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Homework 1

Exercise 1 The sphere
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is an embedded submanifold of R"*! with the induced metric gs». Consider the coordinate chart U =
S™\ {(0,---,0,1)}, given by the stereographic projection from the north pole:
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Write down the metric gs» in this chart.

Solution The inverse map ¢~ ': R™ — §"\ {(0,---,0,1)} is given by
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Then, we obtain the following coordinate representation of gs» in stereographic coordinates:
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If we expand each of these terms individually, we get
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where g is the Euclidean metric on R". O
Exercise 2 Consider the connection V defined on R? so that with respect to the standard frame eq, es, €3,

Veiej =e; X €5,



where x denotes the cross product. Find the vector field X which is the parallel transport of e; along

the e;-axis.

Solution Write X as a linear combination of the standard basis vectors:
X(t) = a(t)er + b(t)ea + c(t)es,

where ¢ is the coordinate along the e;-axis and a(t), b(t), c(t) are functions of t. Then, the parallel trans-

port equation is

0

Ve, (a(t)er + b(t)es + c(t)es)
a'(t)er + a(t)Ve,e1 + 0 (t)es + b(t) Ve, e2 + ¢ (t)es + c(t) Ve, e3
=a/(t)e; + b (t)es + ' (t)es + b(t)es — c(t)es.

Therefore, we have the system of differential equations

and hence
X(t) = (cost)es — (sint)es. m

In the following, all connections are Levi-Civita connections with respect to the given metrics.

Exercise 3 Let N" be an embedded submanifold of M™. Given a metric g on M with Levi-Civita
connection V, we define the connection V on TN by

VXY = TTN (VXY)

for any vector fields X,Y € I'(T'N), where mrn denotes the orthogonal projection onto T'N. Prove that

V is the Levi-Civita connection of the induced metric g = g/ on N.

Proof For any vector fields X,Y € I'(T'N), we can extend them smoothly to an open neighborhood of
N in M and still denote them by X, Y". Itis immediate from the definition that V x Y is linear over C*° (M)
in X and over Rin Y/, so to show that V is a connection, only the product rule needs to be checked. Let
f e C>®(M), and let f be an extension of f to an open neighborhood of IV in M. Then fY is a smooth
extension of fY to an open neighborhood of NV, so

Vx(fY) = mon (Vx (FY)) = 7o ((Xf)Y) I (WXY) = (Xf)Y + fVyY.

Since
VXy - VyX - [X, Y} = 7TTN<vXY —VYX - [X7 Y]) = WTN(O) = 0,



we have that V is torsion-free. Finally, to see that V is compatible with g, we compute

Vx(Y,Z)=Vx(Y,Z)=(VxY,Z)+ (Y,VxZ)
=(VxY,Z) +(Y,VxZ)

for any vector fields X,Y, Z € I'(T'N). Therefore, V is the Levi-Civita connection of g = g|n. O

Exercise 4 Let (M, g) and (N, h) be Riemannian manifolds. Show that the Levi-Civita connection V of
(M x N, g x h) satisfies

Vx4x, (Y1 +Y2) = VY1 + VA, Y,
for all vector fields X;,Y; € T(TM) and X5,Y> € T(TN).

Proof Note that vector fields from 7'M and T'N are orthogonal, with vanishing Lie brackets between
them. Therefore, for any Z; € I'(T'M) and Z, € T'(T'N), we have by Koszul’s formula that

2(Vx, 4 x,(Y1 +Y2), Z1 + Zo) =(X1 + Xo)(Y1 + Y2, Z1 + Z2) + (Y1 + Yo )(Z1 + Z2, X1 + X)

—(Z1+ Zo) (X1 + X0, Y1+ Y2) — (Y1 + Yo, [ X1 + Xo, Z1 + Z3))
—(Z1+ Zo, Y1 + Yo, Xu + Xo]) + (X1 + Xo, [Z1 + Z2, Y1 + Y2])

=X1Y1, Z1) + Xo(Ya2, Zo) + Y1(Z1, X1) + Yo(Zs, X2)
— Z1(X1, Y1) = Z2(X5, Ya) — (V1, [ X1, Z1]) — (Y2, [ X2, Z5))
—(Z1, V1, Xa]) = (Z2, [Ya, Xo]) + (X1, [Z1, V1)) + (X2, [Z2,Y2)

=2V Y1, Z1) + 2(Vi, Y2, Z2)

=2(V Y1 + Vi, Y2, Z1 + Z5).

Since this holds for all Z; € I'(T'M) and Z; € I'(T'N), the desired result follows. O
Exercise 5 Let I be an isometry of (M", g).
(1) Show that dF(VxY) = Vap(x) dF(Y) for any vector fields X,Y € I'(T'M).

(2) Use this fact to show that any isometry F of (R", gg) has the form F(z) = Oz + b, where O € O(n)
and b € R".

Proof (1) We shall show that
VxY = (dF) ! (Varx)dF(Y)), VX,Y € (TM). (5-1)

By the uniqueness of the Levi-Civita connection, it suffices to show that the right-hand side of
(5-1) defines a connection that is compatible with g and torsion-free.
o Itis a connection because it satisfies the following properties:

- For f1, fo € C*°(M) and X, X, € T'(TM),

(dF) " (Var(f Xot fax2) AF(Y))
=(dF) " (V(fi0r-1)dF(X1)+(fa0F 1) dF (Xa) AF(Y))
=(dF)" ((fr o F)Vapx,) dF(Y) + (fo 0 F~") Var(x,) dF(Y))
=f1(dF) " (Var(x,) dF(Y)) + fo(dF) ™ (Var(x,) AF(Y)).



— Foraj,as € Rand Y1,Y, € T'(M),

(dF)~" (Var(x) dF(a1Y1 4 a2Y2))
:(dF)il (alvdF(X) dF(Yl) + aQVdF(X) dF(YQ))
=a, (dF)_l (VdF(X) dF(Yl)) + a2(dF)_1 (vdF(X) dF(Yg))

— For f € C*(M),

(dF)" (Varx)(dF( fY)))
=(dF)" (Varexo ((fo FTY AF(Y)))
)~

=dF)"'((fo )vdF x)dF(Y) + (dF(X)(fo F 1)) dF(Y))
=f(dF) " (Varx) dF(Y)) + (X [)(dF) " o dF(Y)
=f(dF) " (Var( )dF (Y)) + (Xf)Y.

¢ To see that it is compatible with g, we use the fact that F" is an isometry:

<(dF)71(vdF(X) dF(Y)),Z) + (Y, (dF)il(vdF(X) dF(Z)))
=(Varx) dF(Y),dF(2)) + (dF(Y), Varx) dF(Z))
— dF(X)(dF(Y),dF(Z))
—X(Y, Z).

o To see that it is torsion-free, we use the naturality of the Lie bracket:

(dF) " (Varx) dF(Y)) = (dF) " (Vapy) dF (X))
(dF) " (Varx) dF(Y) = Vapr) dF (X))
(dF)~HdF(X),dF(Y)]

(X, Y].

Therefore, the right-hand side of (5-1) is exactly the Levi-Civita connection of g, and hence (5-1)
holds.

(2) Connections in R™ are given by the directional derivatives, so by part (1) we have

0= dF(Dy,d;) = Dar(o,) dF(9;) = Jac(dF(;)) dF(9,), Vi,j,

which implies that
Jac(dF'(9;))Jac(F) = 0.

Since F' is an isometry, the Jacobian Jac(F') is invertible at each point, we obtain
Jac(dF(0;)) =0, Vj.

Note that dF'(9;) is the j-th column of Jac(F'), so Jac(F') is a constant matrix. Therefore, F' is an
affine transformation of the form F(z) = Az + b for some A € GL(n,R) and b € R". Finally, since

F is an isometry, A must be orthogonal. O



Exercise 6 Show that any isometry F' of (S™, gs» ) can be given by F'(z) = Oz, where O € O(n + 1) and
r € R" with |z| = 1.

Proof We begin by noting that any F' € Iso(S", gs») preserves the R"*!-inner product of unit vectors,
that is,
Fu)-Fv)=u-v, Yu,veS". (6-1)

Indeed, the inner product u-v can be interpreted as the cosine of the Riemannian distance between u and
v onS", and similarly for F(u) - F(v). Therefore, by the isometry invariance of the Riemannian distance
function, (6-1) holds.

Now, let us consider the map

0, if p=0,

F: R R"'H, P>
plF (), ifp#o0.

It is immediate that F preserves the R"!-inner product:

F(u)- F(v) = |u||v|F< |> (| |) | o] HI —u-v, YuveR\ {0}

Then, for any A € R and any u,v € R"*!, we compute

Fu+v) — AF(u) ] < (Mt +v) — AF(u) — ﬁ(v),ﬁ()\u+v)f)\ﬁ(u)—f(v)>
< (Au + v), )\u+v)>+ more such terms

= (A + v, \u 4+ v) + more such terms
= Mu+v—Au—uv|
= 07

which shows that F is linear, and is given by F'(z) = Oz for some O € GL(n + 1, R).

Finally, since F' is the restriction of Fto S”, the result follows. O

Exercise 7 Let (M, g) be a Riemannian manifold and f € €*°(M). Show that
Cgrad f9= 2V2fa

where £ denotes the Lie derivative.

Proof By the product rule for the Lie derivative, for any X,Y € I'(T'M ), we have
(Lerad 19) (X, Y) = grad f((X,Y)) — ([grad f, X],Y) — (X, [grad £, Y]).
Since V is compatible with g, the first term is
grad f((X,Y)) = (Vgraa j X, Y) + (X, VigraasY).
And since V is torsion-free, the remaining terms expand as

(lgrad f, X],Y) = (Vgraa s X,Y) — (Vx grad f,Y),



(X, [grad f,Y]) = (X, VgnasY) — (X, Vy grad f).
Combining these, we obtain
(Lorad r9)(X,Y) = (Vx grad f,Y) + (X, Vy grad f). (7-1)
Meanwhile, the Hessian of f is computed as

(VA (X,Y) =Vx(Vyf) = Ve f=X(Yf) = (VxY)f
— X((grad ,Y))  (grad f, VY 7-2)
= (Vxgrad f,Y).

Since V2f is a (0, 2)-symmetric tensor, the result follows from (7-1) and (7-2). O

Exercise 8 Let (M",g) be a Riemannian manifold with Laplace operator A. For the conformal metric
g=e3yg, prove that
Agp = e (Agp — (n — 2){grad f, grad v)).

Proof Let (z%) be any smooth local coordinates on an open subset of M. Then, for any ¢ € € (M),
1
Sy 2 (s 22
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Homework 2

In the following, connections are assumed to be Levi-Civita connections by default.
Exercise 9 Let (M", g) be a Riemannian manifold. Prove that for any p € M, the closure of the geodesic
ball B(p,r) = {z € M : dy(p,x) <r}is

{r e M :dy(p,z) <1}

Proof (1) For any z with dy(p, ) > r, we can find a geodesic ball centered at x which does not
intersect B(p, ). This implies that « ¢ B(p,r) and hence B(p,r) C {z € M : dy(p,z) < r}. Here
we use the fact that the metric topology induced by d, is the same as the manifold topology.



(2) Suppose x € M satisfies dgy(p,z) < r. For any n > 1, we can take z,, € B(z, 2) N B(p,r), for

n

otherwise the triangle inequality would imply that d,(p, ) > r. This shows that z € B(p,r). O

Exercise 10 Let (A", g) be a Riemannian manifold. Prove that for any p € M, there exists an open
neighborhood U of p and n vector fields E4, - - - , E,, € I'(TU), orthonormal at each point of U, such that

Proof Let U be a normal neighborhood of p. For each ¢ € U, there is a geodesic -y, parametrized by arc
length from p to ¢. Take an orthonormal basis {v1, - - ,v,} of T, M and let {V4, - - - , V,, } be their parallel

transport along v,. For each j = 1, --- , n, define the smooth vector field £; on U by

where d, is the Riemannian distance function. Then the n vector fields F1,- - - , E,, are orthonormal at
each point of U. For each i = 1,--- ,n, let v;(s) be the geodesic such that ;(0) = p and 7,(0) = E;(p).

Then
D(Ej o)

VEEj(p) = Vyok = —

s=0
Since E; o v;(s) = V;(d(p, 04(s))) = V;(s) is parallel along ~;, we have

DV;
Ve Ej(p) = T;(O) =0. O

Exercise 11 Let M™ be a smooth manifold (Hausdorff and paracompact). Prove that there exists a
countable covering {U, } of M such that for any elements U,,,Uq,, - - ,U,, in the covering, the inter-

section

deformation retracts to a point.

Proof Endow M with a Riemannian metric. Every point in M has a strongly convex neighborhood (i.e.,
a neighborhood U in which any two points can be joined by a unigue minimizing geodesic contained in
U), and the intersection of any two such neighborhoods is again strongly convex. For any strongly convex
neighborhood U of p € M, we can connect any point ¢ € U to p by a unique minimizing geodesic in U.
Hence, using normal coordinates, we see that any point in exp;1 (U) can be connected to 0 by a straight
line. This implies that exp};1 (U) is a star-shaped neighborhood of 0 in T), M, which is contractible. Since
U is diffeomorphic to exp ! (U), we conclude that U is contractible. Finally, since M is second-countable,
and hence Lindel6f, we can cover it with a countable collection of strongly convex neighborhoods {U, },

which gives us the desired covering. O

Exercise 12 Let (G, g) be a Lie group with a bi-invariant metric g.

(1) Prove that

1
VyX = i[Y,X}

for any X,Y € g, where the elements of g are identified with left-invariant vector fields on G.



(2) Prove that any geodesic ¢(t) from the identity element e is defined for any ¢ € R and satisfies
¢t +5) = P(t) - d(s)

foranyt,s € R.

Proof (1) Since g is bi-invariant, the inner product of any two left-invariant vector fields is constant.

In particular, Koszul’s formula simplifies to
1

where X, Y, Z are left-invariant vector fields. Recall that for the adjoint representation ad: g —
gl(g) == Ty GL(g), we have ad(X)Y = [X,Y]. Therefore,

(Vx¥,2) = (X, Y], 2) ~ @d(X)Z,Y) ~ {ad(¥)Z, X))
= J(X.Y],2) - ad"(X)Y Z) ~ fad"(¥)X, 7))

= %([X, Y] —ad*(X)Y —ad"(V)X, Z).
Since Z is an arbitrary left-invariant vector field, we have
VxY = %([X7 Y] —ad*(X)Y —ad"(V)X). (12-1)

Moreover, by definition,

Ad(exp(tX))Y.

Hence, we have

0=

< (Lexp(tX)) % (Rexp(—tX)) *K (Lexp(tX)) % (Rexp(—tX)) % Z>
t=0

d
dt
_d
dt
_d

(Ad(exp(tX))Y, Ad(exp(tX))Z)

dt t=0
<(§1t Ad(exp(tX))Y. Z> + <Y’(;1t
= (ad(X)Y, Z) 4+ (Y,ad(X)Z)
(ad(X)Y +ad (X)Y, Z).

Ad(exp(tX))Z>

t=0

Since Y and Z are two arbitrary left-invariant vector fields, we find that

ad(X) = —ad"(X).



With this, we obtain from (12-1) that

1 1 1
VxY = 5([X, Y]+ad(X)Y +ad(Y)X) = 5([X, Y+ [X, Y]+ [V, X]) = §[X’ Y.
(2) We need the following

Lemma For a Lie group G with a bi-invariant metric g, the inversion map i: G — G given by
i(p) = @t is an isometry.

Proof of the lemma Note that for any z € G, we have

. 1 N1 1
Ry-10ioLya(z) = (¢ '2) o ' =a"pp " =i(x).

Hence, using the chain rule, we get

diy = d(Ry-1), o dicod(Ly-1) .

Since the differential of i at the identity element e is given by di.(X) = —X, we have
di = —(dR,) "o (dL,)"".
Thus, by the bi-invariance of the metric, for any X,Y € T,,G,

(di(X),di(Y)), 1 = <—(dR¢)_1 o(dLy) H(X),—(dR,) "o (qu,)—l(Y)>w

= (X,Y),.

This shows that i is an isometry.

By the lemma, the inversion map i is an isometry, so i o ¢(t) = #(t) ! is a geodesic. And since
di.(X) = —X, by the uniqueness of geodesics, we have ¢(—t) = ¢(t) !, i.e., ¢(t)p(—t) = e. For
small to, if we define G(t) = ¢(to)¢(t), then ¢(t) is a geodesic with $(0) = ¢(to) and G(—to) = e.
By the uniqueness of short geodesics, we must have ¢(t) = é(t + t), that is,

B(to)d(t) = o(to +1), (12-2)

for all ¢ and ty small enough. By extending ¢ beyond any interval [0, {] via ¢(t + s) = ¢(1)¢(s), we
see that ¢(t) can be extended to a geodesic for all ¢ € R. And by a standard argument (of chopping
into “small pieces”), from (12-2), we indeed have

ot +s)=o(t) o(s), Vt,seR. 0

Exercise 13 Let (M", g) be a Riemannian manifold. We introduce a Riemannian metric § on the tangent
bundle T M as follows. Fix (p,v) € T M, and consider curves «(t) = (p(t),v(t)) and B(t) = (q(¢),w(t))
on TM such that «(0) = 8(0) = (p,v). Then we define at (p, v)

30 510) = 96/ ©).4'0) + 9 (0. 37 ).

(1) Prove that the metric g is well-defined and smooth.
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(2) A vector field V on T'M is called horizontal if it is orthogonal to the fiber T),M. A curve (p(t), v(t))
in TM is horizontal if its tangent vector is horizontal for any ¢. Prove that a curve (p(t),v(t)) in
T M is horizontal if and only if the vector field v(¢) is parallel along p(t) in M.

(3) Prove that the geodesic field G is a horizontal vector field on 7M.
(4) Prove that the trajectories of the geodesic field G are geodesics on T'M with respect to g.
(5) Prove that with respect to g, the geodesic field G satisfies

div(G) = 0.

(6) Prove that the geodesic flow preserves the Riemannian volume measure of 7M.

Proof (1) The expression of j is clearly coordinate independent. Hence, we may let (z',---,2")
be local coordinates on M around p, and let (a:l, A Tal ,y") be the corresponding natural

coordinates on 7'M near (p,v). Then we have

Dy~ dvf PR [
i (0) = i (0) + Tpv (O)g(o), 13.1)
Dw? B dw’ PR /2

Therefore, g is well-defined in the sense that it depends only on o/(0) and 8(0), and not on the
choice of curves. Moreover, with (13-1), we see that § is smooth. Finally, to check that g is a
Riemannian metric, we only need to show that g(a’(0),a’(0)) = 0 implies o’(0) = 0. This is clear
by taking p’(0) = 0 in (13-1), which then yields v'(0) = 0.

(2) A curve ais contained in a fiber, exactly if o« is constant, which happens exactly if o/ (t) € Kerdnr
for all t. Hence, the tangent vectors parallel to the fiber are exactly those where dr(o/(t)) = 0. Such
tangent vectors are those which can be realized as derivatives of paths (p, w(t)) where p is a point,

w
and w(t) is a path in T,,M. Since T,M is a vector space, we have — = w’. Then, for any curve

(p(t),v(t)) in T M, its inner product with the tangent vector of (p, w(t)) at t = ¢ is given by

Duv

/(10,0 + ( grto). /o))

Dv

i (to) = 0.

As w'(t) is arbitrary, this is zero for all tangent vectors to the fiber if and only if
(3) This follows from (2) since for any geodesic (t), 7' (t) is parallel along (%)

(4) For a curve a(t) = (p(t),v(t)) in TM, we have

Lengthia) = [ (/)50 + (o) + o)) i

> / (/(£).0/(1))* dt = Length(p),

and the equality holds if and only if % (t)=0.



©)

(6)
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Now, suppose that 7(t) = (v(t),7/(¢)) is a trajectory of the geodesic field G, and suppose that v is
length-minimizing between +(0) and «(¢) for some e. Then, we have

Length (%) = Length(v).

For any curve a(t) = (p(t), v(t)) in TM joining 7(0) and 7(e), the curve p(t) = 7 o a(t) joins (0)
and v(¢). Since v is length-minimizing, we have

Length(7) = Length(y) < Length(p) < Length(«),

so 7 is length-minimizing, which implies that 7(¢) is a geodesic. Since being a geodesic is a local
property, we conclude that ¥(¢) is a geodesic for all ¢.

Let p € M and consider a system (uq,- - - , u,) of normal coordinates in an open neighborhood U

of p. The Christoffel symbols all vanish at p in this coordinate system. Therefore for X = z° 88 ,
u;

we have
. L 9zt
div X (p) = i

=1

(13-2)

;0
Now let (ug, -, u™,vl, - o), v = vJm be coordinates on TM at (g,v), where ¢ € U and
(v
v € T,M. Note that
TipyTM ~T,(T,M) &7 " (p) =~ T,M ® T, M.

Hence the volume element of g on TM at (g, v) is the volume element of the product metric g x g
on U x U at the point (¢, ¢). Since div(G) depends only on the volume element, and by (3) G is
horizontal, we can calculate div(G) in the product metric. Since

Gu') =", G@)= —ngvivk,

Since the Christoffel symbols of the product metric on U x U vanish at (p, p), by (13-2), we obtain

finally, at p,
div(G) = 2 8u1 Z 507 ( kzl 7, vy ) =
By taking an orientable double cover, we may assume that 7'M is orientable. Then for {2 a volume

form on T'M, we have
L& =div(G)Q =0.

Therefore, the geodesic flow preserves the Riemannian volume measure of 7M. O



12

Homework 3

In the following, connections are assumed to be Levi-Civita connections by default.

Exercise 14 Let (G, g) be a Lie group with a bi-invariant metric g. Prove that
1
forany X,Y,Z, W € g, where the elements of g are identified with left-invariant vector fields on G.

Proof Recall from Exercise 12 (1) that Vy Z = %[Y, Z) forany Y, Z € g, which implies that Vy Z is also

a left-invariant vector field. Hence, we have
0=X(VyZ, W)= (VxVyZ, W)+ (VyZ,VxW), VX, Y,Z,W €g.
Then

Rm(X,Y,Z, W)= —(Rm(X,Y)Z, W)
= —(VxVyZ-VyVxZ—Vixy|Z, W)
= (VyZ,VxW) = (VxZ,VyW) + (Vxy)Z, W)

= S 201, W) — 31X, 2), [V, W) + 5 (1%, Y], 21, W),

Using ad(X)Y = [X, Y] and the fact that ad"(X) = — ad(X), we find that

<[Y7 ZL[XvWD ([Ya Z]vad(X)W> = (ad*(X)[KZ],W>
<_ ad(X)[Yv Z]7W> = <_[X’ [Ya Z]]7W>

(Y, Z], X1, W),

and similarly
<[X7 Z]’ [Y’ W]> = <HX7 Z]v Y], W>

Therefore, by the Jacobi identity, we have
1
Rm(X,Y,Z, W) =~
1

(1Y, 2), X, W) = (X, 21, Y], W) + 51X, Y], 21, W)

e

(1Y, 2), X, W) + (12, X1, Y1, W) + 51X, Y], 21, W)

4
= (X, ),20, W) + (X, Y], 2, W) + (X, ], 2], W)
_ i([[X,Y],Z],W)
_ i([X,Y],[Z,W]). =

Exercise 15 Recall

SU(2) = {( : 7{’) :(z,w) € C2and |2[% + |w|? = 1}.
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Let {X1, X2, X3} be a basis of the Lie algebra su(2) defines as
i 0 0 1 0 i
X, = X e .
Let {01, 09, 03} be the basis of left-invariant 1-forms dual to { X, X2, X3}. Define a left-invariant metric
g = Ezaf —‘1-0'% —|—U§,

where ¢ € (0, 1) is a small constant.

(1) Prove that this basis satisfies the commutation relations

(X1, X5] =2X3, [X, X3] =2X1, [X3,X1]=2X.

(2) Prove that the connection satisfies

Vil = %([x, Y] - ad*(X)Y — ad*(¥)X)

for any X,Y € su(2), where ad” is the adjoint of ad.
(3) Compute the sectional curvatures K (X; A X3), K(X2 A X3) and K (X3 A X1).

(1) Since the Lie bracket on su(2) is given by the matrix commutator, we compute

[X1, Xo] = <i 0.) ( ! 1) - ( ! 1) (i O,) = 2X3,
0 —i)\-1 0/ \-1 0/\0 -i
saxal = (O (O ) (0 (0 1) ooy
2\ o)\ o) \doof\ -1 o0) Y
o= (O V(0O (1 0[O 1) Lok
PTG o)\o <) o —i)\i o) T T

(2) Since g is left-invariant, the inner product of any two left-invariant vector fields is constant. In

Proof

R =

particular, Koszul’s formula simplifies to

(VxY,Z) = %(<[X7 Y], Z) = (X, 2],Y) = ([}, 2], X)), VX,Y,Z € su(2).

Using the fact that ad(X)Y = [X, Y], we have
1
1 * *
_ %qx, Y] — ad*(X)Y —ad*(Y)X, Z).
Since Z € su(2) is arbitrary, we obtain the desired formula.
(3) The inner products between the basis vectors are given by

(X1, X1) =€ (X0, Xo) =1, (X3, X3)=1,
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(X1, Xo2) = (X2, X3) = (X35, X1) =0.

Then, to use the result from (2), we need to compute ad” (X;) X ;. With the help of the commutation

relations from (1), we obtain

(ad™(X1) X2, X1) = (Xo,ad(X1)X1) = (Xo, [ X1, X1]) =0,
(ad™(X1) X2, Xo) = (Xo,ad(X1)X2) = (Xo, [ X1, X)) = (X5,2X3) =0,
(ad™(X1) X3, X3) = (X5,ad(X1)X3) = (X, [X1, X3]) = (Xa, —2X5) = -2,
(ad™(X2) X1, X1) = (X1,ad(X2) X1) = (X1, [ X2, X1]) = (X1, —2X3) =0,
(ad"(X2) X1, Xo) = (X1,ad(X2) X2) = (X1, [X2, Xo]) = 0,
(ad*(X2) X1, X3) = (X1,ad(X2)X3) = (X1, [ X2, X3]) = (X1,2X,) = 27,
(ad™(X2) X3, X1) = (X3,ad(X2) X)) = (X3, [X2, X1]) = (X5, —2X3) = —
(ad™(X2) X3, X2) = (X3,ad(X2)X2) = (X3, [ X2, X5]) =0,
(ad™(X2) X3, X3) = (X3,ad(X2)X3) = (X3, [Xa, X3]) = (X3,2X;) =0,
(ad™(X3) X2, X1) = (Xo,ad(X3) X)) = (Xo, [X3, X1]) = (X2,2X5) = 2,
(ad™(X3) X2, Xo) = (Xo,ad(X3)Xs) = (Xa, [X3, Xa]) = (X, —2X) =0,
(ad™(X3) X2, X3) = (Xo,ad(X3)X3) = (X, [X3, X3]) =0,
(ad™(X3) X1, X1) = (X1,ad(X3)X1) = (X1, [X3, X1]) = (X1,2X5) =0,
(ad*(X3) X1, Xo) = (X1,ad(X3)Xo) = (X1, [ X3, Xo]) = (X1, —2X;) = —2¢%,
(ad™(X3) X1, X3) = (X1,ad(X3)X3) = (X1, [X3, X3]) =0,
<ad*(X1)X3,X1> = (X3,ad(X1)X;) = (X3, [X1, X4]) =0,
(ad™(X1) X3, Xo) = (X3,ad(X1) X)) = (X3, [ X1, X)) = (X35,2X3) = 2,
(ad™(X1)X3, X3) = (X3,ad(X1)X3) = (X3, [ X1, X3]) = (X3, —2X5) = 0.

Thus, we have

ad"(X1) Xy = —2X3, ad* (X)X = 2% X3,
2

* 2 *
ad (XQ)X?, = —?Xl, ad (X3)X2 = §X17
ad*(Xg)Xl = 72€2X2, ad*(Xl)Xg = 2X2
Also, it is easy to see that

ad*(X1)X1 = ad*(XQ)Xg = ad*(X3)X3 =0.

It then follows by part (2) that

Vi, Xo = %([Xl, Xo] — ad*(X1) X2 — ad*(X2)X1)
%[2)(3 — (—2X3) — 22 X;3] = (2 - %) X,

Vi, X1 = %([Xg, X1] — ad*(X2)X; —ad*(X1)Xa)
%[ 2X;3 — 262 X3 — (—2X3)] = —e° X3,
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1 * *
Vx, X3 = 5([X27X3] —ad"(X2) X3 —ad"(X3)X>)
1f 2 2
= ) _2X1 - <—€2X1> - €2X1] =X,
1 * *
VX3X2 = 5([X3,X2] —ad (Xg)Xg —ad (XQ)Xg)
1f 2 2
=3 _—2X1 - ?Xl - <—52X1>} =-Xi,
1 « *
VX3X1 = 5([X3,X1] —ad (Xg)Xl —ad (Xl)Xd)
1
=5 [2X5 — (—2%X>) — 2X5] = €2 X,
1 * *
VX1X3 = 5([X1,X3] —ad (Xl)X?, —ad <X3)X1)
1
= 5 [—2X2 — 2X2 — (—QEQXQ)] = (52 — 2)X2,

and )

Now we can compute Rm(X;)X; as follows:

Rm(X1, X2)X1 = Vx, Va, X1 — Vi, Vi, X1 — Vix,,x,) Xa
=Vy, (—€2X3) — 0 — Vax, X3
= —&’(e? - 2) Xy — 28° X,
= —54X2,

Rm(Xs, X3) X2 = Vi, Vx, Xo — Vi, Vi, Xo — Vix, x,) X2
=Vx,(—X1) —0— Vax, Xo
=e2X5 — 2(2 — 52)X3
= (3” — 4) X3,

Rm(X3, X1)X3 = Vx,Vx, X5 — Vx, Vx, X35 — Vix, x, X3
=V, ((e? = 2)X2) —0— Vax, X3
= (- 2)(-X1) — 2X,
= —£2X,.

Finally, we compute the sectional curvatures:

Rm(X1, X, X1, X5)

K(X1 A Xo) = .
(X1, X1) (X2, Xo) — (X1, X2)
_ —(Rm(Xy, X)Xy, Xo)
(X1, X1) (X2, Xa) — (X1, X2)?
gt 9
= 6—2 = £ 5
K(X2 /\X3) _ Rm(X27X3aX27X3)

(Xa, Xo) (X3, X3) — (X2, X3)°
_ —(Rm(Xs, X3) X, X3)
(Xo, Xo)(X3, X3) — (X2, X3)?
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=4 —3¢2,

Rm(Xg,X]_, Xg,Xl)
(X3, X3) (X1, X1) — (X3, X1)°
_ —(Rm(X3, X1) X3, X))

(X3, X3)(X1, X1) — (X3, X1)°
64

_ _ 2
=5 =€ O

K(Xg /\Xl) =

m

Exercise 16 Given a Riemannian manifold (M™", g), we consider the metric § = e~2/g, where f is a

smooth function on M. The metric g is said to be conformal to g. Prove the following statements:

(1) The Christoffel symbols ffj of g satisfy
T = g*[—(0:f)gjt — (0;f)gu + (B f)gis] + T
(2) The curvature operator Rm of g as a (0,4)-tensor satisfies
Rm = e2f{Rm+(V2f +df@df — ;IgradeQQ) @9}'
(3) The Ricci curvature Ric of § satisfies

Ric = (n2)<V2f+ ﬁ(Af)g+df®dff |gradf|29) + Ric.

(4) The scalar curvature R of § satisfies

R= e2f{(2n— NAf — (n—1)(n — 2)|grad f|? +R}.

(5) The Weyl curvature tensor W of g satisfies
W =e2'W.

Proof (1) We have

1. - N -
Iy = igkl(aigjl + 0j i — 01 Jij)

1
= (X ") [0: (e gj0) + 05 (7 gu) — A (™ gi5)]
1
= igkl[*2(5z‘f)9jl + 9igji — 2(9;f)gu + 0j9u + 2(0f)gij + 019451

9" [=(0if)gjt — (951 gi + (D) gis) + T35
(2) If we denote f,; = 0;f and f,;; = 0;0;f, then the formula obtained in (1) can be rewritten as
Ll = —fad} — £, + g" fagi + T

We can make the computations much more tractable by computing the components of the tensors
atapointp € M in normal coordinates for g centered at p, so that the equations g;; = d;5, Org;; =0,
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and I‘fj = 0 hold at p. This has the following consequences at p:

fij = 0;0: f,
f?j = —f.i0F — f300 + g™ fagij,
OmTly = = Fim0F — F.jm0F + g™ fumgi + OmL'S;,
Rl =0T, — 0,1

Inserting these relations, we obtain

Biwt = = ™ gun (055, = 0,135 + T, T — T,

= 672fglm{7(7f;ji5}cn — [ki0" 4+ g™ fogigsn + OiT5L)

+ (= L0k = [0 + 9" i gie + O15%)

— (= £:40% = [05 + 9" f.qgin) (= Fi0p' = [p07" + 9™ forGip)
+ (= Fad] — il + gqu;qgm(—f;jagl — 10"+ 9™ Frdin) }
= 6_2f91m{( — firj0;" U fqi9ik + 9" figigik — Rijp™)
— (£ £a0R0," + [ Fp0R 07" + ffad]0y" + fufp0707")
fa fjépém + fifop 5p5m + f;kfjéf(sgl + f;kf;pSch;”)

(g f,qugjkém +gpq q ,pg]k(s _gqu;qf;jgiké;;n _gqu;qf;pgik(sz‘n)
( " fr f]gzp(;p +9™" for fkgzp(sp 9" for fzgjpép mrf;rf;kgjp(;f)
(—f

i
+
i
+ [ 9™ gikgip + f;qf;rgpqgmrgikgjp)}
= fo{(f;z‘kgjz — firga — fagix + f9ik + Rijr)
Lifgoe + Fifagi + fifugi + fifxgi)

fafigam + fafgi + [ fega + fafegi)

Figfagin + fifagis — Falagie — fifagis)
fifagie + f;jf;lgik)}
= 672f{Rijkl + (fikgjt + f.19i — fagik — fjkgir)
+ (fifwgio + fijfagie — fafagin — f.jfrgi)

- gqu;pf§q(gikgjl - gilgjk)}v

— (
+
+ (fafagin + 9" fip fagugin — fij fagin — 9" fip fa9i19ik)
+
+ (=

which is the coordinate version of

Rin = o2/ {Ren-+ (V27 +df 0.4/ — Jlgrad %) © g

(3) Let try denote the trace operation (with respect to g) on the second and last indices. The compo-
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nents of Ric are given by
Ry = gjlﬁijkl
= gjl{Rijkl + (furgj + f9i — fagie — fikgi)
(16-1)
+ (fifiegi + fLagie — Fifagie — [ fiega)
= 9" fipfra(Gingsi — gilgjk)}-

This implies that

Ric = trg{Rm+<V2f+df®df - ;Igradﬂ?g) @g}

= try(Rm) + tr, (V2/ ® g) + tr, {(df © df) D g} — ylgrad 2 tr(9 D g)
=Ric+(n —2)V>f + [trg (V3 f)]g+ (n—2)df @ df + [try(df @ df)]g — (n— 1)|gradf\2g
= Ric+(n —2)V2f + (Af)g+ (n —2)df @ df — (n — 2)|grad f|°g

= (n—2)<V2f+ni2(Af)g+df®df— |gradf|2g) + Ric.

(4) From (16-1) we see that
R =§" Ry
= €2f9ik9jl{Rijkz + (fargj + f.9ik — fagik — fjkgit)
+ (fifikgin + fjfagiv — Fafagie — fij Fuga)
= 9" fipfia(gingit — gilgjk)}a
which implies that

R= e2f{(n —2)try (V2f) + (Af)trg g + (n — 2) try(df @ df) — (n — 2)|grad f|* tr, g +trg(Ric)}

e2f{(n —9)Af +nAf + (n— 2)|grad f|? — n(n — 2)|grad f|* + R}

e2f{(2n —2)Af — (n—1)(n — 2)|grad > + R}.

(5) By the definition of the Weyl curvature tensor, we have for n > 3

W =Rm —

. R R
n eIt 5o =59 09

- le{Rm+<V2f +dfedf - ;Igradf29> @9}

n2{(n—2)(v2f+ ﬁ(Af)g—&-df@df— gradf|2g> —I—Ric} ® (e_Qfg)

le{(Zn —)Af — (n—1)(n - 2)|grad f|* + R}

+ 2(n—1)(n—2)

(€9 ® (e g)

1
n—2

le{Rm Ric Dg + 5 g@g}

R
(n—1)(n—2)
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=e 2w, O

Exercise 17 Consider the hyperbolic space
H" = {(2',--+,2") e R" : 2" > 0},

equipped with the metric

1 1 1 n n
gun = (In)Q(dx @dz' 4 - +da" @ da™).

Prove that gg» has constant sectional curvature —1.

Proof Since ggn» = ﬁ gr, where g is the Euclidean metric, we can apply the result of Exercise 16 (2)
to compute the Riemann curvature tensor Rm of gg~. Set f = In(z"). Then gg» = e~ g, and

1
(zm)?

1
(x7)>

V2= dz" @ dz", df®df= dz" @ da”, |grad f|* =

(z)?

Given any point p € H" and any 2-dimensional linear subspace o of T,,M, if {X,Y'} is any basis of o,
then the Riemann curvature tensor Rm of gy~ is given by

Rm = W{P{O + (—(xi)g dz" @ da™ + ﬁ dz" @ da™ — ;(x}l)QgE> D gE}
=~ (or o).
which implies that
Ky(o) = - Rm(X,Y, X,Y) _ —2(11%)4(913 Bop) XY, XY)
E(QH"@QH“)(vavX»Y) W(QEQ\DQE)(X’KX?Y)
Therefore, gy~ has constant sectional curvature —1. O

Exercise 18 (Bochner’s formula) Let (A", g) be a Riemannian manifold. For any smooth function
u: M — R, prove the following identity:

%A\grad ul? = ’V%’Z + Ric(grad u, grad u) + (grad(Au), grad u).

Proof We can make the computations much more tractable by computing the components of the ten-
sors at a point p € M in normal coordinates centered at p, so that the equations g;; = d;;, Oxgi;; = 0, and
Ffj = 0 hold at p. This has the following consequence at p:

1 2 1y
§A|gradu| = igkl (g”uiuj)kl

1 g
= *gklg” (Wiski U + WikUji1 + Uiy U + Uiljik)

2
gt ij 18-1
= gklguui;kuj;l + gklg”ui;kluj ( )

= ‘V2u|2 + g* g u g

_ ‘V2u|2 + gl g ;.



Recall that the covariant derivative of every smooth 1-form 3 can be computed by
(VxB)(Y) = X (B(Y)) = B(VxY).
Using this repeatedly, we compute

(VxVyB)(Z) = X((VyB)(Z)) = (VyB)(VxZ)
=XY(B(2)-B(VyZ))—(VyB)(VxZ)
= XY (8(2)) = (VxB)(VyZ) - B(VxVyZ) - (VyB)(VxZ).

Reversing the roles of X and Y, we get
(VyVxB)(2) =YX (B(2)) = (VyB)(VxZ) - B(VyVxZ) — (VxB)(VyZ),
and applying (18-2) one more time yields
(Vixx8)(2) = X, Y](B(2)) = B(Vixx2)-
Now subtract (18—4) and (18-5) from (18-3): all but three of the terms cancel, yielding

(VxVyB—VyVxB—Vixy)B)(Z2) = —B(VxVyZ —VyVxZ —VixyZ)
— _B(Rm(X,Y)Z).

Since

ViyB=VxVyB—Vvyh,
Vi xB=VyVxB—Vy,xB,

we see that (18-6) is equivalent to
ViyB — VixB=-Rm(X,Y)"B,

where Rm(X,Y)": T*M — T*M denotes the dual map to Rm(X,Y), defined by
(Rm(X,Y)*n)(Z) = n(Rm(X,Y)Z).

In terms of any local frame, the component version of (18-7) reads

Bj;pq - Bj;qp = qujmﬂmv

20

(18-2)

(18-3)

(18-4)

(18-5)

(18-6)

(18-7)

(18-8)

where we use a semicolon to separate indices resulting from (covariant) differentiation from the preced-

ing indices. Now, we apply (18-8) to the 1-form grad u to obtain

kl ij kl 15
9" g ugau; = g™ g"

(ukiti = Ryip, " wm ) u;
= 9" (9" urt) juj + 9" 9" Ry wmu;
= (grad(Au), grad u) + ¢ R, uu;

= (grad(Au), grad u) + Ric(grad u, grad u).

(18-9)
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Combining (18-1) and (18-9), we obtain

%A|grad ul? = |V2u‘2 + Ric(grad u, grad u) + (grad(Au), grad u). 0

Exercise 19 Given a Riemannian manifold (N"~', %), we consider the warped product metric g =
dr? + f3(r)h on M = (0,+00) x N, where f(r): (0,4+00) — R is a positive smooth function. In the
following, we use indices i, j, k, [ to denote the local coordinates on IN. Superscripts g and h will be used
to indicate the quantities computed with respect to the metrics g and h, respectively.

Prove the following statements:

(1) RSy = L2 R — P20 (0] (hawhs — hahyi).

(2) R?jkr =0and R?rjr = —f(r)f”(r)hij.

®) Ry = Rly = (0= D @) + 10)f"(0)) .
@) Rf, = 0and Ry, = —(n— DIf(r)] "),

Proof Let us denote the Christoffel symbols of g by I'¢, and the Christoffel symbols of h by I'¢,. Then

~ 1
Ly = §9kl(5i9jl + 0590 — digis)

= %[f(r)]_%kl{ai (F2(r) i) + 05 (f*(r)ha) — O (2 (r)hiz) }
= %h’“l(&»hﬂ + ajhil — (r“)lhij)

=Tk

35
~ 1
Ffj = igrr(aigﬁ + 0;9ir — 0rgij)
1
= —Q&{f?(r)hij}
= —f(r)f'(r)hi;,

1.
I = Eg]l(aigrl + 0r9i1 — O1Gir)

= LU0 (r)ha}

_ f'(r) gl .

CH
(

f’T)j

fr)
fr

1 rr
ir 59 (aigrr + 8Tgir - 8rgir) =0.

(1) We compute

Rl = — gun (075 — 0,7 + T4, T — T )

= - PO O - oI + T + 700 0 (£ )

~TRIT = (=) f () hir] (J;fl((:)) 2 ) }

— — P20 hon { O — 0T + T = T+ [F (0] (haed}” = hyxd”) }



=f2(r)R! v~ PO O b (i — hjo)
=f2(r) Rl — P2 (O (harhgt — hahgy).

(2) We compute

Ry = = g (0T, — 0T + T Ty, - TR )
== {&-[—f(?")f’(r)hjk] = 0= £ () ' (r)har] + T = F(r) () hip] + T T,
= D0, [ ) ()hgp) = 3T, |
= = V') (=Oihg + Dhan — Thhy + Ty ).
Note that

1

Dlhip = ShP (051 + Okt = Ouhjic) by
1
1

kahjp = ahpl(aihkl + Ophi — 6lhik)hjp

Ojhii + Okhji — Oihji),

1
= 5(8ih;cj + akhij — 8jhm)

Thus, we have

ngjkT = _f(r)fl(r)(_aihjk + ajhzk + aihjk - @hzk)
= 0.
Next, we compute
Ry, = =gy (0T, — 0,1, + T, T, — T T, )

fo-acrmremy + (58 5”)[ FOF ol ~0f

= —{[f’(?“)]2 + f(r)f"(r )}hw +r )]
= —f(r)f"(r)hij.

(3) Using (1) and (2), we compute

Rl = 9" R =
= [f(?")]fzhkl{fQ(T) b — PO ) (highia — hﬂhkj)} — f(r) " (r)hij
= WP RYy o — WM ) (haghaa — ahag) = Fr) 7 ()i

= Rl = [f (") [(n = Dhig — hig] = F) £ (r) b

= Ry~ (=27 @) + £0) 1" (0) ) -

_ gklle,jl _|_grng

irjr

(4) By the first formula in (2), we see that

RQ — gpq Rg

kl
iprq — 9 R} ,+9g" R], . =0+0=0.

22
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Finally, we use the second formula in (2) to get

A gklekrz +9" R,

= [f(")]2RH = F(r) £ (r) ] + 0
= —(n—D)[f()] " (r). O

Homework 4

Exercise 20 LetS* = {(z,y,2) € R® : 2> + y* + z* = 1} be the unit sphere in R® with induced metric
g. Consider a geodesic c: [—%, 2] — S? defined by ¢(t) = (cost, 0, sint). Define a vector field X along c
by X(t) = (0,cost,0). Prove that X is a Jacobi field.

Proof On the sphere S?, we have

X
% — rper (X'(1)) = (0, — sint, 0),

D2X DX
darz ~ "\ Car

> = (0, —cost,0) = —X(¢),
Thus, the Jacobi equation is satisfied:

D2X / /
5+ Rm(X(8),¢ ()¢ (1) = 0. -

Exercise 21 Given a Riemannian manifold (M, g), let 7: M — M be a covering map such that j = *g.

Prove that g is complete if and only if § is complete.

Proof Assume both M and M are connected.

(«) By the assumption, = is a local isometry. Thus if § is complete, 7 satisfies the hypotheses of the

Ambrose theorem, which implies that g is also complete.

(=) Conversely, suppose g is complete. Let p € Mand @ € Tp/Z\Z be arbitrary, and let p = 7(p) and
v = dm;(0). Completeness of g implies that the geodesic v with y(0) = p and 7/(0) = v is defined
forallt € R, and then its lift y: R — M starting at p is a geodesic in M with initial velocity v, also
defined for all ¢. O

Exercise 22 Let (M", g) be a complete, connected Riemannian manifold satisfying
Ric+V2f > Kg
for some constant K > 0. If |grad f| < K on M, prove that M is compact.

Proof Since M is complete, it follows as a consequence of the Hopf—Rinow theorem that any two points
in M can be joined by a minimizing geodesic. Let v: [0,£] — M be any such geodesic with unit speed.



Along « consider the n — 1 variational vector fields

Vi(t) = sin(%t)Ei(t), i=1,-,n—1,

24

where Ey, - -+ , E,,_1, together with /(¢), form an orthonormal frame for 7 y(tyM. Since v is minimizing,

by the second variation formula we have

/Oe

= [ (7)o (1) s (o) R

DV; [*
? 7Rm(‘/ia’7/7‘/i7’y/) dt

d?E
< =
ds?

By adding up the contributions to the second variation formula for each variational vector field we get

™2 [* Yz,
<(n-1)(- in®( —t) Ric(+y',~") dt.
0< (n 1)(€> /Ocos (é)dt /Osm (Et)Rlc(v,'y)dt
Meanwhile, by the assumption on the Ricci curvature, we have
Can2(T 200 2T
sin (E )RIC(’Y v') = —sin (gt)V f(¢',v") + K sin (gt)'

Since « is a geodesic,

VI A) = Ve (VY f) = Vv f = (f o) (#).
Combining (22-2) and (22-3) into (22-1) gives

(n—l)(Z)Q/OZCOSQCEt) dt}/oésm <€ )RIC(’Y 7')dt

_ _/Ol sinQ(%t>(f0’y)”(t) dt+K/OZ sin%%t) dt.

For the first integral on the right-hand side, we can integrate by parts to get

[z eara [[sn(Gaas(jresnon
sm(t) ’grad fldt

T 2
<- =K
{ x

=2K

where we used the fact that

[(f o) ()] = [{grad f(v(1)),7'(1))| < |grad f| - |7'| = |grad f| - 1

Now, (22—4) reduces to

(22-1)

(22-2)

(22-3)

(22-4)
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that is,
—1)m?
2 _ 40— L <0.
14 ! e 0
Solving this quadratic inequality gives
(n—1)m2
<2 44—
0</ + + I

This gives a bound on diam M. By the Hopf-Rinow theorem, any closed and bounded subset of M is
compact, so M is compact. O

Exercise 23 Let M™ be a smooth manifold (without boundary).

(1) Prove that for any Riemannian metric g on M, there exists a smooth function f on M, such that
the conformal metric e~/ g is complete.

(2) Prove that if every Riemannian metric on M is complete, then A is compact.

Proof (1) For each point x € M, define
r(z) = sup{r >0:B(z,r)is compact}.

If r(z) = oo for some « € M, then g is complete by the Hopf-Rinow theorem. Assume therefore
that 7(z) < oo forall z € M. If r < 7(z) — d(x,y), then r + d(x,y) < r(z), so B(x,r + d(z,y)) is
compact. The triangle inequality ensures that B(y,r) C B(z,r + d(x,y)). Hence B(y,r), being a
closed subset of a compact set, is compact. This holds for all < r(x) — d(x, y), so we can take the
supremum over r to get

r(y) = r(z) = d(z,y).
Reversing the roles of = and y, we similarly obtain
r(z) = r(y) —d(z,y).
Combining these two inequalities gives
r(x) = r(y)l < d(z,y), Y,y M,

which implies that r(z) is a continuous function on M. Since M is second countable, we can choose
a smooth function w(z) such that w(z) > 5 forall z € M. We define a conformal Riemannian

metric § by §, = [w(x)]?g. at each point z.

In order to show that g is complete, we shall show that I@(m, %) C IB%(a:, L;”) for every x, which

then implies that I@(m, %) is compact, and hence any closed and bounded subset of M is compact.

For this purpose, choose y with d(z,y) > T(;). For any piecewise smooth curve ¢: [a,b] — M,

joining x and y, its g-length L is not smaller than d(z,y) and hence L > @ We evaluate the
g-length L of ¢. By a mean value theorem, we have

Ez/abmc(t))Hfif g

where ¢ is a number between a and b. Since |r(c(€)) — r(z)| < d(z,¢(€)) < L, we have r(c¢(§)) <

de
dt

dt = w(c(§))L > L

b
dt = w(c(¢)) / g @)’




@
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r(z) + L so that

~ c r(z c
Therefore d(z,y) > 3. This proves that IB( z,3)° D ]B%(x, (2 )> . As stated above, any closed
and bounded subset of M is compact, so the conformal metric g is complete by the Hopf-Rinow

theorem.

Let (M, g) be anoncompact Riemannian manifold. We shall find an incomplete Riemannian metric
g which is conformal to g. By (1), we can assume that g is complete. Fix a point p € M. Since M is
second countable, we can find a smooth function w(z) on M so that w(z) > d(p,z) forall x € M.
Consider the conformal metric § = e~ 2. For any point ¢ € M, let v be the minimizing geodesic
(with respect to g) from p to ¢ with unit speed. Then

- d(p,q) d(p,q) d(p,q)
L(7) :/ e~ dt </ e~ ®) gy :/ etdt=1—e P90 L1,
0 0 0

This implies that diam(M, §) < 2. Thus, (M, g) is bounded but noncompact, and hence incomplete
by the Hopf-Rinow theorem. O

Exercise 24 Given a Riemannian manifold (M, g), let v: [0,a] — M be a smooth curve and

fu,v,t): (—e,e) X (—g,e) x [0,a] = M

be a smooth map with f(0,0,t) = y(t). Denote v,,(t) = f(u,v,t) and

_of of
U(t)—% , V(t)_% .
(0,0,t) (0,0,t)
Suppose 7 is a geodesic, find the formula for
82
ME(’YU,U)
(0,0)

Solution We compute

%E(’Yu,v) = ;}{;/j@%iﬁ dt} = /Oa<€avft,ft>dt
= [(Tadsi)a
0

and then

a<%ﬁatfv,ft> - < fvﬁauft> dt

a

(Vo.Voutfur fi) + (Vo fo Vo, fu ) dt

mE(%,v)

1
c\c\h

<Rm(fuvft Jo, fe) + <VafVaufy,ft> + <€atfy,6atfu> dt
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Since V5% = 0, we have

9? “ s s d :
g B = [ RmUAVA) + GV + (T0,7;V)

(0,0)

- / Ri(U,$)V.4) + (V5U, V5 V) dt + (T ¥, 5)|° 0
0

Exercise 25 Let (M", g) be a complete Riemannian manifold, and let p € M be a point.

(1) Suppose that along any normalized (unit-speed) geodesic v with v(0) = p, the sectional curvatures
of M in any plane o C T ;)M containing Y(t)is<1if0 <t < 5and < 0ift > 7. Show that
the length of any normal Jacobi field J(t) along such a geodesic v, with J(0) = 0, is nondecreasing

aftert = 7.

(2) Suppose that along any normalized (unit-speed) geodesic v with y(0) = p, the sectional curvatures
of M in any plane o C T4 M containing 7/(t) is > 1if 0 < ¢ < 5 and > 0if ¢ > 5. Show that M
is compact.
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Cheat Sheet

(VxY,Z) = %{X<Y7 Z)+Y(2,X) - Z2(X,Y) =V, [X, Z]) = (Z, [V, X]) + (X, [Z,Y])}.

Ik = %gkl(aigjl + 05911 — N19ij)-
Rijkl = 8iré‘k — T + F;‘rizrém - FZZFém-

Rijki = —gim R = —gim (@'Fﬂ — oL +THT7, — l“ko;-’;,)

Rij = Ry* = 9" Rigjm.

R = g"R;;.

In normal coordinates, R;;;(0) = %(8i8lgjk; + 0;0kgi — 0;0kg1j — 05019ix)(0).

DV () = (V4(6) + 40V (T (0 )by — 50) + 50 (T (2(0)) =,
(Vx Rm)(Y, Z)W + (Vy Rm)(Z, X)W + (V5 Rm)(X, Y)W = 0.

For (S™, gs»), Rm(X,Y, Z, W) = (X, Z){Y,W)—(X,W)(Y, Z),sinceDxn = X and VxY = DxY +
(X,Y)n.

RO KX, Y, ZW)=hX,2)k(Y,W) - X, W)k(Y,Z)+ h(Y,W)k(X,Z) — h(Y, Z)k(X,W).
trg(h @ g) = (n — 2)h + (trgy h)g. In particular, try (9 ® g) = 2(n — 1)g.

(T.h ® g), = Altry T,h) .

|h ® g|§ = 4(n — 2)|h|> + 4(try h)*. In particular, |g ® g|§ =8n(n —1).
The Weyl tensor of g is given by W = Rm LRic@ + S D)
. ) . R
In dimension 3, Rm = Ric ®g — 79 D g.
. . R . R .
In dimension 2, Rm = 77 ® g, Ric = 59 Ric = Kg,and R = 2K.
Ric = Ric—Eg.
n
. J R .
The decomposition Rm = W + ——Ric® g + ——~9g @ g is orthogonal.
n—2 2n(n —1)
4 2
Rm|> = |W]*+ —[Ric - ————_R?
Rm(X,Y, X, Y Rm(X,Y, XY
K (o) — Rl ) Rm( )

lg® o)XY, X,Y) (X, XNY,Y)— (X, )

divF = tr,(VF), where the trace is taken on the first two indices of VF; div(X) = VyX*;
(diV(T))il'”ik—l = ngjT’iil'“ik—l‘

1
(le Rm)kij = (Vl RiC)jk — (Vj RiC)ik, le(RIC) = 5 dR
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b
The index form of v is I(V, W) = / [(D;V,D;W) — Rm(V,~', W,~")] dt.

k—1

_Z<Ai DV, W (a;)), where (ag, - - - ,ax)
i=1

is an admissible partition for V and W, and A; D,V is the jump in D;V at ¢ = a,.

b
IV, W) = — / (DFV 4 Rm(V, '), W) di-+(D,V, W)

t
t=a

The Jacobi equation is D7V + Rm(V,+')y’ = 0.

(Bonnet-Myers) Let (M, g) be a complete, connected Riemannian n-manifold, and suppose there
is a positive constant k such that Ric > (n — 1)kg. Then diam (M) < i, and 7 (M) is finite. In

Vi

particular, M is compact.

D; D,V —D; D,V = Rm(9;TI', 9,I')V for any smooth one-parameter family of curvesI": J x I — M

and any smooth vector field V along I'.

I(s,t) = exp, (t (T(s) + sW(s))) is a geodesic variation of the geodesic (), where
- ¢(s) is a geodesic with ¢(0) = v(0) and ¢'(0) = J(0).
- T(s) is a parallel vector field along c(s) with 7'(0) = +'(0).
— W (s) is a parallel vector field along c(s) with W (0) = J'(0).

If 7(0) = 0, thenT'(s,t) = exp_ (t(’)//(O)+SJ/(O))) and J(t) = g—g

_ (d exp7(0)>t7l(0)(t<]’(0)).

s=

(1 (1), J2(1)) = (J1(0), J(0))t* % Rm(J1(0),7/(0), J3(0),7'(0))t* +O(t°) when J1(0) = J5(0) = 0.

In normal coordinates, g;;(x) = 0;; — %Rikjl(O)mkacl + O(|z]*).
. 2mr—L. 7 . n R(p) 3
TIL%L = ng(U), B(p,7)| = war (1 - 6(n—|—2)r + O(T ) :
.o, 1 0 ;
div| X'— | = ———( X"/detg).
IV( 3x1) \/det g 07! ( ¢ g)

1 0 y 0 .
u = \/Teitg% (g” vV detga;) = g” (&Qu — Ffjaku)

. . _ 2R%*u u|? — R?
Stereographic projection o (§,7) = el Yu) = <|u|2 ol R:u:2 n R2>'

Vx(w) = (X (wi) — ijiFj-k)ek.

VY =Y E; @, with Y, = E;Y' + YT
Vw = w; je' @ &, with w;.j = Bjw; — wkl“fi.
ViyF =Vx(VyF) = VymF.

V2u = uy; do’ @ da?, with u,;; = 9;0u — I5,00u; V2u(X,Y) = X (Yu) — (VxY)u = (Y, VxVu).
DV (t) = (VE() + 4 (VI (TS (5(6)) ) Ok o

i () + & (4)a ()T (2(t) = 0.



30

o /M(vAqu(Vu,Vv))dVg: / o(Vu,n) do,.

o0
d b k—1
5| L= —/ (V.Dyy')dt=) (V(ai), Aiy)+(V (6),7' (b)) —(V (a), 7' (a)), where (ag, - - - , ax)
s=0 @ =1

is an admissible partition for I, and Ay’ is the jump in v/ at t = a;.

(Ambrose) Suppose (1\7 , g) and (M, g) are connected Riemannian manifolds with M complete,

and 7: M — M is a local isometry. Then M is complete and 7 is a smooth covering map.

(Cartan-Hadamard) If (1, g) is a complete, connected Riemannian manifold with nonpositive
sectional curvature, then for every point p € M, the map exp,,: T,M — M is a smooth covering
map. Thus the universal covering space of M is diffeomorphic to R", and if M is simply connected,
then M itself is diffeomorphic to R".

A complete, simply connected Riemannian manifold with nonpositive sectional curvature is called

a Cartan—-Hadamard manifold.

Suppose M is complete and ~y: [0,00) — M is a unit-speed geodesic from p. For any a > 0, v(a)
is the cut point of p if and only if 7((y ,) is minimizing and at least one of the following statements
holds:

- 7(a) is conjugate to p along .

— There exists another geodesic segment from p to y(a).
If ¢ € Cut(p) and d(p, q) = inj,, then at least one of the following statements holds:

— There exists a geodesic segment y from p to ¢ such that ¢ is conjugate to p along ~.
— There exists another geodesic segment o from p to g so that 7/ (¢) = —¢’(¢), where ¢ = d(p, q).

Suppose c: [0,a] — M is a geodesic segment with c(a) ¢ Cut(c(0)), and J(¢) is a normal Jacobi
field along ¢ with J(0) = 0. Then for r(x) = f(p,x), we have

v2r|c(t)(‘](t)v J(t)) = <J(t)> J/(t)>v te (O,CL}.

On a Hadamard manifold, f,(z) == 1d®(p, z) is strictly convex, i.e., V> f, > 0. (In fact, V*f,, > g.)

On a Riemannian manifold, V?f, = g at p.

(Cartan’s Fixed Point Theorem) Let (M, g) be a Hadamard manifold. If ¢: M — M is an isometry
and " = Id for some k, then ¢ has a fixed point.

(Cartan’s Torsion Theorem) Suppose (M, g) is a complete, connected Riemannian manifold with
nonpositive sectional curvature. Then 7 (M) is torsion-free. In particular, if 71 (M) # {e}, then
|71 (M)] = oc.

For an algebraic curvature tensor T, if T'(X,Y, X,Y) = 0forany X, Y, thenT = 0. 0 =T(X,Y +
Z,X,Y+2)=2T(X,Y,X,2). @0 = T(X + W,Y, X + W,2) = T(X,Y,W,2Z) + TW,Y, X, Z).
® Add together T(Y, W, X, Z) = T(X,Y,W, 2Z), T(Y,W, X, Z) = T(W,X,Y, Z), T(Y,W, X, Z) =
T(Y,W, X, Z) and use the first Bianchi identity to get 37'(Y, W, X, Z) = 0.
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¢ (Index Lemma) Suppose (¢) is not conjugate to (0) for any ¢t € (0, a]. Let J be a normal Jacobi
field and V a piecewise smooth vector field along v such that (V,~') = 0. If J(0) = V(0) = 0 and
J(a) =V (a), then I(J, J) < I(V,V), with equality holds if and only if V = J.

o (171%) (a) = (|J1?)'(0) = 2I(J, J), where J is a Jacobi field along a geodesic v: [0,a] — M.

¢ (Rauch’s Comparison Theorem) Let (M",g) and (J\NJ " f]) be complete Riemannian manifolds,

~v:[0,a] — M and 7: [0,a] — M be unit-speed geodesics. If .J and .J are Jacobi fields along v and
7, respectively, satisfying

- J(0) = J(0) =0;
= (J(0),7'(0), = (T(0),7(0)) ;
- 1J'(0)| =

g
— 7 has no conjugate points;

7

J0);

- K (o) < [N(;Y(t) (6) for all ¢ € [0,a], where ¢ and ¢ are planes containing ~'(¢) and 7'(t),
respectively;

then |.J(t)| > ‘j(t)‘ for all ¢ € [0, al.
o (Special Case of Rauch’s Comparison) ® ~ secy; < secy;, @ ~» normal Jacobi fields.

o Suppose (M, g) is a Riemannian manifold with constant sectional curvature k, and + is a unit-speed
geodesic in M. The normal Jacobi fields along « vanishing at ¢t = 0 are J(t) = csi(t)E(t), where
E is any parallel unit vector field along v, ¢ is an arbitrary constant. Moreover, J'(0) = ¢E(0) and
[T(@)] = [sk(t)]|T(0)]-

o Ifsec < kon ]B(p, %) for k£ > 0, then dexpp is non-singular on IB%(O, %) Cc T,M.

o Let (M",g) and (M", g) be two Riemannian manifolds with sup K(o) < inf K(5). Fixp € M,

p € M, and an isometry i: T, M — T[;M . Take r < inj, such that d exp,, is non-singular on B(0, )
and set ® = exp; oi o epo;1 |B(p,r)- If c: [0,a] — B(p,r) is a smooth curve and ¢(s) = ®(c(s)), then
L(c) > L(¢).

o go = dr? + g", where g" is the metric on {r} x S"~1.
n—1 1 epr
(0,a) xS —— B(0,a) \ {0} —= B(p,a) C M
g2 =g g1 =exp, g g
— If secys > k, then go < dr? + s2(r)ggn-1.

— If secar < k, then go > dr? + s7.(7)ggn-1.

o Given a Riemannian manifold (N, h), we consider the warped product metric g = dr®+ f*(r)h
on M = (0,+00) x N, where f(r): (0,+00) — R is a positive smooth function. In the following,
we use indices i, j, k, [ to denote the local coordinates on N. Superscripts g and h will be used to

indicate the quantities computed with respect to the metrics g and h, respectively.

~ R%yy = ()R — P20 (0O (hirhg — hahyi).
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- Rigjkr =0and Rigrjr =—f(r)f"(r)hsj.

= R = Rl — (0 =2 0 + £ () -
- Rf, = 0and B, = ~(n — D[] 71" (r).

, , Royror —sg(r)s)(r
o s(r) = —ksp(r), [sk(r)]> = 1 — ks2(r). Thus, K(dp,0,) = ngg 5= ’CS(Q()T)’@() =k
(s k
Ro,0,0,0,  sp(r) — sp(r)[sp(r)]> 1 —[s}(r)]? Sk , 2
K L) = = = =k If p=—, th =14+ kp°.
(8917692) |891|2|892‘2 Si(r) si(r) P S;C enp + 14

¢ (Hessian Comparison) If sec); < k, then for ¢ € M\ ({p}UCut(p)) and X € T, M with (X, Vr) =0,

we have ,

Vol (X,x) 2 0 xp.
sk(r)

Note that V?r(Vr, Vr) = 0 (since 7(c(t)) =t = (Vr,d) =1 = V?r(d,) =0).

o (Laplacian Comparison) If Ric > (n — 1)kg, then for ¢ € M \ ({p} U Cut(p)), we have Ar|, <

NS
(-2,

o Innormal coordinates, 2" = {|z| = 7} and g;;(0) = J;;, with volume element y/det(g;;) dz' A--- A

m(r
da". Restricting on X", we get lim (r)
r—0+ wnfl’l"nil

= 1, where m(r) is the volume of X" and w,,_ is

the volume of S"~! ¢ R™.

¢ (Volume Comparison) On a complete Riemannian manifold (A", g) with Ric > (n—1)kg, for any

pe M, Bp,r)<V(nkr) = / p(s)ds = wn_l/ s;1(s) ds, the volume of a ball of radius r
0

0
in the model space with constant sectional curvature k.

¢ (Relative Volume Comparison, Bishop-Gromov) On a complete Riemannian manifold (M™", g)
- B(p,7)| B(p, 2r)| _ V(n,k,2r)
h Ric > (n — 1)kg, ——*~ < <
with Rie = (0 = DR, 1/, 3 ) B.r)l S Viukr)
C(n,k,A) where r < A.

is decreasing for r > 0. In particular,

¢ (Strong Maximum Principle) Let (), g) be connected and complete, and f: (M, g) — R be contin-

uous with A f > 0 everywhere in the barrier sense. If f has a global maximum, then f is constant.

o (Elliptic Regularity) Let f: (M,g) — R be continuous with Af > 0 and Af < 0 in the barrier
sense. Then f is smooth and A f = 0 in the classical sense.

o (Splitting Lemma) If V2f = 0 and |V f| = 1, then (M™,g) = (N"" !, gn) x (R, gE).

o (Laplacian Comparison, Calabi) Suppose (M", g) is complete and Ric > (n — 1)kg. Then Ar <

/
(n _ 1) Sk (T)
sk ()
o (Splitting Theorem, Cheeger-Gromoll) Let (M", g) be complete, noncompact and suppose Ric >
0. If M contains a geodesic line, then (M™, g) splits off a line: (M",g) = (N""*,gn) x (R, gg).

in the barrier sense everywhere for r(z) = d(z, p).

o S? x S! does not admit a Ricci-flat metric. (If it does, then its universal cover (83 x R, g) is Ricci-
flat and contains a geodesic line. Then (S® x R, ) = (N®,gn) x (R, gg) with (N?, gn) (Ricci-)flat.
Since N is simply connected, (N?,gy) = (R®, gg). Thus, (S* x R,§) = (R*, gg), a contradiction.)

< (vayw — Vvaw — V[X?y]w)(Z) = —w(Rm(X,Y)Z); Viijk—Vjviwk = _Rijk;lwl (: Rijklwl
in normal coordinates).



o A(du) = d(Au) 4+ Ric(Vu) as 1-forms, where Ric(Vu)(X) := Ric(Vu, X).

o (Bochners’ formula) A|Vu|? = 2‘V2u’2 + 2Ric(Vu, Vu) + 2(VAu, Vu).

¢ (Structure Theorem, Cheeger—Gromoll) Suppose (M", g) is compact with Ric > 0. Then
— The universal cover (]Tj , g) = (N, gn) x (R*, gg), where N is compact.

- The isometry group Iso (M, g) =Iso(N, gn) x Iso(R", gg).

o Ly(A(Xy, -+, Xg) = (LvA)( Xy, -, Xk) + ALy Xy, X))+ -+ AX1, -+, Ly Xg).
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