lemma, the inversion map i is an isometry, so $i \circ \phi(t) = \phi(t)^{-1}$ is a geodesic. And since $\mathrm{d}i_e(X) = -X$, by the uniqueness of geodesics, we have $\phi(-t) = \phi(t)^{-1}$, i.e., $\phi(t)\phi(-t) = e$. For small t_0 , if we define $\tilde{\phi}(t) = \phi(t_0)\phi(t)$, then $\tilde{\phi}(t)$ is a geodesic with $\tilde{\phi}(0) = \phi(t_0)$ and $\tilde{\phi}(-t_0) = e$. By the uniqueness of short geodesics, we must have $\tilde{\phi}(t) = \phi(t_0 + t)$, that is,

$$\phi(t_0)\phi(t) = \phi(t_0 + t), \tag{12-2}$$

for all t and t_0 small enough. By extending ϕ beyond any interval [0, l] via $\phi(t + s) := \phi(l)\phi(s)$, we see that $\phi(t)$ can be extended to a geodesic for all $t \in \mathbb{R}$. And by a standard argument (of chopping into "small pieces"), from (12–2), we indeed have

$$\phi(t+s) = \phi(t) \cdot \phi(s), \quad \forall t, s \in \mathbb{R}.$$

Exercise 13 Let (M^n,g) be a Riemannian manifold. We introduce a Riemannian metric \tilde{g} on the tangent bundle TM as follows. Fix $(p,v)\in TM$, and consider curves $\alpha(t)=(p(t),v(t))$ and $\beta(t)=(q(t),w(t))$ on TM such that $\alpha(0)=\beta(0)=(p,v)$. Then we define at (p,v)

$$\tilde{g}(\alpha'(0), \beta'(0)) = g(p'(0), q'(0)) + g\left(\frac{Dv}{dt}(0), \frac{Dw}{dt}(0)\right).$$

(1) Prove that the metric \tilde{g} is well-defined and smooth.

- (2) A vector field V on TM is called *horizontal* if it is orthogonal to the fiber T_pM . A curve (p(t),v(t)) in TM is horizontal if its tangent vector is horizontal for any t. Prove that a curve (p(t),v(t)) in TM is horizontal if and only if the vector field v(t) is parallel along p(t) in M.
- (3) Prove that the geodesic field G is a horizontal vector field on TM.
- (4) Prove that the trajectories of the geodesic field G are geodesics on TM with respect to \tilde{g} .
- (5) Prove that with respect to \tilde{g} , the geodesic field G satisfies

$$\operatorname{div}(G) = 0.$$

(6) Prove that the geodesic flow preserves the Riemannian volume measure of TM.

Proof (1) The expression of \tilde{g} is clearly coordinate independent. Hence, we may let (x^1, \dots, x^n) be local coordinates on M around p, and let $(x^1, \dots, x^n, y^1, \dots, y^n)$ be the corresponding natural coordinates on TM near (p, v). Then we have

$$\frac{\mathrm{D}v^{i}}{\mathrm{d}t}(0) = \frac{\mathrm{d}v^{i}}{\mathrm{d}t}(0) + \Gamma^{i}_{jk}v^{k}(0)\frac{\mathrm{d}p^{j}}{\mathrm{d}t}(0),
\frac{\mathrm{D}w^{i}}{\mathrm{d}t}(0) = \frac{\mathrm{d}w^{i}}{\mathrm{d}t}(0) + \Gamma^{i}_{jk}w^{k}(0)\frac{\mathrm{d}q^{j}}{\mathrm{d}t}(0).$$
(13–1)

Therefore, \tilde{g} is well-defined in the sense that it depends only on $\alpha'(0)$ and $\beta'(0)$, and not on the choice of curves. Moreover, with (13–1), we see that \tilde{g} is smooth. Finally, to check that \tilde{g} is a Riemannian metric, we only need to show that $\tilde{g}(\alpha'(0),\alpha'(0))=0$ implies $\alpha'(0)=0$. This is clear by taking p'(0)=0 in (13–1), which then yields v'(0)=0.

(2) A curve α is contained in a fiber, exactly if $\pi \circ \alpha$ is constant, which happens exactly if $\alpha'(t) \in \operatorname{Ker} d\pi$ for all t. Hence, the tangent vectors parallel to the fiber are exactly those where $d\pi(\alpha'(t)) = 0$. Such tangent vectors are those which can be realized as derivatives of paths (p, w(t)) where p is a point, and w(t) is a path in T_pM . Since T_pM is a vector space, we have $\frac{\mathrm{D} w}{\mathrm{d} t} = w'$. Then, for any curve (p(t), v(t)) in TM, its inner product with the tangent vector of (p, w(t)) at $t = t_0$ is given by

$$\langle p'(t_0), 0 \rangle + \left\langle \frac{\mathrm{D}v}{\mathrm{d}t}(t_0), w'(t_0) \right\rangle.$$

As $w'(t_0)$ is arbitrary, this is zero for all tangent vectors to the fiber if and only if $\frac{Dv}{dt}(t_0) = 0$.

- (3) This follows from (2) since for any geodesic $\gamma(t)$, $\gamma'(t)$ is parallel along $\gamma(t)$.
- (4) For a curve $\alpha(t) = (p(t), v(t))$ in TM, we have

$$\operatorname{Length}(\alpha) = \int \left(\langle p'(t), p'(t) \rangle + \left\langle \frac{\mathrm{D}v}{\mathrm{d}t}(t) + \frac{\mathrm{D}v}{\mathrm{d}t}(t) \right\rangle \right)^{\frac{1}{2}} \mathrm{d}t$$
$$\geqslant \int \langle p'(t), p'(t) \rangle^{\frac{1}{2}} \, \mathrm{d}t = \operatorname{Length}(p),$$

and the equality holds if and only if $\frac{\mathrm{D}v}{\mathrm{d}t}(t) \equiv 0$.

Now, suppose that $\overline{\gamma}(t) = (\gamma(t), \gamma'(t))$ is a trajectory of the geodesic field G, and suppose that γ is length-minimizing between $\gamma(0)$ and $\gamma(\varepsilon)$ for some ε . Then, we have

Length(
$$\overline{\gamma}$$
) = Length(γ).

For any curve $\alpha(t)=(p(t),v(t))$ in TM joining $\overline{\gamma}(0)$ and $\overline{\gamma}(\varepsilon)$, the curve $p(t)=\pi\circ\alpha(t)$ joins $\gamma(0)$ and $\gamma(\varepsilon)$. Since γ is length-minimizing, we have

$$Length(\overline{\gamma}) = Length(\gamma) \leqslant Length(p) \leqslant Length(\alpha),$$

so $\overline{\gamma}$ is length-minimizing, which implies that $\overline{\gamma}(t)$ is a geodesic. Since being a geodesic is a local property, we conclude that $\overline{\gamma}(t)$ is a geodesic for all t.

(5) Let $p \in M$ and consider a system (u_1, \cdots, u_n) of normal coordinates in an open neighborhood U of p. The Christoffel symbols all vanish at p in this coordinate system. Therefore for $X = x^i \frac{\partial}{\partial u_i}$, we have

$$\operatorname{div} X(p) = \sum_{i=1}^{n} \frac{\partial x^{i}}{\partial u^{i}}.$$
 (13–2)

Now let $(u_1, \dots, u^n, v^1, \dots, v^n)$, $v = v^j \frac{\partial}{\partial u^j}$ be coordinates on TM at (q, v), where $q \in U$ and $v \in T_q M$. Note that

$$T_{(p,v)}TM \simeq T_v(T_pM) \oplus \pi^{-1}(p) \simeq T_pM \oplus T_pM.$$

Hence the volume element of \tilde{g} on TM at (q,v) is the volume element of the product metric $g \times g$ on $U \times U$ at the point (q,q). Since $\operatorname{div}(G)$ depends only on the volume element, and by (3) G is horizontal, we can calculate $\operatorname{div}(G)$ in the product metric. Since

$$G(u^i) = v^i, \quad G(v^j) = -\Gamma^j_{ik} v^i v^k,$$

Since the Christoffel symbols of the product metric on $U \times U$ vanish at (p, p), by (13–2), we obtain finally, at p,

$$\operatorname{div}(G) = \sum_{i=1}^{n} \frac{\partial v^{i}}{\partial u^{i}} - \sum_{j=1}^{n} \frac{\partial}{\partial v^{j}} \left(\sum_{i,k=1}^{n} \Gamma_{ik}^{j} v^{i} v^{k} \right) = 0.$$

(6) By taking an orientable double cover, we may assume that TM is orientable. Then for Ω a volume form on TM, we have

$$\mathcal{L}_G\Omega = \operatorname{div}(G)\Omega = 0.$$

Therefore, the geodesic flow preserves the Riemannian volume measure of TM.

Homework 3

In the following, connections are assumed to be Levi-Civita connections by default.

Exercise 14 Let (G, g) be a Lie group with a bi-invariant metric g. Prove that

$$\operatorname{Rm}(X, Y, Z, W) = \frac{1}{4} \langle [X, Y], [Z, W] \rangle$$

for any $X, Y, Z, W \in \mathfrak{g}$, where the elements of \mathfrak{g} are identified with left-invariant vector fields on G.

Proof Recall from Exercise 12 (1) that $\nabla_Y Z = \frac{1}{2}[Y,Z]$ for any $Y,Z \in \mathfrak{g}$, which implies that $\nabla_Y Z$ is also a left-invariant vector field. Hence, we have

$$0 = X \langle \nabla_Y Z, W \rangle = \langle \nabla_X \nabla_Y Z, W \rangle + \langle \nabla_Y Z, \nabla_X W \rangle, \quad \forall X, Y, Z, W \in \mathfrak{g}.$$

Then

$$\begin{split} \operatorname{Rm}(X,Y,Z,W) &= -\langle \operatorname{Rm}(X,Y)Z,W \rangle \\ &= -\big\langle \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]}Z,W \big\rangle \\ &= \langle \nabla_Y Z, \nabla_X W \rangle - \langle \nabla_X Z, \nabla_Y W \rangle + \big\langle \nabla_{[X,Y]}Z,W \big\rangle \\ &= \frac{1}{4} \langle [Y,Z], [X,W] \rangle - \frac{1}{4} \langle [X,Z], [Y,W] \rangle + \frac{1}{2} \langle [[X,Y],Z],W \rangle. \end{split}$$

Using ad(X)Y = [X, Y] and the fact that $ad^*(X) = -ad(X)$, we find that

$$\begin{split} \langle [Y,Z],[X,W] \rangle &= \langle [Y,Z],\operatorname{ad}(X)W \rangle = \langle \operatorname{ad}^*(X)[Y,Z],W \rangle \\ &= \langle -\operatorname{ad}(X)[Y,Z],W \rangle = \langle -[X,[Y,Z]],W \rangle \\ &= \langle [[Y,Z],X],W \rangle, \end{split}$$

and similarly

$$\langle [X, Z], [Y, W] \rangle = \langle [[X, Z], Y], W \rangle.$$

Therefore, by the Jacobi identity, we have

$$\begin{split} \operatorname{Rm}(X,Y,Z,W) &= \frac{1}{4} \langle [[Y,Z],X],W \rangle - \frac{1}{4} \langle [[X,Z],Y],W \rangle + \frac{1}{2} \langle [[X,Y],Z],W \rangle \\ &= \frac{1}{4} \langle [[Y,Z],X],W \rangle + \frac{1}{4} \langle [[Z,X],Y],W \rangle + \frac{1}{2} \langle [[X,Y],Z],W \rangle \\ &= -\frac{1}{4} \langle [[X,Y],Z],W \rangle + \frac{1}{2} \langle [[X,Y],Z],W \rangle + \frac{1}{4} \langle [[X,Y],Z],W \rangle \\ &= \frac{1}{4} \langle [[X,Y],Z],W \rangle \\ &= \frac{1}{4} \langle [X,Y],[Z,W] \rangle. \end{split}$$

Exercise 15 Recall

$$\mathrm{SU}(2) = \left\{ \begin{pmatrix} z & w \\ -\overline{w} & \overline{z} \end{pmatrix} : (z, w) \in \mathbb{C}^2 \text{ and } |z|^2 + |w|^2 = 1 \right\}.$$

林晓烁 Spring 2025

Let $\{X_1, X_2, X_3\}$ be a basis of the Lie algebra $\mathfrak{su}(2)$ defines as

$$X_1 = \begin{pmatrix} \mathbf{i} & 0 \\ 0 & -\mathbf{i} \end{pmatrix}, \quad X_2 \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad X_3 = \begin{pmatrix} 0 & \mathbf{i} \\ \mathbf{i} & 0 \end{pmatrix}.$$

Let $\{\sigma_1, \sigma_2, \sigma_3\}$ be the basis of left-invariant 1-forms dual to $\{X_1, X_2, X_3\}$. Define a left-invariant metric

$$g = \varepsilon^2 \sigma_1^2 + \sigma_2^2 + \sigma_3^2,$$

where $\varepsilon \in (0,1)$ is a small constant.

(1) Prove that this basis satisfies the commutation relations

$$[X_1, X_2] = 2X_3, \quad [X_2, X_3] = 2X_1, \quad [X_3, X_1] = 2X_2.$$

(2) Prove that the connection satisfies

$$\nabla_X Y = \frac{1}{2}([X, Y] - \text{ad}^*(X)Y - \text{ad}^*(Y)X)$$

for any $X, Y \in \mathfrak{su}(2)$, where ad^* is the adjoint of ad.

(3) Compute the sectional curvatures $K(X_1 \wedge X_2)$, $K(X_2 \wedge X_3)$ and $K(X_3 \wedge X_1)$.

Proof (1) Since the Lie bracket on $\mathfrak{su}(2)$ is given by the matrix commutator, we compute

$$\begin{split} [X_1, X_2] &= \begin{pmatrix} \mathbf{i} & 0 \\ 0 & -\mathbf{i} \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} - \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} \mathbf{i} & 0 \\ 0 & -\mathbf{i} \end{pmatrix} = 2X_3, \\ [X_2, X_3] &= \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 0 & \mathbf{i} \\ \mathbf{i} & 0 \end{pmatrix} - \begin{pmatrix} 0 & \mathbf{i} \\ \mathbf{i} & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} = 2X_1, \\ [X_3, X_1] &= \begin{pmatrix} 0 & \mathbf{i} \\ \mathbf{i} & 0 \end{pmatrix} \begin{pmatrix} \mathbf{i} & 0 \\ 0 & -\mathbf{i} \end{pmatrix} - \begin{pmatrix} \mathbf{i} & 0 \\ 0 & -\mathbf{i} \end{pmatrix} \begin{pmatrix} 0 & \mathbf{i} \\ \mathbf{i} & 0 \end{pmatrix} = 2X_2. \end{split}$$

(2) Since g is left-invariant, the inner product of any two left-invariant vector fields is constant. In particular, Koszul's formula simplifies to

$$\langle \nabla_X Y, Z \rangle = \frac{1}{2} (\langle [X,Y],Z \rangle - \langle [X,Z],Y \rangle - \langle [Y,Z],X \rangle), \quad \forall X,Y,Z \in \mathfrak{su}(2).$$

Using the fact that ad(X)Y = [X, Y], we have

$$\begin{split} \langle \nabla_X Y, Z \rangle &= \frac{1}{2} (\langle [X,Y], Z \rangle - \langle \operatorname{ad}(X)Z, Y \rangle - \langle \operatorname{ad}(Y)Z, X \rangle) \\ &= \frac{1}{2} (\langle [X,Y], Z \rangle - \langle \operatorname{ad}^*(X)Y, Z \rangle - \langle \operatorname{ad}^*(Y)X, Z \rangle) \\ &= \frac{1}{2} \langle [X,Y] - \operatorname{ad}^*(X)Y - \operatorname{ad}^*(Y)X, Z \rangle. \end{split}$$

Since $Z \in \mathfrak{su}(2)$ is arbitrary, we obtain the desired formula.

(3) The inner products between the basis vectors are given by

$$\langle X_1, X_1 \rangle = \varepsilon^2, \quad \langle X_2, X_2 \rangle = 1, \quad \langle X_3, X_3 \rangle = 1,$$

$$\langle X_1, X_2 \rangle = \langle X_2, X_3 \rangle = \langle X_3, X_1 \rangle = 0.$$

Then, to use the result from (2), we need to compute $\operatorname{ad}^*(X_i)X_j$. With the help of the commutation relations from (1), we obtain

$$\langle \operatorname{ad}^*(X_1)X_2, X_1 \rangle = \langle X_2, \operatorname{ad}(X_1)X_1 \rangle = \langle X_2, [X_1, X_1] \rangle = 0, \\ \langle \operatorname{ad}^*(X_1)X_2, X_2 \rangle = \langle X_2, \operatorname{ad}(X_1)X_2 \rangle = \langle X_2, [X_1, X_2] \rangle = \langle X_2, 2X_3 \rangle = 0, \\ \langle \operatorname{ad}^*(X_1)X_2, X_3 \rangle = \langle X_2, \operatorname{ad}(X_1)X_3 \rangle = \langle X_2, [X_1, X_3] \rangle = \langle X_2, -2X_2 \rangle = -2, \\ \langle \operatorname{ad}^*(X_2)X_1, X_1 \rangle = \langle X_1, \operatorname{ad}(X_2)X_1 \rangle = \langle X_1, [X_2, X_1] \rangle = \langle X_1, -2X_3 \rangle = 0, \\ \langle \operatorname{ad}^*(X_2)X_1, X_2 \rangle = \langle X_1, \operatorname{ad}(X_2)X_2 \rangle = \langle X_1, [X_2, X_2] \rangle = 0, \\ \langle \operatorname{ad}^*(X_2)X_1, X_3 \rangle = \langle X_1, \operatorname{ad}(X_2)X_3 \rangle = \langle X_1, [X_2, X_3] \rangle = \langle X_1, 2X_1 \rangle = 2\varepsilon^2, \\ \langle \operatorname{ad}^*(X_2)X_3, X_1 \rangle = \langle X_3, \operatorname{ad}(X_2)X_1 \rangle = \langle X_3, [X_2, X_1] \rangle = \langle X_3, -2X_3 \rangle = -2, \\ \langle \operatorname{ad}^*(X_2)X_3, X_2 \rangle = \langle X_3, \operatorname{ad}(X_2)X_2 \rangle = \langle X_3, [X_2, X_1] \rangle = \langle X_3, 2X_1 \rangle = 0, \\ \langle \operatorname{ad}^*(X_2)X_3, X_3 \rangle = \langle X_3, \operatorname{ad}(X_2)X_3 \rangle = \langle X_3, [X_2, X_3] \rangle = \langle X_3, 2X_1 \rangle = 0, \\ \langle \operatorname{ad}^*(X_3)X_2, X_1 \rangle = \langle X_2, \operatorname{ad}(X_3)X_1 \rangle = \langle X_2, [X_3, X_1] \rangle = \langle X_2, 2X_2 \rangle = 2, \\ \langle \operatorname{ad}^*(X_3)X_2, X_2 \rangle = \langle X_2, \operatorname{ad}(X_3)X_2 \rangle = \langle X_2, [X_3, X_2] \rangle = \langle X_2, -2X_1 \rangle = 0, \\ \langle \operatorname{ad}^*(X_3)X_1, X_1 \rangle = \langle X_1, \operatorname{ad}(X_3)X_1 \rangle = \langle X_1, [X_3, X_1] \rangle = \langle X_1, 2X_2 \rangle = 0, \\ \langle \operatorname{ad}^*(X_3)X_1, X_2 \rangle = \langle X_1, \operatorname{ad}(X_3)X_1 \rangle = \langle X_1, [X_3, X_2] \rangle = \langle X_1, -2X_1 \rangle = -2\varepsilon^2, \\ \langle \operatorname{ad}^*(X_3)X_1, X_2 \rangle = \langle X_1, \operatorname{ad}(X_3)X_2 \rangle = \langle X_1, [X_3, X_2] \rangle = \langle X_1, -2X_1 \rangle = -2\varepsilon^2, \\ \langle \operatorname{ad}^*(X_3)X_1, X_3 \rangle = \langle X_1, \operatorname{ad}(X_3)X_3 \rangle = \langle X_1, [X_3, X_2] \rangle = \langle X_1, -2X_1 \rangle = -2\varepsilon^2, \\ \langle \operatorname{ad}^*(X_1)X_3, X_1 \rangle = \langle X_1, \operatorname{ad}(X_3)X_2 \rangle = \langle X_1, [X_3, X_2] \rangle = \langle X_1, -2X_1 \rangle = -2\varepsilon^2, \\ \langle \operatorname{ad}^*(X_1)X_3, X_1 \rangle = \langle X_3, \operatorname{ad}(X_1)X_1 \rangle = \langle X_3, [X_1, X_2] \rangle = \langle X_3, 2X_3 \rangle = 2, \\ \langle \operatorname{ad}^*(X_1)X_3, X_3 \rangle = \langle X_3, \operatorname{ad}(X_1)X_2 \rangle = \langle X_3, [X_1, X_2] \rangle = \langle X_3, 2X_3 \rangle = 2, \\ \langle \operatorname{ad}^*(X_1)X_3, X_3 \rangle = \langle X_3, \operatorname{ad}(X_1)X_2 \rangle = \langle X_3, [X_1, X_2] \rangle = \langle X_3, -2X_2 \rangle = 0. \\ \langle \operatorname{ad}^*(X_1)X_3, X_3 \rangle = \langle X_3, \operatorname{ad}(X_1)X_3 \rangle = \langle X_3, [X_1, X_3] \rangle = \langle X_3, -2X_2 \rangle = 0. \\ \langle \operatorname{ad}^*(X_1)X_3, X_3 \rangle = \langle X_3, \operatorname{ad}(X_1)X_3 \rangle = \langle X_3, [X_1, X_3] \rangle = \langle X_3, -2X_2 \rangle = 0. \\ \langle \operatorname{ad}^*(X_1)X_3, X_3 \rangle = \langle X_3, \operatorname{ad}(X_1)X_3$$

Thus, we have

$$\begin{split} &\text{ad}^*(X_1)X_2 = -2X_3, \quad \text{ad}^*(X_2)X_1 = 2\varepsilon^2 X_3, \\ &\text{ad}^*(X_2)X_3 = -\frac{2}{\varepsilon^2}X_1, \quad \text{ad}^*(X_3)X_2 = \frac{2}{\varepsilon^2}X_1, \\ &\text{ad}^*(X_3)X_1 = -2\varepsilon^2 X_2, \quad \text{ad}^*(X_1)X_3 = 2X_2. \end{split}$$

Also, it is easy to see that

$$ad^*(X_1)X_1 = ad^*(X_2)X_2 = ad^*(X_3)X_3 = 0.$$

It then follows by part (2) that

$$\begin{split} \nabla_{X_1} X_2 &= \frac{1}{2} ([X_1, X_2] - \operatorname{ad}^*(X_1) X_2 - \operatorname{ad}^*(X_2) X_1) \\ &= \frac{1}{2} \big[2 X_3 - (-2 X_3) - 2 \varepsilon^2 X_3 \big] = \big(2 - \varepsilon^2 \big) X_3, \\ \nabla_{X_2} X_1 &= \frac{1}{2} ([X_2, X_1] - \operatorname{ad}^*(X_2) X_1 - \operatorname{ad}^*(X_1) X_2) \\ &= \frac{1}{2} \big[-2 X_3 - 2 \varepsilon^2 X_3 - (-2 X_3) \big] = -\varepsilon^2 X_3, \end{split}$$

$$\begin{split} \nabla_{X_2} X_3 &= \frac{1}{2} ([X_2, X_3] - \operatorname{ad}^*(X_2) X_3 - \operatorname{ad}^*(X_3) X_2) \\ &= \frac{1}{2} \left[2 X_1 - \left(-\frac{2}{\varepsilon^2} X_1 \right) - \frac{2}{\varepsilon^2} X_1 \right] = X_1, \\ \nabla_{X_3} X_2 &= \frac{1}{2} ([X_3, X_2] - \operatorname{ad}^*(X_3) X_2 - \operatorname{ad}^*(X_2) X_3) \\ &= \frac{1}{2} \left[-2 X_1 - \frac{2}{\varepsilon^2} X_1 - \left(-\frac{2}{\varepsilon^2} X_1 \right) \right] = -X_1, \\ \nabla_{X_3} X_1 &= \frac{1}{2} ([X_3, X_1] - \operatorname{ad}^*(X_3) X_1 - \operatorname{ad}^*(X_1) X_3) \\ &= \frac{1}{2} \left[2 X_2 - \left(-2 \varepsilon^2 X_2 \right) - 2 X_2 \right] = \varepsilon^2 X_2, \\ \nabla_{X_1} X_3 &= \frac{1}{2} ([X_1, X_3] - \operatorname{ad}^*(X_1) X_3 - \operatorname{ad}^*(X_3) X_1) \\ &= \frac{1}{2} \left[-2 X_2 - 2 X_2 - \left(-2 \varepsilon^2 X_2 \right) \right] = \left(\varepsilon^2 - 2 \right) X_2, \end{split}$$

and

$$\nabla_{X_i} X_i = \frac{1}{2} ([X_i, X_i] - 2 \operatorname{ad}^*(X_i) X_i) = 0, \quad i = 1, 2, 3.$$

Now we can compute $Rm(X_i)X_i$ as follows:

$$\begin{split} \operatorname{Rm}(X_{1},X_{2})X_{1} &= \nabla_{X_{1}}\nabla_{X_{2}}X_{1} - \nabla_{X_{2}}\nabla_{X_{1}}X_{1} - \nabla_{[X_{1},X_{2}]}X_{1} \\ &= \nabla_{X_{1}}\left(-\varepsilon^{2}X_{3}\right) - 0 - \nabla_{2X_{3}}X_{1} \\ &= -\varepsilon^{2}\left(\varepsilon^{2} - 2\right)X_{2} - 2\varepsilon^{2}X_{2} \\ &= -\varepsilon^{4}X_{2}, \\ \operatorname{Rm}(X_{2},X_{3})X_{2} &= \nabla_{X_{2}}\nabla_{X_{3}}X_{2} - \nabla_{X_{3}}\nabla_{X_{2}}X_{2} - \nabla_{[X_{2},X_{3}]}X_{2} \\ &= \nabla_{X_{2}}(-X_{1}) - 0 - \nabla_{2X_{1}}X_{2} \\ &= \varepsilon^{2}X_{3} - 2\left(2 - \varepsilon^{2}\right)X_{3} \\ &= \left(3\varepsilon^{2} - 4\right)X_{3}, \\ \operatorname{Rm}(X_{3},X_{1})X_{3} &= \nabla_{X_{3}}\nabla_{X_{1}}X_{3} - \nabla_{X_{1}}\nabla_{X_{3}}X_{3} - \nabla_{[X_{3},X_{1}]}X_{3} \\ &= \nabla_{X_{3}}\left(\left(\varepsilon^{2} - 2\right)X_{2}\right) - 0 - \nabla_{2X_{2}}X_{3} \\ &= \left(\varepsilon^{2} - 2\right)(-X_{1}) - 2X_{1} \\ &= -\varepsilon^{2}X_{1}. \end{split}$$

Finally, we compute the sectional curvatures:

$$\begin{split} K(X_1 \wedge X_2) &= \frac{\text{Rm}(X_1, X_2, X_1, X_2)}{\langle X_1, X_1 \rangle \langle X_2, X_2 \rangle - \langle X_1, X_2 \rangle^2} \\ &= \frac{-\langle \text{Rm}(X_1, X_2) X_1, X_2 \rangle}{\langle X_1, X_1 \rangle \langle X_2, X_2 \rangle - \langle X_1, X_2 \rangle^2} \\ &= \frac{\varepsilon^4}{\varepsilon^2} = \varepsilon^2, \\ K(X_2 \wedge X_3) &= \frac{\text{Rm}(X_2, X_3, X_2, X_3)}{\langle X_2, X_2 \rangle \langle X_3, X_3 \rangle - \langle X_2, X_3 \rangle^2} \\ &= \frac{-\langle \text{Rm}(X_2, X_3) X_2, X_3 \rangle}{\langle X_2, X_2 \rangle \langle X_3, X_3 \rangle - \langle X_2, X_3 \rangle^2} \end{split}$$

$$= 4 - 3\varepsilon^{2},$$

$$K(X_{3} \wedge X_{1}) = \frac{\operatorname{Rm}(X_{3}, X_{1}, X_{3}, X_{1})}{\langle X_{3}, X_{3} \rangle \langle X_{1}, X_{1} \rangle - \langle X_{3}, X_{1} \rangle^{2}}$$

$$= \frac{-\langle \operatorname{Rm}(X_{3}, X_{1}) X_{3}, X_{1} \rangle}{\langle X_{3}, X_{3} \rangle \langle X_{1}, X_{1} \rangle - \langle X_{3}, X_{1} \rangle^{2}}$$

$$= \frac{\varepsilon^{4}}{\varepsilon^{2}} = \varepsilon^{2}.$$

Exercise 16 Given a Riemannian manifold (M^n, g) , we consider the metric $\tilde{g} = e^{-2f}g$, where f is a smooth function on M. The metric \tilde{g} is said to be *conformal* to g. Prove the following statements:

(1) The Christoffel symbols $\widetilde{\Gamma}_{ij}^k$ of \tilde{g} satisfy

$$\widetilde{\Gamma}_{ij}^{k} = g^{kl} [-(\partial_i f)g_{jl} - (\partial_j f)g_{il} + (\partial_l f)g_{ij}] + \Gamma_{ij}^{k}.$$

(2) The curvature operator \widetilde{Rm} of \tilde{g} as a (0,4)-tensor satisfies

$$\widetilde{\operatorname{Rm}} = e^{-2f} \bigg\{ \operatorname{Rm} + \bigg(\nabla^2 f + \mathrm{d} f \otimes \mathrm{d} f - \frac{1}{2} |\operatorname{grad} f|^2 g \bigg) \bigodot g \bigg\}.$$

(3) The Ricci curvature $\widetilde{\text{Ric}}$ of \tilde{g} satisfies

$$\widetilde{\mathrm{Ric}} = (n-2) \left(\nabla^2 f + \frac{1}{n-2} (\Delta f) g + \mathrm{d} f \otimes \mathrm{d} f - \left| \mathrm{grad} \, f \right|^2 g \right) + \mathrm{Ric} \,.$$

(4) The scalar curvature \widetilde{R} of \widetilde{g} satisfies

$$\widetilde{R} = e^{2f} \Big\{ (2n-2)\Delta f - (n-1)(n-2)|\mathrm{grad}\, f|^2 + R \Big\}.$$

(5) The Weyl curvature tensor \widetilde{W} of \widetilde{g} satisfies

$$\widetilde{W} = e^{-2f}W$$
.

Proof (1) We have

$$\begin{split} \widetilde{\Gamma}_{ij}^k &= \frac{1}{2} \widetilde{g}^{kl} (\partial_i \widetilde{g}_{jl} + \partial_j \widetilde{g}_{il} - \partial_l \widetilde{g}_{ij}) \\ &= \frac{1}{2} \left(e^{2f} g^{kl} \right) \left[\partial_i \left(e^{-2f} g_{jl} \right) + \partial_j \left(e^{-2f} g_{il} \right) - \partial_l \left(e^{-2f} g_{ij} \right) \right] \\ &= \frac{1}{2} g^{kl} \left[-2(\partial_i f) g_{jl} + \partial_i g_{jl} - 2(\partial_j f) g_{il} + \partial_j g_{il} + 2(\partial_l f) g_{ij} + \partial_l g_{ij} \right] \\ &= g^{kl} \left[-(\partial_i f) g_{jl} - (\partial_j f) g_{il} + (\partial_l f) g_{ij} \right] + \Gamma_{ij}^k. \end{split}$$

(2) If we denote $f_{;i}=\partial_i f$ and $f_{;ij}=\partial_j\partial_i f$, then the formula obtained in (1) can be rewritten as

$$\widetilde{\Gamma}_{ij}^{k} = -f_{;i}\delta_{i}^{k} - f_{;j}\delta_{i}^{k} + g^{kl}f_{;l}g_{ij} + \Gamma_{ij}^{k}.$$

We can make the computations much more tractable by computing the components of the tensors at a point $p \in M$ in normal coordinates for g centered at p, so that the equations $g_{ij} = \delta_{ij}$, $\partial_k g_{ij} = 0$,

and $\Gamma_{ij}^k=0$ hold at p. This has the following consequences at p:

$$\begin{split} f_{;ij} &= \partial_j \partial_i f, \\ \widetilde{\Gamma}^k_{ij} &= -f_{;i} \delta^k_j - f_{;j} \delta^k_i + g^{kl} f_{;l} g_{ij}, \\ \partial_m \widetilde{\Gamma}^k_{ij} &= -f_{;im} \delta^k_j - f_{;jm} \delta^k_i + g^{kl} f_{;lm} g_{ij} + \partial_m \Gamma^k_{ij}, \\ R_{ijk}^{\quad \ l} &= \partial_i \Gamma^l_{jk} - \partial_j \Gamma^l_{ik}. \end{split}$$

Inserting these relations, we obtain

$$\begin{split} \widetilde{R}_{ijkl} &= -e^{-2f}g_{lm} \bigg(\partial_i \widetilde{\Gamma}^m_{jk} - \partial_j \widetilde{\Gamma}^m_{ik} + \widetilde{\Gamma}^p_{jk} \widetilde{\Gamma}^m_{ip} - \widetilde{\Gamma}^p_{ik} \widetilde{\Gamma}^m_{jp} \bigg) \\ &= e^{-2f}g_{lm} \bigg\{ - (-f_{:jl} \delta^m_k - f_{:kl} \delta^m_j + g^{mq} f_{:ql} g_{jk} + \partial_i \Gamma^m_{jk} \bigg) \\ &\quad + (-f_{:jl} \delta^m_k - f_{:kl} \delta^p_i + g^{mq} f_{:ql} g_{jk} + \partial_j \Gamma^m_{ik} \bigg) \\ &\quad - (-f_{:j} \delta^p_k - f_{:k} \delta^p_j + g^{pq} f_{:q} g_{jk}) \bigg(-f_{:i} \delta^m_p - f_{:p} \delta^m_i + g^{mr} f_{:r} g_{jp} \bigg) \\ &\quad + (-f_{:i} \delta^p_k - f_{:k} \delta^p_i + g^{pq} f_{:ql} g_{jk}) \bigg(-f_{:j} \delta^m_p - f_{:p} \delta^m_j + g^{mr} f_{:r} g_{jp} \bigg) \bigg\} \\ &= e^{-2f}g_{lm} \bigg\{ \bigg(f_{:kl} \delta^m_j - f_{:kl} \delta^m_i - g^{mq} f_{:ql} g_{jk} + g^{mq} f_{:ql} g_{jk} - R_{ijk}^m \bigg) \\ &\quad - \bigg(f_{:j} f_{:i} \delta^p_k \delta^m_p + f_{:j} f_{:p} \delta^p_k \delta^m_i + f_{:k} f_{:i} \delta^p_j \delta^m_p + f_{:k} f_{:p} \delta^p_j \delta^n_i \bigg) \\ &\quad + \bigg(f_{:i} f_{:j} g_{jk} \delta^p_k + f_{:i} f_{:p} \delta^p_k \delta^m_i + f_{:k} f_{:j} \delta^p_i \delta^m_p + f_{:k} f_{:p} \delta^p_j \delta^n_i \bigg) \\ &\quad + \bigg(g^{pq} f_{:q} f_{:q} g_{jk} \delta^m_p + g^{pq} f_{:q} f_{:p} g_{jk} \delta^m_i - g^{pq} f_{:q} f_{:j} g_{ik} \delta^m_p - g^{pq} f_{:q} f_{:p} g_{ik} \delta^m_j \bigg) \\ &\quad + \bigg(g^{pq} f_{:q} f_{:j} g_{jk} \delta^p_k + g^{pr} f_{:r} f_{:k} g_{ip} \delta^p_j - g^{mr} f_{:r} f_{:j} g_{jp} \delta^p_k - g^{mr} f_{:r} f_{:k} g_{jp} \delta^p_i \bigg) \bigg\} \\ &= e^{-2f} \bigg\{ \bigg(f_{:ik} g_{jl} - f_{:j} g_{ik} - f_{:il} g_{jk} + f_{:j} f_{:k} g_{ip} \delta^p_j - g^{mr} g_{:k} g_{jp} \bigg) \bigg\} \\ &= e^{-2f} \bigg\{ \bigg(f_{:ik} g_{jl} - f_{:j} g_{jl} g_{il} - f_{:i} g_{jk} + f_{:j} f_{:k} g_{jl} + f_{:j} f_{:k} g_{jl} \bigg) \\ &\quad + \bigg(f_{:i} f_{:j} g_{kl} + f_{:j} f_{:k} g_{jl} + f_{:j} f_{:k} g_{jl} + f_{:j} f_{:k} g_{jl} \bigg) \\ &\quad + \bigg(f_{:i} f_{:j} g_{kl} + f_{:j} f_{:k} g_{jl} + f_{:j} f_{:k} g_{jl} + f_{:j} f_{:k} g_{jl} \bigg) \\ &\quad + \bigg(f_{:i} f_{:j} g_{jk} + f_{:j} f_{:j} g_{ik} \bigg) \bigg\} \\ &= e^{-2f} \bigg\{ \bigg\{ R_{ijkl} + \bigg(f_{:ik} g_{jl} + f_{:j} f_{il} g_{ik} - f_{:i} g_{jk} - f_{:j} f_{ik} g_{il} \bigg) \\ &\quad + \bigg(f_{:i} f_{:j} g_{jk} + f_{:j} f_{:j} g_{ik} \bigg) \bigg\} \\ &= e^{-2f} \bigg\{ R_{ijkl} + \bigg(f_{:ik} g_{jl} + f_{:j} f_{il} g_{ik} - f_{:i} g_{il} g_{jk} - f_{:j} f_{ik} g_{il} \bigg) \\ &\quad + \bigg(f_{:i}$$

which is the coordinate version of

$$\widetilde{\operatorname{Rm}} = e^{-2f} \bigg\{ \operatorname{Rm} + \left(\nabla^2 f + \mathrm{d} f \otimes \mathrm{d} f - \frac{1}{2} |\operatorname{grad} f|^2 g \right) \bigotimes g \bigg\}.$$

(3) Let tr_g denote the trace operation (with respect to g) on the second and last indices. The compo-

nents of Ric are given by

$$\widetilde{R}_{ik} = \widetilde{g}^{jl} \widetilde{R}_{ijkl}
= g^{jl} \Big\{ R_{ijkl} + (f_{;ik}g_{jl} + f_{;jl}g_{ik} - f_{;il}g_{jk} - f_{;jk}g_{il})
+ (f_{;i}f_{;k}g_{jl} + f_{;j}f_{;l}g_{ik} - f_{;i}f_{;l}g_{jk} - f_{;j}f_{;k}g_{il})
- g^{pq}f_{;p}f_{;q}(g_{ik}g_{jl} - g_{il}g_{jk}) \Big\}.$$
(16-1)

This implies that

$$\begin{split} \widetilde{\mathrm{Ric}} &= \mathrm{tr}_g \bigg\{ \mathrm{Rm} + \bigg(\nabla^2 f + \mathrm{d} f \otimes \mathrm{d} f - \frac{1}{2} |\mathrm{grad} \, f|^2 g \bigg) \bigotimes g \bigg\} \\ &= \mathrm{tr}_g (\mathrm{Rm}) + \mathrm{tr}_g \big(\nabla^2 f \bigotimes g \big) + \mathrm{tr}_g \big\{ (\mathrm{d} f \otimes \mathrm{d} f) \bigotimes g \big\} - \frac{1}{2} |\mathrm{grad} \, f|^2 \, \mathrm{tr}(g \bigotimes g) \\ &= \mathrm{Ric} + (n-2) \nabla^2 f + \big[\mathrm{tr}_g \big(\nabla^2 f \big) \big] g + (n-2) \, \mathrm{d} f \otimes \mathrm{d} f + \big[\mathrm{tr}_g (\mathrm{d} f \otimes \mathrm{d} f) \big] g - (n-1) |\mathrm{grad} \, f|^2 g \\ &= \mathrm{Ric} + (n-2) \nabla^2 f + (\Delta f) g + (n-2) \, \mathrm{d} f \otimes \mathrm{d} f - (n-2) |\mathrm{grad} \, f|^2 g \\ &= (n-2) \bigg(\nabla^2 f + \frac{1}{n-2} (\Delta f) g + \mathrm{d} f \otimes \mathrm{d} f - |\mathrm{grad} \, f|^2 g \bigg) + \mathrm{Ric} \, . \end{split}$$

(4) From (16-1) we see that

$$\begin{split} \widetilde{R} = & \widetilde{g}^{ik} \widetilde{R}_{ik} \\ = & e^{2f} g^{ik} g^{jl} \Big\{ R_{ijkl} + (f_{;ik} g_{jl} + f_{;jl} g_{ik} - f_{;il} g_{jk} - f_{;jk} g_{il}) \\ & + (f_{;i} f_{;k} g_{jl} + f_{;j} f_{;l} g_{ik} - f_{;i} f_{;l} g_{jk} - f_{;j} f_{;k} g_{il}) \\ & - g^{pq} f_{;p} f_{;q} (g_{ik} g_{jl} - g_{il} g_{jk}) \Big\}, \end{split}$$

which implies that

$$\begin{split} \widetilde{R} &= e^{2f} \Big\{ (n-2)\operatorname{tr}_g \big(\nabla^2 f \big) + (\Delta f)\operatorname{tr}_g g + (n-2)\operatorname{tr}_g (\mathrm{d} f \otimes \mathrm{d} f) - (n-2)|\operatorname{grad} f|^2\operatorname{tr}_g g + \operatorname{tr}_g (\mathrm{Ric}) \Big\} \\ &= e^{2f} \Big\{ (n-2)\Delta f + n\Delta f + (n-2)|\operatorname{grad} f|^2 - n(n-2)|\operatorname{grad} f|^2 + R \Big\} \\ &= e^{2f} \Big\{ (2n-2)\Delta f - (n-1)(n-2)|\operatorname{grad} f|^2 + R \Big\}. \end{split}$$

(5) By the definition of the Weyl curvature tensor, we have for $n \geqslant 3$

$$\begin{split} \widetilde{W} &= \widetilde{\operatorname{Rm}} - \frac{1}{n-2} \widetilde{\operatorname{Ric}} \bigotimes \widetilde{g} + \frac{\widetilde{R}}{2(n-1)(n-2)} \widetilde{g} \bigotimes \widetilde{g} \\ &= e^{-2f} \bigg\{ \operatorname{Rm} + \bigg(\nabla^2 f + \operatorname{d} f \otimes \operatorname{d} f - \frac{1}{2} |\operatorname{grad} f|^2 g \bigg) \bigotimes g \bigg\} \\ &- \frac{1}{n-2} \bigg\{ (n-2) \bigg(\nabla^2 f + \frac{1}{n-2} (\Delta f) g + \operatorname{d} f \otimes \operatorname{d} f - |\operatorname{grad} f|^2 g \bigg) + \operatorname{Ric} \bigg\} \bigotimes \big(e^{-2f} g \big) \\ &+ \frac{e^{2f} \Big\{ (2n-2) \Delta f - (n-1)(n-2) |\operatorname{grad} f|^2 + R \Big\}}{2(n-1)(n-2)} \big(e^{-2f} g \big) \bigotimes \big(e^{-2f} g \big) \\ &= e^{-2f} \bigg\{ \operatorname{Rm} - \frac{1}{n-2} \operatorname{Ric} \bigotimes g + \frac{R}{2(n-1)(n-2)} g \bigotimes g \bigg\} \end{split}$$

 \Box

$$=e^{-2f}W.$$

Exercise 17 Consider the hyperbolic space

$$\mathbb{H}^n = \left\{ \left(x^1, \cdots, x^n \right) \in \mathbb{R}^n : x^n > 0 \right\},\,$$

equipped with the metric

$$g_{\mathbb{H}^n} = \frac{1}{(x^n)^2} (\mathrm{d}x^1 \otimes \mathrm{d}x^1 + \dots + \mathrm{d}x^n \otimes \mathrm{d}x^n).$$

Prove that $g_{\mathbb{H}^n}$ has constant sectional curvature -1.

Proof Since $g_{\mathbb{H}^n} = \frac{1}{(x^n)^2} g_E$, where g_E is the Euclidean metric, we can apply the result of Exercise 16 (2) to compute the Riemann curvature tensor Rm of $g_{\mathbb{H}^n}$. Set $f = \ln(x^n)$. Then $g_{\mathbb{H}^n} = e^{-2f} g_E$, and

$$\nabla^2 f = -\frac{1}{(x^n)^2} \operatorname{d} x^n \otimes \operatorname{d} x^n, \quad \operatorname{d} f \otimes \operatorname{d} f = \frac{1}{(x^n)^2} \operatorname{d} x^n \otimes \operatorname{d} x^n, \quad \left| \operatorname{grad} f \right|^2 = \frac{1}{(x^n)^2}.$$

Given any point $p \in \mathbb{H}^n$ and any 2-dimensional linear subspace σ of T_pM , if $\{X,Y\}$ is any basis of σ , then the Riemann curvature tensor Rm of $g_{\mathbb{H}^n}$ is given by

$$\operatorname{Rm} = \frac{1}{(x^n)^2} \left\{ 0 + \left(-\frac{1}{(x^n)^2} \, \mathrm{d} x^n \otimes \mathrm{d} x^n + \frac{1}{(x^n)^2} \, \mathrm{d} x^n \otimes \mathrm{d} x^n - \frac{1}{2} \frac{1}{(x^n)^2} g_E \right) \bigotimes g_E \right\} \\
= -\frac{1}{2(x^n)^4} (g_E \bigotimes g_E),$$

which implies that

$$K_p(\sigma) = \frac{\text{Rm}(X, Y, X, Y)}{\frac{1}{2}(g_{\mathbb{H}^n} \bigotimes g_{\mathbb{H}^n})(X, Y, X, Y)} = \frac{-\frac{1}{2(x^n)^4}(g_E \bigotimes g_E)(X, Y, X, Y)}{\frac{1}{2(x^n)^4}(g_E \bigotimes g_E)(X, Y, X, Y)} = -1.$$

Therefore, $g_{\mathbb{H}^n}$ has constant sectional curvature -1.

Exercise 18 (Bochner's formula) Let (M^n, g) be a Riemannian manifold. For any smooth function $u: M \to \mathbb{R}$, prove the following identity:

$$\frac{1}{2}\Delta |\mathrm{grad}\,u|^2 = \left|\nabla^2 u\right|^2 + \mathrm{Ric}(\mathrm{grad}\,u,\mathrm{grad}\,u) + \langle \mathrm{grad}(\Delta u),\mathrm{grad}\,u\rangle.$$

Proof We can make the computations much more tractable by computing the components of the tensors at a point $p \in M$ in normal coordinates centered at p, so that the equations $g_{ij} = \delta_{ij}$, $\partial_k g_{ij} = 0$, and $\Gamma_{ij}^k = 0$ hold at p. This has the following consequence at p:

$$\begin{split} \frac{1}{2}\Delta|\text{grad }u|^2 &= \frac{1}{2}g^{kl}\big(g^{ij}u_iu_j\big)_{kl} \\ &= \frac{1}{2}g^{kl}g^{ij}(u_{i;kl}u_j + u_{i;k}u_{j;l} + u_{i;l}u_{j;k} + u_{i}u_{j;kl}) \\ &= g^{kl}g^{ij}u_{i;k}u_{j;l} + g^{kl}g^{ij}u_{i;kl}u_j \\ &= \left|\nabla^2 u\right|^2 + g^{kl}g^{ij}u_{i;kl}u_j \\ &= \left|\nabla^2 u\right|^2 + g^{kl}g^{ij}u_{k;il}u_j. \end{split} \tag{18-1}$$

Recall that the covariant derivative of every smooth 1-form β can be computed by

$$(\nabla_X \beta)(Y) = X(\beta(Y)) - \beta(\nabla_X Y). \tag{18-2}$$

Using this repeatedly, we compute

$$(\nabla_{X}\nabla_{Y}\beta)(Z) = X((\nabla_{Y}\beta)(Z)) - (\nabla_{Y}\beta)(\nabla_{X}Z)$$

$$= X(Y(\beta(Z)) - \beta(\nabla_{Y}Z)) - (\nabla_{Y}\beta)(\nabla_{X}Z)$$

$$= XY(\beta(Z)) - (\nabla_{X}\beta)(\nabla_{Y}Z) - \beta(\nabla_{X}\nabla_{Y}Z) - (\nabla_{Y}\beta)(\nabla_{X}Z).$$
(18–3)

Reversing the roles of X and Y, we get

$$(\nabla_{Y}\nabla_{X}\beta)(Z) = YX(\beta(Z)) - (\nabla_{Y}\beta)(\nabla_{X}Z) - \beta(\nabla_{Y}\nabla_{X}Z) - (\nabla_{X}\beta)(\nabla_{Y}Z), \tag{18-4}$$

and applying (18–2) one more time yields

$$\left(\nabla_{[X,Y]}\beta\right)(Z) = [X,Y](\beta(Z)) - \beta\left(\nabla_{[X,Y]}Z\right). \tag{18-5}$$

Now subtract (18–4) and (18–5) from (18–3): all but three of the terms cancel, yielding

$$(\nabla_{X}\nabla_{Y}\beta - \nabla_{Y}\nabla_{X}\beta - \nabla_{[X,Y]}\beta)(Z) = -\beta(\nabla_{X}\nabla_{Y}Z - \nabla_{Y}\nabla_{X}Z - \nabla_{[X,Y]}Z)$$

$$= -\beta(\operatorname{Rm}(X,Y)Z).$$
(18-6)

Since

$$\nabla_{X,Y}^{2}\beta = \nabla_{X}\nabla_{Y}\beta - \nabla_{\nabla_{X}Y}\beta,$$
$$\nabla_{Y,X}^{2}\beta = \nabla_{Y}\nabla_{X}\beta - \nabla_{\nabla_{Y}X}\beta,$$

we see that (18-6) is equivalent to

$$\nabla_{XY}^2 \beta - \nabla_{YX}^2 \beta = -\operatorname{Rm}(X, Y)^* \beta, \tag{18-7}$$

where $Rm(X,Y)^*$: $T^*M \to T^*M$ denotes the dual map to Rm(X,Y), defined by

$$(\operatorname{Rm}(X,Y)^*\eta)(Z) = \eta(\operatorname{Rm}(X,Y)Z).$$

In terms of any local frame, the component version of (18–7) reads

$$\beta_{j;pq} - \beta_{j;qp} = R_{pqj}^{\ m} \beta_m, \tag{18-8}$$

where we use a semicolon to separate indices resulting from (covariant) differentiation from the preceding indices. Now, we apply (18-8) to the 1-form grad u to obtain

$$\begin{split} g^{kl}g^{ij}u_{k;il}u_j &= g^{kl}g^{ij}(u_{k;li} - R_{lik}{}^mu_m)u_j \\ &= g^{ij}\left(g^{kl}u_{k;l}\right)_iu_j + g^{kl}g^{ij}R_{ilk}{}^mu_mu_j \\ &= \langle \operatorname{grad}(\Delta u), \operatorname{grad} u \rangle + g^{ij}R_i{}^mu_mu_j \\ &= \langle \operatorname{grad}(\Delta u), \operatorname{grad} u \rangle + \operatorname{Ric}(\operatorname{grad} u, \operatorname{grad} u). \end{split} \tag{18-9}$$

Combining (18-1) and (18-9), we obtain

$$\frac{1}{2}\Delta|\operatorname{grad} u|^2 = \left|\nabla^2 u\right|^2 + \operatorname{Ric}(\operatorname{grad} u, \operatorname{grad} u) + \langle \operatorname{grad}(\Delta u), \operatorname{grad} u\rangle.$$

Exercise 19 Given a Riemannian manifold (N^{n-1},h) , we consider the warped product metric $g=\mathrm{d} r^2+f^2(r)h$ on $M=(0,+\infty)\times N$, where $f(r)\colon (0,+\infty)\to \mathbb{R}$ is a positive smooth function. In the following, we use indices i,j,k,l to denote the local coordinates on N. Superscripts g and h will be used to indicate the quantities computed with respect to the metrics g and h, respectively.

Prove the following statements:

(1)
$$R_{ijkl}^g = f^2(r)R_{ijkl}^h - f^2(r)[f'(r)]^2(h_{ik}h_{jl} - h_{il}h_{jk}).$$

(2)
$$R_{ijkr}^g = 0$$
 and $R_{irjr}^g = -f(r)f''(r)h_{ij}$.

(3)
$$R_{ij}^g = R_{ij}^h - ((n-2)[f'(r)]^2 + f(r)f''(r))h_{ij}$$
.

(4)
$$R_{ir}^g = 0$$
 and $R_{rr}^g = -(n-1)[f(r)]^{-1}f''(r)$.

Proof Let us denote the Christoffel symbols of g by $\widetilde{\Gamma}_{ab}^c$ and the Christoffel symbols of h by Γ_{ab}^c . Then

$$\begin{split} \widetilde{\Gamma}_{ij}^k &= \frac{1}{2} g^{kl} (\partial_i g_{jl} + \partial_j g_{il} - \partial_l g_{ij}) \\ &= \frac{1}{2} [f(r)]^{-2} h^{kl} \left\{ \partial_i \left(f^2(r) h_{jl} \right) + \partial_j \left(f^2(r) h_{il} \right) - \partial_l \left(f^2(r) h_{ij} \right) \right\} \\ &= \frac{1}{2} h^{kl} (\partial_i h_{jl} + \partial_j h_{il} - \partial_l h_{ij}) \\ &= \Gamma_{ij}^k, \\ \widetilde{\Gamma}_{ij}^r &= \frac{1}{2} g^{rr} (\partial_i g_{jr} + \partial_j g_{ir} - \partial_r g_{ij}) \\ &= -\frac{1}{2} \partial_r \left\{ f^2(r) h_{ij} \right\} \\ &= -f(r) f'(r) h_{ij}, \\ \widetilde{\Gamma}_{ir}^j &= \frac{1}{2} g^{jl} (\partial_i g_{rl} + \partial_r g_{il} - \partial_l g_{ir}) \\ &= \frac{1}{2} [f(r)]^{-2} h^{jl} \partial_r \left\{ f^2(r) h_{il} \right\} \\ &= \frac{f'(r)}{f(r)} h^{jl} h_{il} \\ &= \frac{f'(r)}{f(r)} \delta_i^j, \\ \widetilde{\Gamma}_{ir}^r &= \frac{1}{2} g^{rr} (\partial_i g_{rr} + \partial_r g_{ir} - \partial_r g_{ir}) = 0. \end{split}$$

(1) We compute

$$\begin{split} R^g_{ijkl} &= -g_{lm} \Big(\partial_i \widetilde{\Gamma}^m_{jk} - \partial_j \widetilde{\Gamma}^m_{ik} + \widetilde{\Gamma}^p_{jk} \widetilde{\Gamma}^m_{ip} - \widetilde{\Gamma}^p_{ik} \widetilde{\Gamma}^m_{jp} \Big) \\ &= -f^2(r) h_{lm} \bigg\{ \partial_i \Gamma^m_{jk} - \partial_j \Gamma^m_{ik} + \Gamma^p_{jk} \Gamma^m_{ip} + [-f(r)f'(r)h_{jk}] \bigg(\frac{f'(r)}{f(r)} \delta^m_i \bigg) \\ &\qquad \qquad - \Gamma^p_{ik} \Gamma^m_{jp} - [-f(r)f'(r)h_{ik}] \bigg(\frac{f'(r)}{f(r)} \delta^m_j \bigg) \bigg\} \\ &= -f^2(r) h_{lm} \bigg\{ \partial_i \Gamma^m_{jk} - \partial_j \Gamma^m_{ik} + \Gamma^p_{jk} \Gamma^m_{ip} - \Gamma^p_{ik} \Gamma^m_{jp} + [f'(r)]^2 \Big(h_{ik} \delta^m_j - h_{jk} \delta^m_i \Big) \bigg\} \end{split}$$

$$= f^{2}(r)R_{ijkl}^{h} - f^{2}(r)[f'(r)]^{2}h_{lm}(h_{ik}\delta_{j}^{m} - h_{jk}\delta_{i}^{m})$$

$$= f^{2}(r)R_{ijkl}^{h} - f^{2}(r)[f'(r)]^{2}(h_{ik}h_{jl} - h_{il}h_{jk}).$$

(2) We compute

$$\begin{split} R_{ijkr}^g &= -g_{rr} \Big(\partial_i \widetilde{\Gamma}_{jk}^r - \partial_j \widetilde{\Gamma}_{ik}^r + \widetilde{\Gamma}_{jk}^p \widetilde{\Gamma}_{ip}^r - \widetilde{\Gamma}_{ik}^p \widetilde{\Gamma}_{jp}^r \Big) \\ &= -\Big\{ \partial_i [-f(r)f'(r)h_{jk}] - \partial_j [-f(r)f'(r)h_{ik}] + \Gamma_{jk}^p [-f(r)f'(r)h_{ip}] + \widetilde{\Gamma}_{jk}^r \widetilde{\Gamma}_{ir}^r \\ &- \Gamma_{ik}^p [-f(r)f'(r)h_{jp}] - \widetilde{\Gamma}_{ik}^r \widetilde{\Gamma}_{jr}^r \Big\} \\ &= -f(r)f'(r) \Big(-\partial_i h_{jk} + \partial_j h_{ik} - \Gamma_{jk}^p h_{ip} + \Gamma_{ik}^p h_{jp} \Big). \end{split}$$

Note that

$$\Gamma_{jk}^{p}h_{ip} = \frac{1}{2}h^{pl}(\partial_{j}h_{kl} + \partial_{k}h_{jl} - \partial_{l}h_{jk})h_{ip}$$

$$= \frac{1}{2}(\partial_{j}h_{ki} + \partial_{k}h_{ji} - \partial_{i}h_{jk}),$$

$$\Gamma_{ik}^{p}h_{jp} = \frac{1}{2}h^{pl}(\partial_{i}h_{kl} + \partial_{k}h_{il} - \partial_{l}h_{ik})h_{jp}$$

$$= \frac{1}{2}(\partial_{i}h_{kj} + \partial_{k}h_{ij} - \partial_{j}h_{ik}).$$

Thus, we have

$$R_{ijkr}^g = -f(r)f'(r)(-\partial_i h_{jk} + \partial_j h_{ik} + \partial_i h_{jk} - \partial_j h_{ik})$$

= 0.

Next, we compute

$$R_{irjr}^{g} = -g_{rr} \left(\partial_{i} \widetilde{\Gamma}_{rj}^{r} - \partial_{r} \widetilde{\Gamma}_{ij}^{r} + \widetilde{\Gamma}_{rj}^{p} \widetilde{\Gamma}_{ip}^{r} - \widetilde{\Gamma}_{ij}^{p} \widetilde{\Gamma}_{rp}^{r} \right)$$

$$= -\left\{ 0 - \partial_{r} (-f(r)f'(r)h_{ij}) + \left(\frac{f'(r)}{f(r)} \delta_{j}^{p} \right) [-f(r)f'(r)h_{ip}] - 0 \right\}$$

$$= -\left\{ [f'(r)]^{2} + f(r)f''(r) \right\} h_{ij} + [f'(r)]^{2} h_{ij}$$

$$= -f(r)f''(r)h_{ij}.$$

(3) Using (1) and (2), we compute

$$\begin{split} R^g_{ij} &= g^{pq} R^g_{ipjq} = g^{kl} R^g_{ikjl} + g^{rr} R^g_{irjr} \\ &= [f(r)]^{-2} h^{kl} \Big\{ f^2(r) R^h_{ikjl} - f^2(r) [f'(r)]^2 (h_{ij} h_{kl} - h_{il} h_{kj}) \Big\} - f(r) f''(r) h_{ij} \\ &= h^{kl} R^h_{ikjl} - h^{kl} [f'(r)]^2 (h_{ij} h_{kl} - h_{il} h_{kj}) - f(r) f''(r) h_{ij} \\ &= R^h_{ij} - [f'(r)]^2 [(n-1) h_{ij} - h_{ij}] - f(r) f''(r) h_{ij} \\ &= R^h_{ij} - \Big((n-2) [f'(r)]^2 + f(r) f''(r) \Big) h_{ij}. \end{split}$$

(4) By the first formula in (2), we see that

$$R_{ir}^g=g^{pq}R_{iprq}^g=g^{kl}R_{ikrl}^g+g^{rr}R_{irrr}^g=0+0=0.$$
 林晓乐 Spring 2025

Finally, we use the second formula in (2) to get

$$R_{rr}^{g} = g^{pq} R_{rprq}^{g} = g^{kl} R_{rkrl}^{g} + g^{rr} R_{rrrr}^{g}$$

$$= [f(r)]^{-2} h^{kl} [-f(r)f''(r)h_{kl}] + 0$$

$$= -(n-1)[f(r)]^{-1} f''(r).$$

Homework 4

Exercise 20 Let $\mathbb{S}^2 = \{(x,y,z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\}$ be the unit sphere in \mathbb{R}^3 with induced metric g. Consider a geodesic $c : \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \to \mathbb{S}^2$ defined by $c(t) = (\cos t, 0, \sin t)$. Define a vector field X along c by $X(t) = (0, \cos t, 0)$. Prove that X is a Jacobi field.

Proof On the sphere \mathbb{S}^2 , we have

$$\begin{split} \frac{\mathrm{D}X}{\mathrm{d}t} &= \pi_{T\mathbb{S}^2}(X'(t)) = (0, -\sin t, 0), \\ \frac{\mathrm{D}^2X}{\mathrm{d}t^2} &= \pi_{T\mathbb{S}^2}\bigg(\frac{\mathrm{D}X}{\mathrm{d}t}\bigg) = (0, -\cos t, 0) = -X(t), \\ \mathrm{Rm}(X(t), c'(t))c'(t) &= \langle c'(t), c'(t)\rangle X(t) - \langle X(t), c'(t)\rangle c'(t) = X(t). \end{split}$$

Thus, the Jacobi equation is satisfied:

$$\frac{\mathrm{D}^2 X}{\mathrm{d}t^2} + \mathrm{Rm}(X(t), c'(t))c'(t) = 0.$$

Exercise 21 Given a Riemannian manifold (M,g), let $\pi \colon \widetilde{M} \to M$ be a covering map such that $\widetilde{g} = \pi^*g$. Prove that g is complete if and only if \widetilde{g} is complete.

Proof Assume both M and \widetilde{M} are connected.

- (\Leftarrow) By the assumption, π is a local isometry. Thus if \tilde{g} is complete, π satisfies the hypotheses of the Ambrose theorem, which implies that g is also complete.
- (\Rightarrow) Conversely, suppose g is complete. Let $\tilde{p} \in \widetilde{M}$ and $\tilde{v} \in T_p\widetilde{M}$ be arbitrary, and let $p = \pi(\tilde{p})$ and $v = \mathrm{d}\pi_{\tilde{p}}(\tilde{v})$. Completeness of g implies that the geodesic γ with $\gamma(0) = p$ and $\gamma'(0) = v$ is defined for all $t \in \mathbb{R}$, and then its lift $\tilde{\gamma} \colon \mathbb{R} \to \widetilde{M}$ starting at \tilde{p} is a geodesic in \widetilde{M} with initial velocity \tilde{v} , also defined for all t.

Exercise 22 Let (M^n, g) be a complete, connected Riemannian manifold satisfying

$$\operatorname{Ric} + \nabla^2 f \geqslant Kq$$

for some constant K > 0. If $|\operatorname{grad} f| \leq K$ on M, prove that M is compact.

Proof Since M is complete, it follows as a consequence of the Hopf–Rinow theorem that any two points in M can be joined by a minimizing geodesic. Let $\gamma \colon [0,\ell] \to M$ be any such geodesic with unit speed.

Along γ consider the n-1 variational vector fields

$$V_i(t) = \sin\left(\frac{\pi}{\ell}t\right)E_i(t), \quad i = 1, \dots, n-1,$$

where E_1, \dots, E_{n-1} , together with $\gamma'(t)$, form an orthonormal frame for $T_{\gamma(t)}M$. Since γ is minimizing, by the second variation formula we have

$$0 \leqslant \frac{\mathrm{d}^2 E}{\mathrm{d}s^2} \bigg|_{s=0} = \int_0^\ell \left| \frac{\mathrm{D}V_i}{\mathrm{d}t} \right|^2 - \mathrm{Rm}(V_i, \gamma', V_i, \gamma') \, \mathrm{d}t$$
$$= \int_0^\ell \left(\frac{\pi}{\ell}\right)^2 \cos^2\left(\frac{\pi}{\ell}t\right) - \sin^2\left(\frac{\pi}{\ell}t\right) \mathrm{Rm}(E_i, \gamma', E_i, \gamma') \, \mathrm{d}t.$$

By adding up the contributions to the second variation formula for each variational vector field we get

$$0 \leqslant (n-1) \left(\frac{\pi}{\ell}\right)^2 \int_0^\ell \cos^2\left(\frac{\pi}{\ell}t\right) dt - \int_0^\ell \sin^2\left(\frac{\pi}{\ell}t\right) \operatorname{Ric}(\gamma', \gamma') dt. \tag{22-1}$$

Meanwhile, by the assumption on the Ricci curvature, we have

$$\sin^2\left(\frac{\pi}{\ell}t\right)\operatorname{Ric}(\gamma',\gamma')\geqslant -\sin^2\left(\frac{\pi}{\ell}t\right)\nabla^2f(\gamma',\gamma')+K\sin^2\left(\frac{\pi}{\ell}t\right). \tag{22-2}$$

Since γ is a geodesic,

$$\nabla^2 f(\gamma', \gamma') = \nabla_{\gamma'}(\nabla_{\gamma'} f) - \nabla_{(\nabla_{\gamma'} \gamma')} f = (f \circ \gamma)''(t). \tag{22-3}$$

Combining (22-2) and (22-3) into (22-1) gives

$$(n-1)\left(\frac{\pi}{\ell}\right)^2 \int_0^\ell \cos^2\left(\frac{\pi}{\ell}t\right) dt \geqslant \int_0^\ell \sin^2\left(\frac{\pi}{\ell}t\right) \operatorname{Ric}(\gamma', \gamma') dt$$

$$= -\int_0^\ell \sin^2\left(\frac{\pi}{\ell}t\right) (f \circ \gamma)''(t) dt + K \int_0^\ell \sin^2\left(\frac{\pi}{\ell}t\right) dt.$$
(22-4)

For the first integral on the right-hand side, we can integrate by parts to get

$$\begin{split} \int_0^\ell \sin^2\!\left(\frac{\pi}{\ell}t\right) & (f\circ\gamma)''(t)\,\mathrm{d}t = -\frac{2\pi}{\ell} \int_0^\ell \sin\!\left(\frac{\pi}{\ell}t\right) \cos\!\left(\frac{\pi}{\ell}t\right) (f\circ\gamma)'(t)\,\mathrm{d}t \\ & \leqslant \frac{\pi}{\ell} \int_0^\ell \! \left| \sin\!\left(\frac{2\pi}{\ell}t\right) \right| | \mathrm{grad}\,f|\,\mathrm{d}t \\ & \leqslant \frac{\pi}{\ell} \cdot \frac{2\ell}{\pi} \cdot K \\ & = 2K, \end{split}$$

where we used the fact that

$$|(f\circ\gamma)'(t)|=|\langle\operatorname{grad} f(\gamma(t)),\gamma'(t)\rangle|\leqslant |\operatorname{grad} f|\cdot|\gamma'|=|\operatorname{grad} f|\cdot 1.$$

Now, (22-4) reduces to

$$(n-1)\cdot\frac{\pi^2}{\ell^2}\cdot\frac{\ell}{2}\geqslant -2K+K\cdot\frac{\ell}{2}$$

that is,

$$\ell^2 - 4\ell - \frac{(n-1)\pi^2}{K} \le 0.$$

Solving this quadratic inequality gives

$$0 \leqslant \ell \leqslant 2 + \sqrt{4 + \frac{(n-1)\pi^2}{K}}.$$

This gives a bound on diam M. By the Hopf–Rinow theorem, any closed and bounded subset of M is compact, so M is compact. \Box

Exercise 23 Let M^n be a smooth manifold (without boundary).

- (1) Prove that for any Riemannian metric g on M, there exists a smooth function f on M, such that the conformal metric $e^{-f}g$ is complete.
- (2) Prove that if every Riemannian metric on M is complete, then M is compact.

Proof (1) For each point $x \in M$, define

$$r(x) = \sup \Big\{ r > 0 : \overline{\mathbb{B}(x,r)} \text{ is compact} \Big\}.$$

If $r(x) = \infty$ for some $x \in M$, then g is complete by the Hopf–Rinow theorem. Assume therefore that $r(x) < \infty$ for all $x \in M$. If r < r(x) - d(x,y), then r + d(x,y) < r(x), so $\overline{\mathbb{B}(x,r+d(x,y))}$ is compact. The triangle inequality ensures that $\mathbb{B}(y,r) \subset \mathbb{B}(x,r+d(x,y))$. Hence $\overline{\mathbb{B}(y,r)}$, being a closed subset of a compact set, is compact. This holds for all r < r(x) - d(x,y), so we can take the supremum over r to get

$$r(y) \geqslant r(x) - d(x, y).$$

Reversing the roles of x and y, we similarly obtain

$$r(x) \geqslant r(y) - d(x, y)$$
.

Combining these two inequalities gives

$$|r(x) - r(y)| \le d(x, y), \quad \forall x, y \in M,$$

which implies that r(x) is a continuous function on M. Since M is second countable, we can choose a smooth function $\omega(x)$ such that $\omega(x) > \frac{1}{r(x)}$ for all $x \in M$. We define a conformal Riemannian metric \tilde{g} by $\tilde{g}_x = [\omega(x)]^2 g_x$ at each point x.

In order to show that \widetilde{g} is complete, we shall show that $\widetilde{\mathbb{B}}\left(x,\frac{1}{3}\right)\subset\mathbb{B}\left(x,\frac{r(x)}{2}\right)$ for every x, which then implies that $\overline{\widetilde{\mathbb{B}}\left(x,\frac{1}{3}\right)}$ is compact, and hence any closed and bounded subset of M is compact. For this purpose, choose y with $d(x,y)\geqslant\frac{r(x)}{2}$. For any piecewise smooth curve $c\colon [a,b]\to M$, joining x and y, its g-length L is not smaller than d(x,y) and hence $L\geqslant\frac{r(x)}{2}$. We evaluate the \widetilde{g} -length \widetilde{L} of c. By a mean value theorem, we have

$$\widetilde{L} = \int_a^b \omega(c(t)) \left\| \frac{\mathrm{d}c}{\mathrm{d}t} \right\|_a \mathrm{d}t = \omega(c(\xi)) \int_a^b \left\| \frac{\mathrm{d}c}{\mathrm{d}t} \right\|_a \mathrm{d}t = \omega(c(\xi)) L > \frac{L}{r(c(\xi))},$$

where ξ is a number between a and b. Since $|r(c(\xi)) - r(x)| \le d(x, c(\xi)) \le L$, we have $r(c(\xi)) \le L$

r(x) + L so that

$$\widetilde{L} > \frac{L}{r(c(\xi))} \geqslant \frac{L}{r(x) + L} \geqslant \frac{\frac{r(x)}{2}}{r(x) + \frac{r(x)}{2}} = \frac{1}{3}.$$

Therefore $\tilde{d}(x,y)\geqslant \frac{1}{3}$. This proves that $\widetilde{\mathbb{B}}\left(x,\frac{1}{3}\right)^c\supset \mathbb{B}\left(x,\frac{r(x)}{2}\right)^c$. As stated above, any closed and bounded subset of M is compact, so the conformal metric \tilde{g} is complete by the Hopf–Rinow theorem.

(2) Let (M,g) be a noncompact Riemannian manifold. We shall find an incomplete Riemannian metric \tilde{g} which is conformal to g. By (1), we can assume that g is complete. Fix a point $p \in M$. Since M is second countable, we can find a smooth function $\omega(x)$ on M so that $\omega(x) \geqslant d(p,x)$ for all $x \in M$. Consider the conformal metric $\tilde{g} = e^{-2\omega}g$. For any point $q \in M$, let γ be the minimizing geodesic (with respect to g) from g to g with unit speed. Then

$$\widetilde{L}(\gamma) = \int_0^{d(p,q)} e^{-\omega(t)} \, \mathrm{d}t \leqslant \int_0^{d(p,q)} e^{-d(p,\gamma(t))} \, \mathrm{d}t = \int_0^{d(p,q)} e^{-t} \, \mathrm{d}t = 1 - e^{-d(p,q)} \leqslant 1.$$

This implies that $\operatorname{diam}(M, \tilde{g}) \leq 2$. Thus, (M, \tilde{g}) is bounded but noncompact, and hence incomplete by the Hopf–Rinow theorem.

Exercise 24 Given a Riemannian manifold (M,g), let $\gamma \colon [0,a] \to M$ be a smooth curve and

$$f(u, v, t) \colon (-\varepsilon, \varepsilon) \times (-\varepsilon, \varepsilon) \times [0, a] \to M$$

be a smooth map with $f(0,0,t) = \gamma(t)$. Denote $\gamma_{u,v}(t) = f(u,v,t)$ and

$$U(t) = \frac{\partial f}{\partial u}\Big|_{(0,0,t)}, \quad V(t) = \frac{\partial f}{\partial v}\Big|_{(0,0,t)}.$$

Suppose γ is a geodesic, find the formula for

$$\left. \frac{\partial^2}{\partial u \, \partial v} E(\gamma_{u,v}) \right|_{(0,0)}.$$

Solution We compute

$$\frac{\partial}{\partial v} E(\gamma_{u,v}) = \frac{\partial}{\partial v} \left\{ \frac{1}{2} \int_0^a \langle f_t, f_t \rangle \, \mathrm{d}t \right\} = \int_0^a \left\langle \widetilde{\nabla}_{\partial_v} f_t, f_t \right\rangle \, \mathrm{d}t
= \int_0^a \left\langle \widetilde{\nabla}_{\partial_t} f_v, f_t \right\rangle \, \mathrm{d}t,$$

and then

$$\begin{split} \frac{\partial^2}{\partial u \, \partial v} E(\gamma_{u,v}) &= \int_0^a \left\langle \widetilde{\nabla}_{\partial_u} \widetilde{\nabla}_{\partial_t} f_v, f_t \right\rangle + \left\langle \widetilde{\nabla}_{\partial_t} f_v, \widetilde{\nabla}_{\partial_u} f_t \right\rangle \mathrm{d}t \\ &= \int_0^a \left\langle \widetilde{\nabla}_{\partial_u} \widetilde{\nabla}_{\partial_t} f_v, f_t \right\rangle + \left\langle \widetilde{\nabla}_{\partial_t} f_v, \widetilde{\nabla}_{\partial_t} f_u \right\rangle \mathrm{d}t \\ &= \int_0^a \left\langle \mathrm{Rm}(f_u, f_t) f_v, f_t \right\rangle + \left\langle \widetilde{\nabla}_{\partial_t} \widetilde{\nabla}_{\partial_u} f_v, f_t \right\rangle + \left\langle \widetilde{\nabla}_{\partial_t} f_v, \widetilde{\nabla}_{\partial_t} f_u \right\rangle \mathrm{d}t. \end{split}$$

Since $\nabla_{\dot{\gamma}}\dot{\gamma}=0$, we have

$$\frac{\partial^{2}}{\partial u \, \partial v} E(\gamma_{u,v}) \bigg|_{(0,0)} = \int_{0}^{a} \langle \operatorname{Rm}(U,\dot{\gamma})V,\dot{\gamma}\rangle + \frac{\mathrm{d}}{\mathrm{d}t} \langle \nabla_{U}V,\dot{\gamma}\rangle + \langle \nabla_{\dot{\gamma}}U,\nabla_{\dot{\gamma}}V\rangle \, \mathrm{d}t
= \int_{0}^{a} \langle \operatorname{Rm}(U,\dot{\gamma})V,\dot{\gamma}\rangle + \langle \nabla_{\dot{\gamma}}U,\nabla_{\dot{\gamma}}V\rangle \, \mathrm{d}t + \langle \nabla_{U}V,\dot{\gamma}\rangle \bigg|_{0}^{a}. \qquad \square$$

Exercise 25 Let (M^n, g) be a complete Riemannian manifold, and let $p \in M$ be a point.

- (1) Suppose that along any normalized (unit-speed) geodesic γ with $\gamma(0)=p$, the sectional curvatures of M in any plane $\sigma\subset T_{\gamma(t)}M$ containing $\gamma'(t)$ is $\leqslant 1$ if $0\leqslant t<\frac{\pi}{2}$ and $\leqslant 0$ if $t\geqslant \frac{\pi}{2}$. Show that the length of any normal Jacobi field J(t) along such a geodesic γ , with J(0)=0, is nondecreasing after $t=\frac{\pi}{2}$.
- (2) Suppose that along any normalized (unit-speed) geodesic γ with $\gamma(0)=p$, the sectional curvatures of M in any plane $\sigma\subset T_{\gamma(t)}M$ containing $\gamma'(t)$ is $\geqslant 1$ if $0\leqslant t<\frac{\pi}{2}$ and >0 if $t\geqslant\frac{\pi}{2}$. Show that M is compact.

Cheat Sheet

$$\diamond \ \langle \nabla_X Y, Z \rangle = \frac{1}{2} \{ X \langle Y, Z \rangle + Y \langle Z, X \rangle - Z \langle X, Y \rangle - \langle Y, [X, Z] \rangle - \langle Z, [Y, X] \rangle + \langle X, [Z, Y] \rangle \}.$$

$$\diamond \Gamma_{ij}^k = \frac{1}{2}g^{kl}(\partial_i g_{jl} + \partial_j g_{il} - \partial_l g_{ij}).$$

$$\diamond \ R_{ijk}^{\ \ l} = \partial_i \Gamma^l_{jk} - \partial_j \Gamma^l_{ik} + \Gamma^m_{jk} \Gamma^l_{im} - \Gamma^m_{ik} \Gamma^l_{jm}.$$

$$\diamond \ R_{ijkl} = -g_{lm} R_{ijk}^{\ \ m} = -g_{lm} \Big(\partial_i \Gamma_{jk}^m - \partial_j \Gamma_{ik}^m + \Gamma_{jk}^p \Gamma_{ip}^m - \Gamma_{ik}^p \Gamma_{jp}^m \Big).$$

$$\diamond R_{ij} = R_{ikj}^{\ \ k} = g^{km} R_{ikjm}.$$

$$\diamond R = g^{ij} R_{ij}.$$

$$\diamond \text{ In normal coordinates, } R_{ijkl}(0) = \frac{1}{2}(\partial_i\partial_lg_{jk} + \partial_j\partial_kg_{li} - \partial_i\partial_kg_{lj} - \partial_j\partial_lg_{ik})(0).$$

$$\diamond \ \mathsf{D}_t V(t) = \Big(\dot{V}^k(t) + \dot{\gamma}^i(t) V^j(t) \Gamma^k_{ij}(\gamma(t)) \Big) \partial_k|_{\gamma(t)} \implies \ddot{x}^k(t) + \dot{x}^i(t) \dot{x}^j(t) \Gamma^k_{ij}(x(t)) = 0.$$

$$\diamond \ (\nabla_X \operatorname{Rm})(Y,Z)W + (\nabla_Y \operatorname{Rm})(Z,X)W + (\nabla_Z \operatorname{Rm})(X,Y)W = 0.$$

$$\diamond \ \, \text{For}\,(\mathbb{S}^n,g_{\mathbb{S}^n}), \\ \text{Rm}(X,Y,Z,W) = \langle X,Z\rangle\langle Y,W\rangle - \langle X,W\rangle\langle Y,Z\rangle, \\ \text{since}\, D_X\mathbf{n} = X \text{ and } \nabla_XY = D_XY + \langle X,Y\rangle\mathbf{n}.$$

$$\diamond \ h \bigotimes k(X,Y,Z,W) = h(X,Z)k(Y,W) - h(X,W)k(Y,Z) + h(Y,W)k(X,Z) - h(Y,Z)k(X,W).$$

$$\diamond \ \operatorname{tr}_g(h \bigotimes g) = (n-2)h + (\operatorname{tr}_g h)g. \ \text{In particular, } \operatorname{tr}_g(g \bigotimes g) = 2(n-1)g.$$

$$\diamond \langle T, h \bigotimes g \rangle_q = 4 \langle \operatorname{tr}_g T, h \rangle_q.$$

$$\diamond \ \, \text{The Weyl tensor of} \, g \text{ is given by} \, W = \operatorname{Rm} - \frac{1}{n-2} \operatorname{Ric} \bigcirc g + \frac{R}{2(n-1)(n-2)} g \bigcirc g.$$

$$\diamond \text{ In dimension } 3, \text{Rm} = \text{Ric} \bigcirc g - \frac{R}{4}g \bigcirc g.$$

$$\diamond \ \ \text{In dimension 2, Rm} = \frac{R}{4} g \bigodot g \text{, Ric} = \frac{R}{2} g \text{, Ric} = Kg \text{, and } R = 2K.$$

$$\diamond \ \mathring{\mathrm{Ric}} = \mathrm{Ric} - \frac{R}{n}g.$$

$$\Rightarrow$$
 The decomposition $\operatorname{Rm} = W + \frac{1}{n-2} \operatorname{Ric} \bigcirc g + \frac{R}{2n(n-1)} g \bigcirc g$ is orthogonal.

$$\diamond \ \left| {\rm Rm} \right|^2 = \left| W \right|^2 + \frac{4}{n-2} {\left| {\rm Ric} \right|^2} - \frac{2}{(n-1)(n-2)} R^2.$$

$$\diamond \ K_p(\sigma) = \frac{\operatorname{Rm}(X,Y,X,Y)}{\frac{1}{2}(g \bigodot g)(X,Y,X,Y)} = \frac{\operatorname{Rm}(X,Y,X,Y)}{\langle X,X \rangle \langle Y,Y \rangle - \langle X,Y \rangle^2}.$$

 \diamond div $F=\operatorname{tr}_g(\nabla F)$, where the trace is taken on the first two indices of ∇F ; div $(X)=\nabla_k X^k$; $(\operatorname{div}(T))_{i_1\cdots i_{k-1}}=g^{ij}\nabla_j T_{ii_1\cdots i_{k-1}}.$

$$\diamond (\operatorname{div} \operatorname{Rm})_{kij} = (\nabla_i \operatorname{Ric})_{jk} - (\nabla_j \operatorname{Ric})_{ik}, \operatorname{div}(\operatorname{Ric}) = \frac{1}{2} dR.$$

$$\diamond$$
 The index form of γ is $I(V, W) = \int_a^b [\langle D_t V, D_t W \rangle - \text{Rm}(V, \gamma', W, \gamma')] dt$.

$$\diamond \ I(V,W) = -\int_a^b \left\langle \mathsf{D}_t^2 V + \mathsf{Rm}(V,\gamma')\gamma',W\right\rangle \, \mathrm{d}t + \left\langle \mathsf{D}_t V,W\right\rangle \Big|_{t=a}^{t=b} - \sum_{i=1}^{k-1} \left\langle \Delta_i \, \mathsf{D}_t V,W(a_i)\right\rangle, \text{ where } (a_0,\cdots,a_k)$$
 is an admissible partition for V and W , and $\Delta_i \, \mathsf{D}_t V$ is the jump in $\mathsf{D}_t V$ at $t=a_i$.

- \diamond The Jacobi equation is $D_t^2 V + \text{Rm}(V, \gamma') \gamma' = 0$.
- \diamond (Bonnet–Myers) Let (M,g) be a complete, connected Riemannian n-manifold, and suppose there is a positive constant k such that $\mathrm{Ric} \geqslant (n-1)kg$. Then $\mathrm{diam}(M) \leqslant \frac{\pi}{\sqrt{k}}$, and $\pi_1(M)$ is finite. In particular, M is compact.
- Φ D_s D_tV D_t D_sV = Rm($∂_s Γ$, $∂_t Γ$)V for any smooth one-parameter family of curves Γ: J × I → M and any smooth vector field V along Γ.
- $\Rightarrow \Gamma(s,t) = \exp_{c(s)} \Big(t \big(T(s) + s W(s) \big) \Big)$ is a geodesic variation of the geodesic $\gamma(t)$, where
 - c(s) is a geodesic with $c(0) = \gamma(0)$ and c'(0) = J(0).
 - T(s) is a parallel vector field along c(s) with $T(0) = \gamma'(0)$.
 - W(s) is a parallel vector field along c(s) with W(0) = J'(0).

$$\operatorname{If} J(0) = 0, \operatorname{then} \Gamma(s,t) = \exp_{\gamma(0)} \left(t \left(\gamma'(0) + sJ'(0) \right) \right) \operatorname{and} J(t) = \left. \frac{\partial \Gamma}{\partial s} \right|_{s=0} = \left(\operatorname{d} \exp_{\gamma(0)} \right)_{t\gamma'(0)} (tJ'(0)).$$

$$\diamond \ \langle J_1(t), J_2(t) \rangle = \langle J_1'(0), J_2'(0) \rangle t^2 - \frac{1}{3} \operatorname{Rm}(J_1'(0), \gamma'(0), J_2'(0), \gamma'(0)) t^4 + O(t^5) \text{ when } J_1(0) = J_2(0) = 0.$$

$$\diamond$$
 In normal coordinates, $g_{ij}(x) = \delta_{ij} - \frac{1}{3}R_{ikjl}(0)x^kx^l + O(|x|^3)$.

$$\diamond \lim_{r \to 0^+} \frac{2\pi r - L_r}{r^3} = \frac{\pi}{3} K_p(\sigma), |\mathbb{B}(p,r)| = \omega_n r^n \bigg(1 - \frac{R(p)}{6(n+2)} r^2 + O\left(r^3\right)\bigg).$$

$$\diamond \operatorname{div}\left(X^{i} \frac{\partial}{\partial x^{i}}\right) = \frac{1}{\sqrt{\det g}} \frac{\partial}{\partial x^{i}} \left(X^{i} \sqrt{\det g}\right).$$

$$\diamond \ \Delta u = \frac{1}{\sqrt{\det g}} \frac{\partial}{\partial x^i} \left(g^{ij} \sqrt{\det g} \frac{\partial u}{\partial x^j} \right) = g^{ij} \left(\partial_i \partial_j u - \Gamma^k_{ij} \partial_k u \right).$$

$$\diamond \ \ \text{Stereographic projection} \ \sigma(\xi,\tau) = \frac{R\xi}{R-\tau}, \\ \sigma^{-1}(u) = \left(\frac{2R^2u}{|u|^2+R^2}, R\frac{|u|^2-R^2}{|u|^2+R^2}\right).$$

$$\diamond \nabla_X(\omega) = (X(\omega_k) - X^j \omega_i \Gamma^i_{jk}) \varepsilon^k.$$

$$\diamond \ \nabla Y = Y^i_{\;;j} \ E_i \otimes \varepsilon^j$$
, with $Y^i_{\;;j} \ = E_j Y^i + Y^k \Gamma^i_{jk}$.

$$\diamond \ \nabla \omega = \omega_{i;j} \varepsilon^i \otimes \varepsilon^j$$
, with $\omega_{i;j} = E_j \omega_i - \omega_k \Gamma_{ji}^k$.

$$\diamond \nabla^2_{X,Y} F = \nabla_X (\nabla_Y F) - \nabla_{(\nabla_X Y)} F.$$

$$\diamond \ \nabla^2 u = u_{;ij} \ \mathrm{d} x^i \otimes \mathrm{d} x^j \text{, with } u_{;ij} = \partial_j \partial_i u - \Gamma^k_{ji} \partial_k u \text{; } \nabla^2 u(X,Y) = X(Yu) - (\nabla_X Y)u = \langle Y, \nabla_X \nabla u \rangle.$$

$$\diamond \ \mathbf{D}_t V(t) = \left(\dot{V}^k(t) + \dot{\gamma}^i(t) V^j(t) \Gamma^k_{ij}(\gamma(t)) \right) \partial_k|_{\gamma(t)}.$$

$$\diamond \ \ddot{x}^k(t) + \dot{x}^i(t)\dot{x}^j(t)\Gamma^k_{ij}(x(t)) = 0.$$

$$\diamond \int_{M} (v\Delta u + \langle \nabla u, \nabla v \rangle) \, \mathrm{d}V_{g} = \int_{\partial \Omega} v \langle \nabla u, \mathbf{n} \rangle \, \mathrm{d}\sigma_{g}.$$

$$\diamond \left. \frac{\mathrm{d}}{\mathrm{d}s} \right|_{s=0} L_g(\Gamma_s) = -\int_a^b \langle V, \mathrm{D}_t \gamma' \rangle \, \mathrm{d}t - \sum_{i=1}^{k-1} \langle V(a_i), \Delta_i \gamma' \rangle + \langle V(b), \gamma'(b) \rangle - \langle V(a), \gamma'(a) \rangle, \text{ where } (a_0, \cdots, a_k)$$
 is an admissible partition for Γ , and $\Delta_i \gamma'$ is the jump in γ' at $t=a_i$.

- \diamond (Ambrose) Suppose $\left(\widetilde{M},\widetilde{g}\right)$ and (M,g) are connected Riemannian manifolds with \widetilde{M} complete, and $\pi\colon\widetilde{M}\to M$ is a local isometry. Then M is complete and π is a smooth covering map.
- \diamond (Cartan–Hadamard) If (M,g) is a complete, connected Riemannian manifold with nonpositive sectional curvature, then for every point $p \in M$, the map $\exp_p \colon T_pM \to M$ is a smooth covering map. Thus the universal covering space of M is diffeomorphic to \mathbb{R}^n , and if M is simply connected, then M itself is diffeomorphic to \mathbb{R}^n .
- A complete, simply connected Riemannian manifold with nonpositive sectional curvature is called a Cartan–Hadamard manifold.
- \diamond Suppose M is complete and $\gamma\colon [0,\infty)\to M$ is a unit-speed geodesic from p. For any a>0, $\gamma(a)$ is the cut point of p if and only if $\gamma|_{[0,a]}$ is minimizing and at least one of the following statements holds:
 - $\gamma(a)$ is conjugate to p along γ .
 - There exists another geodesic segment from p to $\gamma(a)$.
- \diamond If $q \in Cut(p)$ and $d(p,q) = \inf_{p}$, then at least one of the following statements holds:
 - There exists a geodesic segment γ from p to q such that q is conjugate to p along γ .
 - There exists another geodesic segment σ from p to q so that $\gamma'(\ell) = -\sigma'(\ell)$, where $\ell = d(p,q)$.
- \diamond Suppose $c \colon [0,a] \to M$ is a geodesic segment with $c(a) \notin \operatorname{Cut}(c(0))$, and J(t) is a normal Jacobi field along c with J(0) = 0. Then for r(x) = f(p,x), we have

$$\nabla^2 r|_{c(t)}(J(t), J(t)) = \langle J(t), J'(t) \rangle, \quad t \in (0, a].$$

- \diamond On a Hadamard manifold, $f_p(x):=\frac{1}{2}d^2(p,x)$ is strictly convex, i.e., $\nabla^2 f_p>0$. (In fact, $\nabla^2 f_p\geqslant g$.)
- \diamond On a Riemannian manifold, $\nabla^2 f_p = g$ at p.
- \diamond (Cartan's Fixed Point Theorem) Let (M,g) be a Hadamard manifold. If $\varphi \colon M \to M$ is an isometry and $\varphi^k = \operatorname{Id}$ for some k, then φ has a fixed point.
- \diamond (Cartan's Torsion Theorem) Suppose (M,g) is a complete, connected Riemannian manifold with nonpositive sectional curvature. Then $\pi_1(M)$ is torsion-free. In particular, if $\pi_1(M) \neq \{e\}$, then $|\pi_1(M)| = \infty$.
- \diamond For an algebraic curvature tensor T, if T(X,Y,X,Y)=0 for any X,Y, then $T\equiv 0$. ① 0=T(X,Y+Z,X,Y+Z)=2T(X,Y,X,Z). ② 0=T(X+W,Y,X+W,Z)=T(X,Y,W,Z)+T(W,Y,X,Z). ③ Add together T(Y,W,X,Z)=T(X,Y,W,Z), T(Y,W,X,Z)=T(Y,W,X,Z)=T(Y,W,X,Z)=0.

- \diamond (Index Lemma) Suppose $\gamma(t)$ is not conjugate to $\gamma(0)$ for any $t \in (0,a]$. Let J be a normal Jacobi field and V a piecewise smooth vector field along γ such that $\langle V, \gamma' \rangle \equiv 0$. If J(0) = V(0) = 0 and J(a) = V(a), then $I(J,J) \leqslant I(V,V)$, with equality holds if and only if $V \equiv J$.
- $\diamond (|J|^2)'(a) (|J|^2)'(0) = 2I(J,J)$, where J is a Jacobi field along a geodesic $\gamma \colon [0,a] \to M$.
- \diamond (Rauch's Comparison Theorem) Let (M^n,g) and $\left(\widetilde{M}^n,\widetilde{g}\right)$ be complete Riemannian manifolds, $\gamma\colon [0,a]\to M$ and $\widetilde{\gamma}\colon [0,a]\to \widetilde{M}$ be unit-speed geodesics. If J and \widetilde{J} are Jacobi fields along γ and $\widetilde{\gamma}$, respectively, satisfying
 - $-J(0) = \widetilde{J}(0) = 0;$
 - $\langle J'(0), \gamma'(0) \rangle_g = \left\langle \widetilde{J}'(0), \widetilde{\gamma}'(0) \right\rangle_{\widetilde{g}};$
 - $|J'(0)| = \left| \widetilde{J}'(0) \right|;$
 - $\tilde{\gamma}$ has no conjugate points;
 - $K_{\gamma(t)}(\sigma) \leqslant \widetilde{K}_{\tilde{\gamma}(t)}(\tilde{\sigma})$ for all $t \in [0,a]$, where σ and $\tilde{\sigma}$ are planes containing $\gamma'(t)$ and $\tilde{\gamma}'(t)$, respectively;

then $|J(t)| \geqslant |\widetilde{J}(t)|$ for all $t \in [0, a]$.

- \diamond (Special Case of Rauch's Comparison) $\circledcirc \leadsto \sec_M \leqslant \sec_{\widetilde{M}'} \circledcirc \leadsto$ normal Jacobi fields.
- \diamond Suppose (M,g) is a Riemannian manifold with constant sectional curvature k, and γ is a unit-speed geodesic in M. The normal Jacobi fields along γ vanishing at t=0 are $J(t)=cs_k(t)E(t)$, where E is any parallel unit vector field along γ , c is an arbitrary constant. Moreover, J'(0)=cE(0) and $|J(t)|=|s_k(t)||J'(0)|$.
- $\diamond \ \ \text{If sec} \leqslant k \ \text{on} \ \mathbb{B}\Big(p, \frac{\pi}{\sqrt{k}}\Big) \ \text{for} \ k>0 \text{, then d} \ \text{exp}_p \ \text{is non-singular on} \ \mathbb{B}\Big(0, \frac{\pi}{\sqrt{k}}\Big) \subset T_pM.$
- $\diamond \ \, \text{Let} \, \left(M^n, g \right) \, \text{and} \, \left(\widetilde{M}^n, \widetilde{g} \right) \, \text{be two Riemannian manifolds with sup} \, K(\sigma) \leqslant \inf \widetilde{K}(\widetilde{\sigma}). \, \text{ Fix} \, p \in M, \\ \widetilde{p} \in \widetilde{M}, \, \text{and an isometry} \, i \colon T_p M \to T_{\widetilde{p}} \widetilde{M}. \, \text{Take} \, r < \inf_p \text{ such that d} \, \exp_p \text{ is non-singular on} \, \mathbb{B}(0, r) \\ \text{and set} \, \Phi = \exp_{\widetilde{p}} \circ i \circ \exp_p^{-1} |_{\mathbb{B}(p, r)}. \, \text{If} \, c \colon [0, a] \to \mathbb{B}(p, r) \, \text{is a smooth curve and} \, \widetilde{c}(s) = \Phi(c(s)), \, \text{then} \\ L(c) \geqslant L(\widetilde{c}).$
- $\diamond g_2 = dr^2 + g^r$, where g^r is the metric on $\{r\} \times \mathbb{S}^{n-1}$.

$$(0,a) \times \mathbb{S}^{n-1} \xrightarrow{l} \mathbb{B}(0,a) \setminus \{0\} \xrightarrow{\exp_p} \mathbb{B}(p,a) \subset M$$

$$g_2 = l^* g_1 \qquad g_1 = \exp_p^* g \qquad g$$

- If $\sec_M \geqslant k$, then $g_2 \leqslant dr^2 + s_k^2(r)g_{\mathbb{S}^{n-1}}$.
- If $\sec_M \leqslant k$, then $g_2 \geqslant dr^2 + s_k^2(r)g_{\mathbb{S}^{n-1}}$.
- \diamond Given a Riemannian manifold (N^{n-1},h) , we consider the warped product metric $g=\mathrm{d} r^2+f^2(r)h$ on $M=(0,+\infty)\times N$, where $f(r)\colon (0,+\infty)\to \mathbb{R}$ is a positive smooth function. In the following, we use indices i,j,k,l to denote the local coordinates on N. Superscripts g and h will be used to indicate the quantities computed with respect to the metrics g and g, respectively.

-
$$R_{ijkl}^g = f^2(r)R_{ijkl}^h - f^2(r)[f'(r)]^2(h_{ik}h_{jl} - h_{il}h_{jk}).$$

-
$$R_{ijkr}^g = 0$$
 and $R_{irjr}^g = -f(r)f''(r)h_{ij}$.
- $R_{ij}^g = R_{ij}^h - \left((n-2)[f'(r)]^2 + f(r)f''(r)\right)h_{ij}$.
- $R_{ir}^g = 0$ and $R_{rr}^g = -(n-1)[f(r)]^{-1}f''(r)$.

$$\diamond \ s_k''(r) \ = \ -ks_k(r), \ [s_k'(r)]^2 \ = \ 1 - ks_k^2(r). \ \ \text{Thus,} \ K(\partial_\theta, \partial_r) \ = \ \frac{R_{\theta r \theta r}}{|\partial_\theta|^2 |\partial_r|^2} \ = \ \frac{-s_k(r)s_k''(r)}{s_k^2(r)} \ = \ k, \\ K(\partial_{\theta_1}, \partial_{\theta_2}) \ = \ \frac{R_{\theta_1 \theta_2 \theta_1 \theta_2}}{|\partial_{\theta_1}|^2 |\partial_{\theta_2}|^2} \ = \ \frac{s_k^2(r) - s_k^2(r)[s_k'(r)]^2}{s_k^2(r)} \ = \ \frac{1 - [s_k'(r)]^2}{s_k^2(r)} \ = \ k. \ \ \text{If} \ \rho = \frac{s_k}{s_k'}, \ \text{then} \ \rho' = 1 + k\rho^2.$$

 \diamond (Hessian Comparison) If $\sec_M \leq k$, then for $q \in M \setminus (\{p\} \cup \operatorname{Cut}(p))$ and $X \in T_qM$ with $\langle X, \nabla r \rangle = 0$, we have

$$\nabla^2 r|_q(X,X) \geqslant \frac{s_k'(r)}{s_k(r)}|X|^2.$$

Note that $\nabla^2 r(\nabla r, \nabla r) = 0$ (since $r(c(t)) = t \implies \langle \nabla r, c' \rangle = 1 \implies \nabla^2 r(c', c') = 0$).

- \diamond (Laplacian Comparison) If Ric $\geqslant (n-1)kg$, then for $q \in M \setminus (\{p\} \cup \operatorname{Cut}(p))$, we have $\Delta r|_q \leqslant (n-1)\frac{s_k'(r)}{s_k(r)}$.
- \diamond In normal coordinates, $\Sigma^r = \{|x| = r\}$ and $g_{ij}(0) = \delta_{ij}$, with volume element $\sqrt{\det(g_{ij})} \, \mathrm{d} x^1 \wedge \cdots \wedge \mathrm{d} x^n$. Restricting on Σ^r , we get $\lim_{r \to 0^+} \frac{m(r)}{\omega_{n-1} r^{n-1}} = 1$, where m(r) is the volume of Σ^r and ω_{n-1} is the volume of $\mathbb{S}^{n-1} \subset \mathbb{R}^n$.
- \diamond **(Volume Comparison)** On a complete Riemannian manifold (M^n,g) with $\mathrm{Ric} \geqslant (n-1)kg$, for any $p \in M$, $|\mathbb{B}(p,r)| \leqslant V(n,k,r) = \int_0^r \rho(s) \, \mathrm{d}s = \omega_{n-1} \int_0^r s_k^{n-1}(s) \, \mathrm{d}s$, the volume of a ball of radius r in the model space with constant sectional curvature k.
- $\diamond \ \, \textbf{(Relative Volume Comparison, Bishop–Gromov)} \ \, \textbf{On a complete Riemannian manifold} \ \, (M^n,g) \\ \text{with Ric} \geqslant (n-1)kg, \frac{|\mathbb{B}(p,r)|}{V(n,k,r)} \ \, \text{is decreasing for} \ \, r>0. \ \, \textbf{In particular,} \ \, \frac{|\mathbb{B}(p,2r)|}{|\mathbb{B}(p,r)|} \leqslant \frac{V(n,k,2r)}{V(n,k,r)} \leqslant C(n,k,\Lambda) \ \, \text{where} \ \, r\leqslant \Lambda.$
- \diamond (Strong Maximum Principle) Let (M,g) be connected and complete, and $f\colon (M,g)\to \mathbb{R}$ be continuous with $\Delta f\geqslant 0$ everywhere in the barrier sense. If f has a global maximum, then f is constant.
- \diamond (Elliptic Regularity) Let $f \colon (M,g) \to \mathbb{R}$ be continuous with $\Delta f \geqslant 0$ and $\Delta f \leqslant 0$ in the barrier sense. Then f is smooth and $\Delta f = 0$ in the classical sense.
- \diamond (Splitting Lemma) If $\nabla^2 f \equiv 0$ and $|\nabla f| \equiv 1$, then $(M^n, g) = (N^{n-1}, g_N) \times (\mathbb{R}, g_E)$.
- \diamond (Laplacian Comparison, Calabi) Suppose (M^n,g) is complete and $\mathrm{Ric} \geqslant (n-1)kg$. Then $\Delta r \leqslant (n-1)\frac{s_k'(r)}{s_k(r)}$ in the barrier sense everywhere for r(x)=d(x,p).
- ♦ **(Splitting Theorem, Cheeger–Gromoll)** Let (M^n, g) be complete, noncompact and suppose Ric \geqslant 0. If M contains a geodesic line, then (M^n, g) splits off a line: $(M^n, g) = (N^{n-1}, g_N) \times (\mathbb{R}, g_E)$.
- $\diamond \mathbb{S}^3 \times \mathbb{S}^1$ does not admit a Ricci-flat metric. (If it does, then its universal cover $(\mathbb{S}^3 \times \mathbb{R}, \tilde{g})$ is Ricci-flat and contains a geodesic line. Then $(\mathbb{S}^3 \times \mathbb{R}, \tilde{g}) = (N^3, g_N) \times (\mathbb{R}, g_E)$ with (N^3, g_N) (Ricci-)flat. Since N is simply connected, $(N^3, g_N) = (\mathbb{R}^3, g_E)$. Thus, $(\mathbb{S}^3 \times \mathbb{R}, \tilde{g}) = (\mathbb{R}^4, g_E)$, a contradiction.)
- $\diamond \ \left(\nabla_X \nabla_Y \omega \nabla_Y \nabla_X \omega \nabla_{[X,Y]} \omega\right)(Z) = -\omega(\text{Rm}(X,Y)Z); \\ \nabla_i \nabla_j \omega_k \nabla_j \nabla_i \omega_k = -R_{ijk}{}^l \omega_l \ (=R_{ijkl} \omega_l \text{ in normal coordinates}).$

- $\diamond \ \Delta(\mathsf{d} u) = \mathsf{d}(\Delta u) + \mathsf{Ric}(\nabla u) \text{ as 1-forms, where } \mathsf{Ric}(\nabla u)(X) \coloneqq \mathsf{Ric}(\nabla u, X).$
- $\diamond \ \ \textbf{(Bochners' formula)} \ \Delta |\nabla u|^2 = 2 \big|\nabla^2 u\big|^2 + 2\operatorname{Ric}(\nabla u, \nabla u) + 2 \langle \nabla \Delta u, \nabla u \rangle.$
- \diamond (Structure Theorem, Cheeger–Gromoll) Suppose (M^n,g) is compact with Ric $\geqslant 0$. Then
 - The universal cover $\left(\widetilde{M},\widetilde{g}\right)=(N,g_N) imes\left(\mathbb{R}^k,g_E\right)$, where N is compact.
 - The isometry group $\mathrm{Iso}ig(\widetilde{M},\widetilde{g}ig)=\mathrm{Iso}(N,g_N) imes\mathrm{Iso}ig(\mathbb{R}^k,g_Eig).$
- $\diamond \ \mathcal{L}_V(A(X_1,\cdots,X_k)) = (\mathcal{L}_VA)(X_1,\cdots,X_k) + A(\mathcal{L}_VX_1,\cdots,X_k) + \cdots + A(X_1,\cdots,\mathcal{L}_VX_k).$