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Homework 1

Exercise 1 The sphere

Sn =

{(
x1, · · · , xn+1

)
∈ Rn+1 :

n+1∑
i=1

(xi)2 = 1

}

is an embedded submanifold of Rn+1 with the induced metric gSn . Consider the coordinate chart U =

Sn \ {(0, · · · , 0, 1)}, given by the stereographic projection from the north pole:

φ
(
x1, · · · , xn+1

)
:=

(
x1

1− xn+1
, · · · , xn

1− xn+1

)
.

Write down the metric gSn in this chart.

Solution The inverse map φ−1 : Rn → Sn \ {(0, · · · , 0, 1)} is given by

φ−1
(
u1, · · · , un

)
=

(
2u1

|u|2 + 1
, · · · , 2un

|u|2 + 1
,
|u|2 − 1

|u|2 + 1

)
.

Then, we obtain the following coordinate representation of gSn in stereographic coordinates:

(
φ−1

)∗
gSn =

n∑
j=1

(
d
(

2uj

|u|2 + 1

))2

+

(
d
(
|u|2 − 1

|u|2 + 1

))2

.

If we expand each of these terms individually, we get

d
(

2uj

|u|2 + 1

)
=

2duj

|u|2 + 1
− 4uj

(|u|2 + 1)
2

n∑
i=1

ui dui

and

d
(
|u|2 − 1

|u|2 + 1

)
= −2d

(
1

|u|2 + 1

)
=

4

(|u|2 + 1)
2

n∑
i=1

ui dui.

Therefore,

(
φ−1

)∗
gSn =

4

(|u|2 + 1)
2

n∑
j=1

(
duj

)2 − 16

(|u|2 + 1)
3

(
n∑

i=1

ui dui

)2

+
16|u|2

(|u|2 + 1)
4

(
n∑

i=1

ui dui

)2

+
16

(|u|2 + 1)
4

(
n∑

i=1

ui dui

)2

=
4

(|u|2 + 1)
2

n∑
j=1

(
duj

)2
=

4

(|u|2 + 1)
2 gE ,

where gE is the Euclidean metric on Rn.

Exercise 2 Consider the connection∇defined onR3 so that with respect to the standard frame e1, e2, e3,

∇eiej = ei × ej ,
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where × denotes the cross product. Find the vector field X which is the parallel transport of e2 along
the e1-axis.

Solution Write X as a linear combination of the standard basis vectors:

X(t) = a(t)e1 + b(t)e2 + c(t)e3,

where t is the coordinate along the e1-axis and a(t), b(t), c(t) are functions of t. Then, the parallel trans-
port equation is

0 = ∇e1(a(t)e1 + b(t)e2 + c(t)e3)

= a′(t)e1 + a(t)∇e1e1 + b′(t)e2 + b(t)∇e1e2 + c′(t)e3 + c(t)∇e1e3

= a′(t)e1 + b′(t)e2 + c′(t)e3 + b(t)e3 − c(t)e2.

Therefore, we have the system of differential equations

a′(t) = 0, b′(t) = c(t), c′(t) = −b(t),

with the initial condition X(0) = e2, that is,

a(0) = 0, b(0) = 1, c(0) = 0.

Solving this system, we find that

a(t) = 0, b(t) = cos t, c(t) = − sin t,

and hence
X(t) = (cos t)e2 − (sin t)e3.

In the following, all connections are Levi-Civita connections with respect to the given metrics.

Exercise 3 Let Nn be an embedded submanifold of Mm. Given a metric ḡ on M with Levi-Civita
connection ∇, we define the connection ∇ on TN by

∇XY = πTN

(
∇XY

)
for any vector fields X,Y ∈ Γ(TN), where πTN denotes the orthogonal projection onto TN . Prove that
∇ is the Levi-Civita connection of the induced metric g = ḡ|N on N .

Proof For any vector fields X,Y ∈ Γ(TN), we can extend them smoothly to an open neighborhood of
N inM and still denote them byX,Y . It is immediate from the definition that∇XY is linear over C∞(M)

in X and over R in Y , so to show that ∇ is a connection, only the product rule needs to be checked. Let
f ∈ C∞(M), and let f̃ be an extension of f to an open neighborhood of N in M . Then f̃Y is a smooth
extension of fY to an open neighborhood of N , so

∇X(fY ) = πTN

(
∇X(fY )

)
= πTN

((
Xf̃
)
Y
)
+ πTN

(
f̃∇XY

)
= (Xf)Y + f∇XY.

Since
∇XY −∇Y X − [X,Y ] = πTN

(
∇XY −∇Y X − [X,Y ]

)
= πTN (0) = 0,
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we have that ∇ is torsion-free. Finally, to see that ∇ is compatible with g, we compute

∇X〈Y, Z〉 = ∇X〈Y, Z〉 =
〈
∇XY, Z

〉
+
〈
Y,∇XZ

〉
= 〈∇XY, Z〉+ 〈Y,∇XZ〉

for any vector fields X,Y, Z ∈ Γ(TN). Therefore, ∇ is the Levi-Civita connection of g = ḡ|N .

Exercise 4 Let (M, g) and (N,h) be Riemannian manifolds. Show that the Levi-Civita connection ∇ of
(M ×N, g × h) satisfies

∇X1+X2
(Y1 + Y2) = ∇g

X1
Y1 +∇h

X2
Y2

for all vector fields X1, Y1 ∈ Γ(TM) and X2, Y2 ∈ Γ(TN).

Proof Note that vector fields from TM and TN are orthogonal, with vanishing Lie brackets between
them. Therefore, for any Z1 ∈ Γ(TM) and Z2 ∈ Γ(TN), we have by Koszul’s formula that

2〈∇X1+X2(Y1 + Y2), Z1 + Z2〉 =(X1 +X2)〈Y1 + Y2, Z1 + Z2〉+ (Y1 + Y2)〈Z1 + Z2, X1 +X2〉

− (Z1 + Z2)〈X1 +X2, Y1 + Y2〉 − 〈Y1 + Y2, [X1 +X2, Z1 + Z2]〉

− 〈Z1 + Z2, [Y1 + Y2, X1 +X2]〉+ 〈X1 +X2, [Z1 + Z2, Y1 + Y2]〉

=X1〈Y1, Z1〉+X2〈Y2, Z2〉+ Y1〈Z1, X1〉+ Y2〈Z2, X2〉

− Z1〈X1, Y1〉 − Z2〈X2, Y2〉 − 〈Y1, [X1, Z1]〉 − 〈Y2, [X2, Z2]〉

− 〈Z1, [Y1, X1]〉 − 〈Z2, [Y2, X2]〉+ 〈X1, [Z1, Y1]〉+ 〈X2, [Z2, Y2〉

=2
〈
∇g

X1
Y1, Z1

〉
+ 2
〈
∇h

X2
Y2, Z2

〉
=2
〈
∇g

X1
Y1 +∇h

X2
Y2, Z1 + Z2

〉
.

Since this holds for all Z1 ∈ Γ(TM) and Z2 ∈ Γ(TN), the desired result follows.

Exercise 5 Let F be an isometry of (Mn, g).

(1) Show that dF (∇XY ) = ∇dF (X) dF (Y ) for any vector fields X,Y ∈ Γ(TM).

(2) Use this fact to show that any isometry F of (Rn, gE) has the form F (x) = Ox+ b, where O ∈ O(n)

and b ∈ Rn.

Proof (1) We shall show that

∇XY = (dF )−1
(
∇dF (X) dF (Y )

)
, ∀X,Y ∈ Γ(TM). (5–1)

By the uniqueness of the Levi-Civita connection, it suffices to show that the right-hand side of
(5–1) defines a connection that is compatible with g and torsion-free.

� It is a connection because it satisfies the following properties:

– For f1, f2 ∈ C∞(M) and X1, X2 ∈ Γ(TM),

(dF )−1
(
∇dF (f1X2+f2X2) dF (Y )

)
=(dF )−1

(
∇(f1◦F−1) dF (X1)+(f2◦F−1) dF (X2) dF (Y )

)
=(dF )−1

((
f1 ◦ F−1

)
∇dF (X1) dF (Y ) +

(
f2 ◦ F−1

)
∇dF (X2) dF (Y )

)
=f1(dF )−1

(
∇dF (X1) dF (Y )

)
+ f2(dF )−1

(
∇dF (X2) dF (Y )

)
.
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– For a1, a2 ∈ R and Y1, Y2 ∈ Γ(M),

(dF )−1
(
∇dF (X) dF (a1Y1 + a2Y2)

)
=(dF )−1

(
a1∇dF (X) dF (Y1) + a2∇dF (X) dF (Y2)

)
=a1(dF )−1

(
∇dF (X) dF (Y1)

)
+ a2(dF )−1

(
∇dF (X) dF (Y2)

)
.

– For f ∈ C∞(M),

(dF )−1
(
∇dF (X)(dF (fY ))

)
=(dF )−1

(
∇dF (X)

((
f ◦ F−1

)
dF (Y )

))
=(dF )−1

((
f ◦ F−1

)
∇dF (X) dF (Y ) +

(
dF (X)

(
f ◦ F−1

))
dF (Y )

)
=f(dF )−1

(
∇dF (X) dF (Y )

)
+ (Xf)(dF )−1 ◦ dF (Y )

=f(dF )−1
(
∇dF (X) dF (Y )

)
+ (Xf)Y.

� To see that it is compatible with g, we use the fact that F is an isometry:

〈
(dF )−1

(
∇dF (X) dF (Y )

)
, Z
〉
+
〈
Y, (dF )−1

(
∇dF (X) dF (Z)

)〉
=
〈
∇dF (X) dF (Y ),dF (Z)

〉
+
〈
dF (Y ),∇dF (X) dF (Z)

〉
=dF (X)〈dF (Y ),dF (Z)〉

=X〈Y, Z〉.

� To see that it is torsion-free, we use the naturality of the Lie bracket:

(dF )−1
(
∇dF (X) dF (Y )

)
− (dF )−1

(
∇dF (Y ) dF (X)

)
=(dF )−1

(
∇dF (X) dF (Y )−∇dF (Y ) dF (X)

)
=(dF )−1[dF (X),dF (Y )]

=[X,Y ].

Therefore, the right-hand side of (5–1) is exactly the Levi-Civita connection of g, and hence (5–1)
holds.

(2) Connections in Rn are given by the directional derivatives, so by part (1) we have

0 = dF (D∂i
∂j) = DdF (∂i) dF (∂j) = Jac(dF (∂j))dF (∂i), ∀i, j,

which implies that
Jac(dF (∂j)) Jac(F ) = 0.

Since F is an isometry, the Jacobian Jac(F ) is invertible at each point, we obtain

Jac(dF (∂j)) = 0, ∀j.

Note that dF (∂j) is the j-th column of Jac(F ), so Jac(F ) is a constant matrix. Therefore, F is an
affine transformation of the form F (x) = Ax+ b for some A ∈ GL(n,R) and b ∈ Rn. Finally, since
F is an isometry, A must be orthogonal.
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Exercise 6 Show that any isometry F of (Sn, gSn) can be given by F (x) = Ox, where O ∈ O(n+1) and
x ∈ Rn+1 with |x| = 1.

Proof We begin by noting that any F ∈ Iso(Sn, gSn) preserves the Rn+1-inner product of unit vectors,
that is,

F (u) · F (v) = u · v, ∀u, v ∈ Sn. (6–1)

Indeed, the inner product u·v can be interpreted as the cosine of the Riemannian distance between u and
v on Sn, and similarly for F (u) ·F (v). Therefore, by the isometry invariance of the Riemannian distance
function, (6–1) holds.

Now, let us consider the map

F̃ : Rn+1 → Rn+1, p 7→

0, if p = 0,

|p|F
(

p
|p|

)
, if p 6= 0.

It is immediate that F̃ preserves the Rn+1-inner product:

F̃ (u) · F̃ (v) = |u||v|F
(

u

|u|

)
· F
(

v

|v|

)
= |u||v| u · v

|u||v|
= u · v, ∀u, v ∈ Rn+1 \ {0}.

Then, for any λ ∈ R and any u, v ∈ Rn+1, we compute∣∣∣F̃ (λu+ v)− λF̃ (u)− F̃ (v)
∣∣∣2 =

〈
F̃ (λu+ v)− λF̃ (u)− F̃ (v), F̃ (λu+ v)− λF̃ (u)− F̃ (v)

〉
=
〈
F̃ (λu+ v), F̃ (λu+ v)

〉
+ more such terms

= 〈λu+ v, λu+ v〉+ more such terms

= |λu+ v − λu− v|2

= 0,

which shows that F̃ is linear, and is given by F (x) = Ox for some O ∈ GL(n+ 1,R).
Finally, since F is the restriction of F̃ to Sn, the result follows.

Exercise 7 Let (M, g) be a Riemannian manifold and f ∈ C∞(M). Show that

Lgrad fg = 2∇2f,

where L denotes the Lie derivative.

Proof By the product rule for the Lie derivative, for any X,Y ∈ Γ(TM), we have

(
Lgrad fg

)
(X,Y ) = grad f(〈X,Y 〉)− 〈[grad f,X], Y 〉 − 〈X, [grad f, Y ]〉.

Since ∇ is compatible with g, the first term is

grad f(〈X,Y 〉) =
〈
∇grad fX,Y

〉
+
〈
X,∇grad fY

〉
.

And since ∇ is torsion-free, the remaining terms expand as

〈[grad f,X], Y 〉 =
〈
∇grad fX,Y

〉
− 〈∇X grad f, Y 〉,
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〈X, [grad f, Y ]〉 =
〈
X,∇grad fY

〉
− 〈X,∇Y grad f〉.

Combining these, we obtain

(
Lgrad fg

)
(X,Y ) = 〈∇X grad f, Y 〉+ 〈X,∇Y grad f〉. (7–1)

Meanwhile, the Hessian of f is computed as

(
∇2f

)
(X,Y ) = ∇X(∇Y f)−∇∇XY f = X(Y f)− (∇XY )f

= X(〈grad f, Y 〉)− 〈grad f,∇XY 〉

= 〈∇X grad f, Y 〉.

(7–2)

Since ∇2f is a (0, 2)-symmetric tensor, the result follows from (7–1) and (7–2).

Exercise 8 Let (Mn, g) be a Riemannian manifold with Laplace operator ∆. For the conformal metric
ḡ = e−2fg, prove that

∆ḡφ = e2f (∆gφ− (n− 2)〈grad f, gradφ〉).

Proof Let (xi) be any smooth local coordinates on an open subset of M . Then, for any φ ∈ C∞(M),

∆ḡφ =
1√

det ḡ
∂

∂xi

(
ḡij
√

det ḡ ∂φ

∂xj

)
=

1√
e−2nf det g

∂

∂xi

(
e2fgij

√
e−2nf det g ∂φ

∂xj

)
=

enf√
det g

∂

∂xi

(
e(2−n)fgij

√
det g ∂

∂xj

)
=

enf√
det g

{(
(2− n)

∂f

∂xi
e(2−n)f

)(
gij
√

det g ∂φ

∂xj

)
+ e(2−n)f ∂

∂xi

(
gij
√

det g ∂φ

∂xj

)}
=

(
(2− n)

∂f

∂xi
e2f
)(

gij
∂φ

∂xj

)
+

e2f√
det g

∂

∂xi

(
gij
√

det g ∂φ

∂xj

)
= e2f

(
∆gφ− (n− 2)gij

∂f

∂xi

∂φ

∂xj

)
= e2f (∆gφ− (n− 2)〈grad f, gradφ〉).

Homework 2

In the following, connections are assumed to be Levi-Civita connections by default.

Exercise 9 Let (Mn, g) be a Riemannian manifold. Prove that for any p ∈ M , the closure of the geodesic
ball B(p, r) = {x ∈ M : dg(p, x) < r} is

{x ∈ M : dg(p, x) ⩽ r}.

Proof (1) For any x with dg(p, x) > r, we can find a geodesic ball centered at x which does not
intersect B(p, r). This implies that x /∈ B(p, r) and hence B(p, r) ⊂ {x ∈ M : dg(p, x) ⩽ r}. Here
we use the fact that the metric topology induced by dg is the same as the manifold topology.
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(2) Suppose x ∈ M satisfies dg(p, x) ⩽ r. For any n ⩾ 1, we can take xn ∈ B
(
x, 1

n

)
∩ B(p, r), for

otherwise the triangle inequality would imply that dg(p, x) > r. This shows that x ∈ B(p, r).

Exercise 10 Let (Mn, g) be a Riemannian manifold. Prove that for any p ∈ M , there exists an open
neighborhood U of p and n vector fields E1, · · · , En ∈ Γ(TU), orthonormal at each point of U , such that

∇Ei
Ej(p) = 0.

Proof Let U be a normal neighborhood of p. For each q ∈ U , there is a geodesic γq parametrized by arc
length from p to q. Take an orthonormal basis {v1, · · · , vn} of TpM and let {V1, · · · , Vn} be their parallel
transport along γq . For each j = 1, · · · , n, define the smooth vector field Ej on U by

Ej(q) = Vj(dg(p, q)),

where dg is the Riemannian distance function. Then the n vector fields E1, · · · , En are orthonormal at
each point of U . For each i = 1, · · · , n, let γi(s) be the geodesic such that γi(0) = p and γ′

i(0) = Ei(p).
Then

∇Ei
Ej(p) = ∇γ′

i(0)
Ej =

D(Ej ◦ γi)
ds

∣∣∣∣∣
s=0

.

Since Ej ◦ γi(s) = Vj(d(p, σo(s))) = Vj(s) is parallel along γi, we have

∇EiEj(p) =
DVj

ds (0) = 0.

Exercise 11 Let Mn be a smooth manifold (Hausdorff and paracompact). Prove that there exists a
countable covering {Uα} of M such that for any elements Uα1

, Uα2
, · · · , Uαk

in the covering, the inter-
section

k⋂
i=1

Uαi

deformation retracts to a point.

Proof Endow M with a Riemannian metric. Every point in M has a strongly convex neighborhood (i.e.,
a neighborhood U in which any two points can be joined by a unique minimizing geodesic contained in
U ), and the intersection of any two such neighborhoods is again strongly convex. For any strongly convex
neighborhood U of p ∈ M , we can connect any point q ∈ U to p by a unique minimizing geodesic in U .
Hence, using normal coordinates, we see that any point in exp−1

p (U) can be connected to 0 by a straight
line. This implies that exp−1

p (U) is a star-shaped neighborhood of 0 in TpM , which is contractible. Since
U is diffeomorphic to exp−1

p (U), we conclude thatU is contractible. Finally, sinceM is second-countable,
and hence Lindelöf, we can cover it with a countable collection of strongly convex neighborhoods {Uα},
which gives us the desired covering.

Exercise 12 Let (G, g) be a Lie group with a bi-invariant metric g.

(1) Prove that
∇Y X =

1

2
[Y,X]

for any X,Y ∈ g, where the elements of g are identified with left-invariant vector fields on G.
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(2) Prove that any geodesic ϕ(t) from the identity element e is defined for any t ∈ R and satisfies

ϕ(t+ s) = ϕ(t) · ϕ(s)

for any t, s ∈ R.

Proof (1) Since g is bi-invariant, the inner product of any two left-invariant vector fields is constant.
In particular, Koszul’s formula simplifies to

〈∇XY, Z〉 = 1

2
(〈[X,Y ], Z〉 − 〈[X,Z], Y 〉 − 〈[Y, Z], X〉),

where X,Y, Z are left-invariant vector fields. Recall that for the adjoint representation ad : g →
gl(g) := T1 GL(g), we have ad(X)Y = [X,Y ]. Therefore,

〈∇XY, Z〉 = 1

2
(〈[X,Y ], Z〉 − 〈ad(X)Z, Y 〉 − 〈ad(Y )Z,X〉)

=
1

2
(〈[X,Y ], Z〉 − 〈ad∗(X)Y, Z〉 − 〈ad∗(Y )X,Z〉)

=
1

2
〈[X,Y ]− ad∗(X)Y − ad∗(Y )X,Z〉.

Since Z is an arbitrary left-invariant vector field, we have

∇XY =
1

2
([X,Y ]− ad∗(X)Y − ad∗(Y )X). (12–1)

Moreover, by definition,

ad(X)Y =
d
dt

∣∣∣∣∣
t=0

Ad(exp(tX))Y.

Hence, we have

0 =
d
dt

∣∣∣∣∣
t=0

〈Y, Z〉

=
d
dt

∣∣∣∣∣
t=0

〈(
Lexp(tX)

)
∗

(
Rexp(−tX)

)
∗Y,
(
Lexp(tX)

)
∗

(
Rexp(−tX)

)
∗Z
〉

=
d
dt

∣∣∣∣∣
t=0

〈Ad(exp(tX))Y,Ad(exp(tX))Z〉

=

〈
d
dt

∣∣∣∣∣
t=0

Ad(exp(tX))Y, Z

〉
+

〈
Y,

d
dt

∣∣∣∣∣
t=0

Ad(exp(tX))Z

〉
= 〈ad(X)Y, Z〉+ 〈Y, ad(X)Z〉

= 〈ad(X)Y + ad∗(X)Y, Z〉.

Since Y and Z are two arbitrary left-invariant vector fields, we find that

ad(X) = − ad∗(X).

林晓烁 Spring 2025



9

With this, we obtain from (12–1) that

∇XY =
1

2
([X,Y ] + ad(X)Y + ad(Y )X) =

1

2
([X,Y ] + [X,Y ] + [Y,X]) =

1

2
[X,Y ].

(2) We need the following

Lemma For a Lie group G with a bi-invariant metric g, the inversion map i : G → G given by
i(φ) = φ−1 is an isometry.
Proof of the lemma Note that for any x ∈ G, we have

Rφ−1 ◦ i ◦ Lφ−1(x) =
(
φ−1x

)−1
φ−1 = x−1φφ−1 = i(x).

Hence, using the chain rule, we get

diφ = d
(
Rφ−1

)
e
◦ die ◦ d

(
Lφ−1

)
φ
.

Since the differential of i at the identity element e is given by die(X) = −X , we have

di = −(dRφ)
−1 ◦ (dLφ)

−1
.

Thus, by the bi-invariance of the metric, for any X,Y ∈ TφG,

〈di(X),di(Y )〉φ−1 =
〈
−(dRφ)

−1 ◦ (dLφ)
−1

(X),−(dRφ)
−1 ◦ (dLφ)

−1
(Y )
〉
φ−1

= 〈X,Y 〉φ.

This shows that i is an isometry.

By the lemma, the inversion map i is an isometry, so i ◦ ϕ(t) = ϕ(t)−1 is a geodesic. And since
die(X) = −X , by the uniqueness of geodesics, we have ϕ(−t) = ϕ(t)−1, i.e., ϕ(t)ϕ(−t) = e. For
small t0, if we define ϕ̃(t) = ϕ(t0)ϕ(t), then ϕ̃(t) is a geodesic with ϕ̃(0) = ϕ(t0) and ϕ̃(−t0) = e.
By the uniqueness of short geodesics, we must have ϕ̃(t) = ϕ(t0 + t), that is,

ϕ(t0)ϕ(t) = ϕ(t0 + t), (12–2)

for all t and t0 small enough. By extending ϕ beyond any interval [0, l] via ϕ(t+ s) := ϕ(l)ϕ(s), we
see that ϕ(t) can be extended to a geodesic for all t ∈ R. And by a standard argument (of chopping
into “small pieces”), from (12–2), we indeed have

ϕ(t+ s) = ϕ(t) · ϕ(s), ∀t, s ∈ R.

Exercise 13 Let (Mn, g) be a Riemannian manifold. We introduce a Riemannian metric g̃ on the tangent
bundle TM as follows. Fix (p, v) ∈ TM , and consider curves α(t) = (p(t), v(t)) and β(t) = (q(t), w(t))

on TM such that α(0) = β(0) = (p, v). Then we define at (p, v)

g̃(α′(0), β′(0)) = g(p′(0), q′(0)) + g

(
Dv

dt (0),
Dw

dt (0)

)
.

(1) Prove that the metric g̃ is well-defined and smooth.
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(2) A vector field V on TM is called horizontal if it is orthogonal to the fiber TpM . A curve (p(t), v(t))

in TM is horizontal if its tangent vector is horizontal for any t. Prove that a curve (p(t), v(t)) in
TM is horizontal if and only if the vector field v(t) is parallel along p(t) in M .

(3) Prove that the geodesic field G is a horizontal vector field on TM .

(4) Prove that the trajectories of the geodesic field G are geodesics on TM with respect to g̃.

(5) Prove that with respect to g̃, the geodesic field G satisfies

div(G) = 0.

(6) Prove that the geodesic flow preserves the Riemannian volume measure of TM .

Proof (1) The expression of g̃ is clearly coordinate independent. Hence, we may let
(
x1, · · · , xn

)
be local coordinates on M around p, and let

(
x1, · · · , xn, y1, · · · , yn

)
be the corresponding natural

coordinates on TM near (p, v). Then we have

Dvi

dt (0) =
dvi
dt (0) + Γi

jkv
k(0)

dpj
dt (0),

Dwi

dt (0) =
dwi

dt (0) + Γi
jkw

k(0)
dqj
dt (0).

(13–1)

Therefore, g̃ is well-defined in the sense that it depends only on α′(0) and β′(0), and not on the
choice of curves. Moreover, with (13–1), we see that g̃ is smooth. Finally, to check that g̃ is a
Riemannian metric, we only need to show that g̃(α′(0), α′(0)) = 0 implies α′(0) = 0. This is clear
by taking p′(0) = 0 in (13–1), which then yields v′(0) = 0.

(2) A curve α is contained in a fiber, exactly if π◦α is constant, which happens exactly if α′(t) ∈ Ker dπ
for all t. Hence, the tangent vectors parallel to the fiber are exactly those where dπ(α′(t)) = 0. Such
tangent vectors are those which can be realized as derivatives of paths (p, w(t)) where p is a point,

and w(t) is a path in TpM . Since TpM is a vector space, we have Dw

dt = w′. Then, for any curve
(p(t), v(t)) in TM , its inner product with the tangent vector of (p, w(t)) at t = t0 is given by

〈p′(t0), 0〉+
〈

Dv

dt (t0), w
′(t0)

〉
.

As w′(t0) is arbitrary, this is zero for all tangent vectors to the fiber if and only if Dv

dt (t0) = 0.

(3) This follows from (2) since for any geodesic γ(t), γ′(t) is parallel along γ(t).

(4) For a curve α(t) = (p(t), v(t)) in TM , we have

Length(α) =
∫ (

〈p′(t), p′(t)〉+
〈

Dv

dt (t) +
Dv

dt (t)
〉) 1

2

dt

⩾
∫
〈p′(t), p′(t)〉

1
2 dt = Length(p),

and the equality holds if and only if Dv

dt (t) ≡ 0.
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Now, suppose that γ(t) = (γ(t), γ′(t)) is a trajectory of the geodesic field G, and suppose that γ is
length-minimizing between γ(0) and γ(ε) for some ε. Then, we have

Length(γ) = Length(γ).

For any curve α(t) = (p(t), v(t)) in TM joining γ(0) and γ(ε), the curve p(t) = π ◦ α(t) joins γ(0)

and γ(ε). Since γ is length-minimizing, we have

Length(γ) = Length(γ) ⩽ Length(p) ⩽ Length(α),

so γ is length-minimizing, which implies that γ(t) is a geodesic. Since being a geodesic is a local
property, we conclude that γ(t) is a geodesic for all t.

(5) Let p ∈ M and consider a system (u1, · · · , un) of normal coordinates in an open neighborhood U

of p. The Christoffel symbols all vanish at p in this coordinate system. Therefore for X = xi ∂

∂ui
,

we have

divX(p) =

n∑
i=1

∂xi

∂ui
. (13–2)

Now let (u1, · · · , un, v1, · · · , vn), v = vj
∂

∂uj
be coordinates on TM at (q, v), where q ∈ U and

v ∈ TqM . Note that
T(p,v)TM ' Tv(TpM)⊕ π−1(p) ' TpM ⊕ TpM.

Hence the volume element of g̃ on TM at (q, v) is the volume element of the product metric g × g

on U × U at the point (q, q). Since div(G) depends only on the volume element, and by (3) G is
horizontal, we can calculate div(G) in the product metric. Since

G(ui) = vi, G(vj) = −Γj
ikv

ivk,

Since the Christoffel symbols of the product metric on U × U vanish at (p, p), by (13–2), we obtain
finally, at p,

div(G) =

n∑
i=1

∂vi

∂ui
−

n∑
j=1

∂

∂vj

 n∑
i,k=1

Γj
ikv

ivk

 = 0.

(6) By taking an orientable double cover, we may assume that TM is orientable. Then for Ω a volume
form on TM , we have

LGΩ = div(G)Ω = 0.

Therefore, the geodesic flow preserves the Riemannian volume measure of TM .
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Homework 3

In the following, connections are assumed to be Levi-Civita connections by default.

Exercise 14 Let (G, g) be a Lie group with a bi-invariant metric g. Prove that

Rm(X,Y, Z,W ) =
1

4
〈[X,Y ], [Z,W ]〉

for any X,Y, Z,W ∈ g, where the elements of g are identified with left-invariant vector fields on G.

Proof Recall from Exercise 12 (1) that ∇Y Z = 1
2 [Y, Z] for any Y, Z ∈ g, which implies that ∇Y Z is also

a left-invariant vector field. Hence, we have

0 = X〈∇Y Z,W 〉 = 〈∇X∇Y Z,W 〉+ 〈∇Y Z,∇XW 〉, ∀X,Y, Z,W ∈ g.

Then

Rm(X,Y, Z,W ) = −〈Rm(X,Y )Z,W 〉

= −
〈
∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z,W

〉
= 〈∇Y Z,∇XW 〉 − 〈∇XZ,∇Y W 〉+

〈
∇[X,Y ]Z,W

〉
=

1

4
〈[Y, Z], [X,W ]〉 − 1

4
〈[X,Z], [Y,W ]〉+ 1

2
〈[[X,Y ], Z],W 〉.

Using ad(X)Y = [X,Y ] and the fact that ad∗(X) = − ad(X), we find that

〈[Y, Z], [X,W ]〉 = 〈[Y, Z], ad(X)W 〉 = 〈ad∗(X)[Y, Z],W 〉

= 〈− ad(X)[Y, Z],W 〉 = 〈−[X, [Y, Z]],W 〉

= 〈[[Y, Z], X],W 〉,

and similarly
〈[X,Z], [Y,W ]〉 = 〈[[X,Z], Y ],W 〉.

Therefore, by the Jacobi identity, we have

Rm(X,Y, Z,W ) =
1

4
〈[[Y, Z], X],W 〉 − 1

4
〈[[X,Z], Y ],W 〉+ 1

2
〈[[X,Y ], Z],W 〉

=
1

4
〈[[Y, Z], X],W 〉+ 1

4
〈[[Z,X], Y ],W 〉+ 1

2
〈[[X,Y ], Z],W 〉

= −1

4
〈[[X,Y ], Z],W 〉+ 1

2
〈[[X,Y ], Z],W 〉+ 1

4
〈[[X,Y ], Z],W 〉

=
1

4
〈[[X,Y ], Z],W 〉

=
1

4
〈[X,Y ], [Z,W ]〉.

Exercise 15 Recall

SU(2) =

{(
z w

−w z̄

)
: (z, w) ∈ C2 and |z|2 + |w|2 = 1

}
.
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Let {X1, X2, X3} be a basis of the Lie algebra su(2) defines as

X1 =

(
i 0

0 −i

)
, X2

(
0 1

−1 0

)
, X3 =

(
0 i
i 0

)
.

Let {σ1, σ2, σ3} be the basis of left-invariant 1-forms dual to {X1, X2, X3}. Define a left-invariant metric

g = ε2σ2
1 + σ2

2 + σ2
3 ,

where ε ∈ (0, 1) is a small constant.

(1) Prove that this basis satisfies the commutation relations

[X1, X2] = 2X3, [X2, X3] = 2X1, [X3, X1] = 2X2.

(2) Prove that the connection satisfies

∇XY =
1

2
([X,Y ]− ad∗(X)Y − ad∗(Y )X)

for any X,Y ∈ su(2), where ad∗ is the adjoint of ad.

(3) Compute the sectional curvatures K(X1 ∧X2), K(X2 ∧X3) and K(X3 ∧X1).

Proof (1) Since the Lie bracket on su(2) is given by the matrix commutator, we compute

[X1, X2] =

(
i 0

0 −i

)(
0 1

−1 0

)
−

(
0 1

−1 0

)(
i 0

0 −i

)
= 2X3,

[X2, X3] =

(
0 1

−1 0

)(
0 i
i 0

)
−

(
0 i
i 0

)(
0 1

−1 0

)
= 2X1,

[X3, X1] =

(
0 i
i 0

)(
i 0

0 −i

)
−

(
i 0

0 −i

)(
0 i
i 0

)
= 2X2.

(2) Since g is left-invariant, the inner product of any two left-invariant vector fields is constant. In
particular, Koszul’s formula simplifies to

〈∇XY, Z〉 = 1

2
(〈[X,Y ], Z〉 − 〈[X,Z], Y 〉 − 〈[Y, Z], X〉), ∀X,Y, Z ∈ su(2).

Using the fact that ad(X)Y = [X,Y ], we have

〈∇XY, Z〉 = 1

2
(〈[X,Y ], Z〉 − 〈ad(X)Z, Y 〉 − 〈ad(Y )Z,X〉)

=
1

2
(〈[X,Y ], Z〉 − 〈ad∗(X)Y, Z〉 − 〈ad∗(Y )X,Z〉)

=
1

2
〈[X,Y ]− ad∗(X)Y − ad∗(Y )X,Z〉.

Since Z ∈ su(2) is arbitrary, we obtain the desired formula.

(3) The inner products between the basis vectors are given by

〈X1, X1〉 = ε2, 〈X2, X2〉 = 1, 〈X3, X3〉 = 1,
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〈X1, X2〉 = 〈X2, X3〉 = 〈X3, X1〉 = 0.

Then, to use the result from (2), we need to compute ad∗(Xi)Xj . With the help of the commutation
relations from (1), we obtain

〈ad∗(X1)X2, X1〉 = 〈X2, ad(X1)X1〉 = 〈X2, [X1, X1]〉 = 0,

〈ad∗(X1)X2, X2〉 = 〈X2, ad(X1)X2〉 = 〈X2, [X1, X2]〉 = 〈X2, 2X3〉 = 0,

〈ad∗(X1)X2, X3〉 = 〈X2, ad(X1)X3〉 = 〈X2, [X1, X3]〉 = 〈X2,−2X2〉 = −2,

〈ad∗(X2)X1, X1〉 = 〈X1, ad(X2)X1〉 = 〈X1, [X2, X1]〉 = 〈X1,−2X3〉 = 0,

〈ad∗(X2)X1, X2〉 = 〈X1, ad(X2)X2〉 = 〈X1, [X2, X2]〉 = 0,

〈ad∗(X2)X1, X3〉 = 〈X1, ad(X2)X3〉 = 〈X1, [X2, X3]〉 = 〈X1, 2X1〉 = 2ε2,

〈ad∗(X2)X3, X1〉 = 〈X3, ad(X2)X1〉 = 〈X3, [X2, X1]〉 = 〈X3,−2X3〉 = −2,

〈ad∗(X2)X3, X2〉 = 〈X3, ad(X2)X2〉 = 〈X3, [X2, X2]〉 = 0,

〈ad∗(X2)X3, X3〉 = 〈X3, ad(X2)X3〉 = 〈X3, [X2, X3]〉 = 〈X3, 2X1〉 = 0,

〈ad∗(X3)X2, X1〉 = 〈X2, ad(X3)X1〉 = 〈X2, [X3, X1]〉 = 〈X2, 2X2〉 = 2,

〈ad∗(X3)X2, X2〉 = 〈X2, ad(X3)X2〉 = 〈X2, [X3, X2]〉 = 〈X2,−2X1〉 = 0,

〈ad∗(X3)X2, X3〉 = 〈X2, ad(X3)X3〉 = 〈X2, [X3, X3]〉 = 0,

〈ad∗(X3)X1, X1〉 = 〈X1, ad(X3)X1〉 = 〈X1, [X3, X1]〉 = 〈X1, 2X2〉 = 0,

〈ad∗(X3)X1, X2〉 = 〈X1, ad(X3)X2〉 = 〈X1, [X3, X2]〉 = 〈X1,−2X1〉 = −2ε2,

〈ad∗(X3)X1, X3〉 = 〈X1, ad(X3)X3〉 = 〈X1, [X3, X3]〉 = 0,

〈ad∗(X1)X3, X1〉 = 〈X3, ad(X1)X1〉 = 〈X3, [X1, X1]〉 = 0,

〈ad∗(X1)X3, X2〉 = 〈X3, ad(X1)X2〉 = 〈X3, [X1, X2]〉 = 〈X3, 2X3〉 = 2,

〈ad∗(X1)X3, X3〉 = 〈X3, ad(X1)X3〉 = 〈X3, [X1, X3]〉 = 〈X3,−2X2〉 = 0.

Thus, we have

ad∗(X1)X2 = −2X3, ad∗(X2)X1 = 2ε2X3,

ad∗(X2)X3 = − 2

ε2
X1, ad∗(X3)X2 =

2

ε2
X1,

ad∗(X3)X1 = −2ε2X2, ad∗(X1)X3 = 2X2.

Also, it is easy to see that

ad∗(X1)X1 = ad∗(X2)X2 = ad∗(X3)X3 = 0.

It then follows by part (2) that

∇X1
X2 =

1

2
([X1, X2]− ad∗(X1)X2 − ad∗(X2)X1)

=
1

2

[
2X3 − (−2X3)− 2ε2X3

]
=
(
2− ε2

)
X3,

∇X2
X1 =

1

2
([X2, X1]− ad∗(X2)X1 − ad∗(X1)X2)

=
1

2

[
−2X3 − 2ε2X3 − (−2X3)

]
= −ε2X3,
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∇X2X3 =
1

2
([X2, X3]− ad∗(X2)X3 − ad∗(X3)X2)

=
1

2

[
2X1 −

(
− 2

ε2
X1

)
− 2

ε2
X1

]
= X1,

∇X3
X2 =

1

2
([X3, X2]− ad∗(X3)X2 − ad∗(X2)X3)

=
1

2

[
−2X1 −

2

ε2
X1 −

(
− 2

ε2
X1

)]
= −X1,

∇X3
X1 =

1

2
([X3, X1]− ad∗(X3)X1 − ad∗(X1)X3)

=
1

2

[
2X2 −

(
−2ε2X2

)
− 2X2

]
= ε2X2,

∇X1
X3 =

1

2
([X1, X3]− ad∗(X1)X3 − ad∗(X3)X1)

=
1

2

[
−2X2 − 2X2 − (−2ε2X2)

]
=
(
ε2 − 2

)
X2,

and
∇XiXi =

1

2
([Xi, Xi]− 2 ad∗(Xi)Xi) = 0, i = 1, 2, 3.

Now we can compute Rm(Xi)Xj as follows:

Rm(X1, X2)X1 = ∇X1
∇X2

X1 −∇X2
∇X1

X1 −∇[X1,X2]X1

= ∇X1

(
−ε2X3

)
− 0−∇2X3X1

= −ε2
(
ε2 − 2

)
X2 − 2ε2X2

= −ε4X2,

Rm(X2, X3)X2 = ∇X2
∇X3

X2 −∇X3
∇X2

X2 −∇[X2,X3]X2

= ∇X2(−X1)− 0−∇2X1X2

= ε2X3 − 2
(
2− ε2

)
X3

=
(
3ε2 − 4

)
X3,

Rm(X3, X1)X3 = ∇X3
∇X1

X3 −∇X1
∇X3

X3 −∇[X3,X1]X3

= ∇X3

((
ε2 − 2

)
X2

)
− 0−∇2X2X3

=
(
ε2 − 2

)
(−X1)− 2X1

= −ε2X1.

Finally, we compute the sectional curvatures:

K(X1 ∧X2) =
Rm(X1, X2, X1, X2)

〈X1, X1〉〈X2, X2〉 − 〈X1, X2〉2

=
−〈Rm(X1, X2)X1, X2〉

〈X1, X1〉〈X2, X2〉 − 〈X1, X2〉2

=
ε4

ε2
= ε2,

K(X2 ∧X3) =
Rm(X2, X3, X2, X3)

〈X2, X2〉〈X3, X3〉 − 〈X2, X3〉2

=
−〈Rm(X2, X3)X2, X3〉

〈X2, X2〉〈X3, X3〉 − 〈X2, X3〉2
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= 4− 3ε2,

K(X3 ∧X1) =
Rm(X3, X1, X3, X1)

〈X3, X3〉〈X1, X1〉 − 〈X3, X1〉2

=
−〈Rm(X3, X1)X3, X1〉

〈X3, X3〉〈X1, X1〉 − 〈X3, X1〉2

=
ε4

ε2
= ε2.

Exercise 16 Given a Riemannian manifold (Mn, g), we consider the metric g̃ = e−2fg, where f is a
smooth function on M . The metric g̃ is said to be conformal to g. Prove the following statements:

(1) The Christoffel symbols Γ̃k
ij of g̃ satisfy

Γ̃k
ij = gkl[−(∂if)gjl − (∂jf)gil + (∂lf)gij ] + Γk

ij .

(2) The curvature operator R̃m of g̃ as a (0, 4)-tensor satisfies

R̃m = e−2f

{
Rm+

(
∇2f + df ⊗ df − 1

2
|grad f |2g

)
©∧ g

}
.

(3) The Ricci curvature R̃ic of g̃ satisfies

R̃ic = (n− 2)

(
∇2f +

1

n− 2
(∆f)g + df ⊗ df − |grad f |2g

)
+ Ric .

(4) The scalar curvature R̃ of g̃ satisfies

R̃ = e2f
{
(2n− 2)∆f − (n− 1)(n− 2)|grad f |2 +R

}
.

(5) The Weyl curvature tensor W̃ of g̃ satisfies

W̃ = e−2fW.

Proof (1) We have

Γ̃k
ij =

1

2
g̃kl(∂ig̃jl + ∂j g̃il − ∂lg̃ij)

=
1

2

(
e2fgkl

)[
∂i
(
e−2fgjl

)
+ ∂j

(
e−2fgil

)
− ∂l

(
e−2fgij

)]
=

1

2
gkl[−2(∂if)gjl + ∂igjl − 2(∂jf)gil + ∂jgil + 2(∂lf)gij + ∂lgij ]

= gkl[−(∂if)gjl − (∂jf)gil + (∂lf)gij ] + Γk
ij .

(2) If we denote f;i = ∂if and f;ij = ∂j∂if , then the formula obtained in (1) can be rewritten as

Γ̃k
ij = −f;iδ

k
j − f;jδ

k
i + gklf;lgij + Γk

ij .

We can make the computations much more tractable by computing the components of the tensors
at a point p ∈ M in normal coordinates for g centered at p, so that the equations gij = δij , ∂kgij = 0,
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and Γk
ij = 0 hold at p. This has the following consequences at p:

f;ij = ∂j∂if,

Γ̃k
ij = −f;iδ

k
j − f;jδ

k
i + gklf;lgij ,

∂mΓ̃k
ij = −f;imδkj − f;jmδki + gklf;lmgij + ∂mΓk

ij ,

R l
ijk = ∂iΓ

l
jk − ∂jΓ

l
ik.

Inserting these relations, we obtain

R̃ijkl =− e−2fglm

(
∂iΓ̃

m
jk − ∂jΓ̃

m
ik + Γ̃p

jkΓ̃
m
ip − Γ̃p

ikΓ̃
m
jp

)
= e−2fglm

{
−
(
−f;jiδ

m
k − f;kiδ

m
j + gmqf;qigjk + ∂iΓ

m
jk

)
+ (−f;ijδ

m
k − f;kjδ

m
i + gmqf;qjgik + ∂jΓ

m
ik)

−
(
−f;jδ

p
k − f;kδ

p
j + gpqf;qgjk

)(
−f;iδ

m
p − f;pδ

m
i + gmrf;rgip

)
+ (−f;iδ

p
k − f;kδ

p
i + gpqf;qgik)

(
−f;jδ

m
p − f;pδ

m
j + gmrf;rgjp

)}
= e−2fglm

{(
f;kiδ

m
j − f;kjδ

m
i − gmqf;qigjk + gmqf;qjgik −R m

ijk

)
−
(
f;jf;iδ

p
kδ

m
p + f;jf;pδ

p
kδ

m
i + f;kf;iδ

p
j δ

m
p + f;kf;pδ

p
j δ

m
i

)
+
(
f;if;jδ

p
kδ

m
p + f;if;pδ

p
kδ

m
j + f;kf;jδ

p
i δ

m
p + f;kf;pδ

p
i δ

m
j

)
+
(
gpqf;qf;igjkδ

m
p + gpqf;qf;pgjkδ

m
i − gpqf;qf;jgikδ

m
p − gpqf;qf;pgikδ

m
j

)
+
(
gmrf;rf;jgipδ

p
k + gmrf;rf;kgipδ

p
j − gmrf;rf;igjpδ

p
k − gmrf;rf;kgjpδ

p
i

)
+ (−f;qf;rg

pqgmrgjkgip + f;qf;rg
pqgmrgikgjp)

}
= e−2f

{
(f;ikgjl − f;jkgil − f;ilgjk + f;jlgik +Rijkl)

− (f;if;jgkl + f;jf;kgil + f;if;kgjl + f;jf;kgil)

+ (f;if;jgkl + f;if;kgjl + f;jf;kgil + f;if;kgjl)

+ (f;if;lgjk + gpqf;pf;qgilgjk − f;jf;lgik − gpqf;pf;qgjlgik)

+ (f;jf;lgik + f;kf;lgij − f;if;lgjk − f;kf;lgij)

+ (−f;if;lgjk + f;jf;lgik)
}

= e−2f
{
Rijkl + (f;ikgjl + f;jlgik − f;ilgjk − f;jkgil)

+ (f;if;kgjl + f;jf;lgik − f;if;lgjk − f;jf;kgil)

− gpqf;pf;q(gikgjl − gilgjk)
}
,

which is the coordinate version of

R̃m = e−2f

{
Rm+

(
∇2f + df ⊗ df − 1

2
|grad f |2g

)
©∧ g

}
.

(3) Let trg denote the trace operation (with respect to g) on the second and last indices. The compo-
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nents of R̃ic are given by

R̃ik = g̃jlR̃ijkl

= gjl
{
Rijkl + (f;ikgjl + f;jlgik − f;ilgjk − f;jkgil)

+ (f;if;kgjl + f;jf;lgik − f;if;lgjk − f;jf;kgil)

− gpqf;pf;q(gikgjl − gilgjk)
}
.

(16–1)

This implies that

R̃ic = trg
{

Rm+

(
∇2f + df ⊗ df − 1

2
|grad f |2g

)
©∧ g

}
= trg(Rm) + trg

(
∇2f ©∧ g

)
+ trg{(df ⊗ df)©∧ g} − 1

2
|grad f |2 tr(g ©∧ g)

= Ric+(n− 2)∇2f +
[
trg
(
∇2f

)]
g + (n− 2)df ⊗ df + [trg(df ⊗ df)]g − (n− 1)|grad f |2g

= Ric+(n− 2)∇2f + (∆f)g + (n− 2)df ⊗ df − (n− 2)|grad f |2g

= (n− 2)

(
∇2f +

1

n− 2
(∆f)g + df ⊗ df − |grad f |2g

)
+ Ric .

(4) From (16–1) we see that

R̃ =g̃ikR̃ik

= e2fgikgjl
{
Rijkl + (f;ikgjl + f;jlgik − f;ilgjk − f;jkgil)

+ (f;if;kgjl + f;jf;lgik − f;if;lgjk − f;jf;kgil)

− gpqf;pf;q(gikgjl − gilgjk)
}
,

which implies that

R̃ = e2f
{
(n− 2) trg

(
∇2f

)
+ (∆f) trg g + (n− 2) trg(df ⊗ df)− (n− 2)|grad f |2 trg g + trg(Ric)

}
= e2f

{
(n− 2)∆f + n∆f + (n− 2)|grad f |2 − n(n− 2)|grad f |2 +R

}
= e2f

{
(2n− 2)∆f − (n− 1)(n− 2)|grad f |2 +R

}
.

(5) By the definition of the Weyl curvature tensor, we have for n ⩾ 3

W̃ = R̃m − 1

n− 2
R̃ic ©∧ g̃ +

R̃

2(n− 1)(n− 2)
g̃ ©∧ g̃

= e−2f

{
Rm+

(
∇2f + df ⊗ df − 1

2
|grad f |2g

)
©∧ g

}
− 1

n− 2

{
(n− 2)

(
∇2f +

1

n− 2
(∆f)g + df ⊗ df − |grad f |2g

)
+ Ric

}
©∧
(
e−2fg

)
+

e2f
{
(2n− 2)∆f − (n− 1)(n− 2)|grad f |2 +R

}
2(n− 1)(n− 2)

(
e−2fg

)
©∧
(
e−2fg

)
= e−2f

{
Rm− 1

n− 2
Ric©∧ g +

R

2(n− 1)(n− 2)
g ©∧ g

}
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= e−2fW.

Exercise 17 Consider the hyperbolic space

Hn =
{(

x1, · · · , xn
)
∈ Rn : xn > 0

}
,

equipped with the metric

gHn =
1

(xn)2
(
dx1 ⊗ dx1 + · · ·+ dxn ⊗ dxn

)
.

Prove that gHn has constant sectional curvature −1.

Proof Since gHn = 1
(xn)2 gE , where gE is the Euclidean metric, we can apply the result of Exercise 16 (2)

to compute the Riemann curvature tensor Rm of gHn . Set f = ln(xn). Then gHn = e−2fgE , and

∇2f = − 1

(xn)2
dxn ⊗ dxn, df ⊗ df =

1

(xn)2
dxn ⊗ dxn, |grad f |2 =

1

(xn)2
.

Given any point p ∈ Hn and any 2-dimensional linear subspace σ of TpM , if {X,Y } is any basis of σ,
then the Riemann curvature tensor Rm of gHn is given by

Rm =
1

(xn)2

{
0 +

(
− 1

(xn)2
dxn ⊗ dxn +

1

(xn)2
dxn ⊗ dxn − 1

2

1

(xn)2
gE

)
©∧ gE

}
= − 1

2(xn)4
(gE ©∧ gE),

which implies that

Kp(σ) =
Rm(X,Y,X, Y )

1
2 (gHn ©∧ gHn)(X,Y,X, Y )

=
− 1

2(xn)4 (gE ©∧ gE)(X,Y,X, Y )

1
2(xn)4 (gE ©∧ gE)(X,Y,X, Y )

= −1.

Therefore, gHn has constant sectional curvature −1.

Exercise 18 (Bochner’s formula) Let (Mn, g) be a Riemannian manifold. For any smooth function
u : M → R, prove the following identity:

1

2
∆|gradu|2 =

∣∣∇2u
∣∣2 + Ric(gradu, gradu) + 〈grad(∆u), gradu〉.

Proof We can make the computations much more tractable by computing the components of the ten-
sors at a point p ∈ M in normal coordinates centered at p, so that the equations gij = δij , ∂kgij = 0, and
Γk
ij = 0 hold at p. This has the following consequence at p:

1

2
∆|gradu|2 =

1

2
gkl
(
gijuiuj

)
kl

=
1

2
gklgij(ui;kluj + ui;kuj;l + ui;luj;k + uiuj;kl)

= gklgijui;kuj;l + gklgijui;kluj

=
∣∣∇2u

∣∣2 + gklgijui;kluj

=
∣∣∇2u

∣∣2 + gklgijuk;iluj .

(18–1)
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Recall that the covariant derivative of every smooth 1-form β can be computed by

(∇Xβ)(Y ) = X(β(Y ))− β(∇XY ). (18–2)

Using this repeatedly, we compute

(∇X∇Y β)(Z) = X((∇Y β)(Z))− (∇Y β)(∇XZ)

= X(Y (β(Z))− β(∇Y Z))− (∇Y β)(∇XZ)

= XY (β(Z))− (∇Xβ)(∇Y Z)− β(∇X∇Y Z)− (∇Y β)(∇XZ).

(18–3)

Reversing the roles of X and Y , we get

(∇Y ∇Xβ)(Z) = Y X(β(Z))− (∇Y β)(∇XZ)− β(∇Y ∇XZ)− (∇Xβ)(∇Y Z), (18–4)

and applying (18–2) one more time yields

(
∇[X,Y ]β

)
(Z) = [X,Y ](β(Z))− β

(
∇[X,Y ]Z

)
. (18–5)

Now subtract (18–4) and (18–5) from (18–3): all but three of the terms cancel, yielding

(
∇X∇Y β −∇Y ∇Xβ −∇[X,Y ]β

)
(Z) = −β

(
∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z

)
= −β(Rm(X,Y )Z).

(18–6)

Since

∇2
X,Y β = ∇X∇Y β −∇∇XY β,

∇2
Y,Xβ = ∇Y ∇Xβ −∇∇Y Xβ,

we see that (18–6) is equivalent to

∇2
X,Y β −∇2

Y,Xβ = −Rm(X,Y )∗β, (18–7)

where Rm(X,Y )∗ : T ∗M → T ∗M denotes the dual map to Rm(X,Y ), defined by

(Rm(X,Y )∗η)(Z) = η(Rm(X,Y )Z).

In terms of any local frame, the component version of (18–7) reads

βj;pq − βj;qp = R m
pqj βm, (18–8)

where we use a semicolon to separate indices resulting from (covariant) differentiation from the preced-
ing indices. Now, we apply (18–8) to the 1-form gradu to obtain

gklgijuk;iluj = gklgij(uk;li −R m
lik um)uj

= gij
(
gkluk;l

)
i
uj + gklgijR m

ilk umuj

= 〈grad(∆u), gradu〉+ gijR m
i umuj

= 〈grad(∆u), gradu〉+ Ric(gradu, gradu).

(18–9)
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Combining (18–1) and (18–9), we obtain

1

2
∆|gradu|2 =

∣∣∇2u
∣∣2 + Ric(gradu, gradu) + 〈grad(∆u), gradu〉.

Exercise 19 Given a Riemannian manifold
(
Nn−1, h

)
, we consider the warped product metric g =

dr2 + f2(r)h on M = (0,+∞) × N , where f(r) : (0,+∞) → R is a positive smooth function. In the
following, we use indices i, j, k, l to denote the local coordinates on N . Superscripts g and h will be used
to indicate the quantities computed with respect to the metrics g and h, respectively.

Prove the following statements:

(1) Rg
ijkl = f2(r)Rh

ijkl − f2(r)[f ′(r)]
2
(hikhjl − hilhjk).

(2) Rg
ijkr = 0 and Rg

irjr = −f(r)f ′′(r)hij .

(3) Rg
ij = Rh

ij −
(
(n− 2)[f ′(r)]

2
+ f(r)f ′′(r)

)
hij .

(4) Rg
ir = 0 and Rg

rr = −(n− 1)[f(r)]−1f ′′(r).

Proof Let us denote the Christoffel symbols of g by Γ̃c
ab and the Christoffel symbols of h by Γc

ab. Then

Γ̃k
ij =

1

2
gkl(∂igjl + ∂jgil − ∂lgij)

=
1

2
[f(r)]−2hkl

{
∂i
(
f2(r)hjl

)
+ ∂j

(
f2(r)hil

)
− ∂l

(
f2(r)hij

)}
=

1

2
hkl(∂ihjl + ∂jhil − ∂lhij)

= Γk
ij ,

Γ̃r
ij =

1

2
grr(∂igjr + ∂jgir − ∂rgij)

= −1

2
∂r
{
f2(r)hij

}
= −f(r)f ′(r)hij ,

Γ̃j
ir =

1

2
gjl(∂igrl + ∂rgil − ∂lgir)

=
1

2
[f(r)]−2hjl∂r

{
f2(r)hil

}
=

f ′(r)

f(r)
hjlhil

=
f ′(r)

f(r)
δji ,

Γ̃r
ir =

1

2
grr(∂igrr + ∂rgir − ∂rgir) = 0.

(1) We compute

Rg
ijkl =− glm

(
∂iΓ̃

m
jk − ∂jΓ̃

m
ik + Γ̃p

jkΓ̃
m
ip − Γ̃p

ikΓ̃
m
jp

)
=− f2(r)hlm

{
∂iΓ

m
jk − ∂jΓ

m
ik + Γp

jkΓ
m
ip + [−f(r)f ′(r)hjk]

(
f ′(r)

f(r)
δmi

)
−Γp

ikΓ
m
jp − [−f(r)f ′(r)hik]

(
f ′(r)

f(r)
δmj

)}
=− f2(r)hlm

{
∂iΓ

m
jk − ∂jΓ

m
ik + Γp

jkΓ
m
ip − Γp

ikΓ
m
jp + [f ′(r)]

2(
hikδ

m
j − hjkδ

m
i

)}
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=f2(r)Rh
ijkl − f2(r)[f ′(r)]

2
hlm

(
hikδ

m
j − hjkδ

m
i

)
=f2(r)Rh

ijkl − f2(r)[f ′(r)]
2
(hikhjl − hilhjk).

(2) We compute

Rg
ijkr =− grr

(
∂iΓ̃

r
jk − ∂jΓ̃

r
ik + Γ̃p

jkΓ̃
r
ip − Γ̃p

ikΓ̃
r
jp

)
=−

{
∂i[−f(r)f ′(r)hjk]− ∂j [−f(r)f ′(r)hik] + Γp

jk[−f(r)f ′(r)hip] + Γ̃r
jkΓ̃

r
ir

− Γp
ik[−f(r)f ′(r)hjp]− Γ̃r

ikΓ̃
r
jr

}
=− f(r)f ′(r)

(
−∂ihjk + ∂jhik − Γp

jkhip + Γp
ikhjp

)
.

Note that

Γp
jkhip =

1

2
hpl(∂jhkl + ∂khjl − ∂lhjk)hip

=
1

2
(∂jhki + ∂khji − ∂ihjk),

Γp
ikhjp =

1

2
hpl(∂ihkl + ∂khil − ∂lhik)hjp

=
1

2
(∂ihkj + ∂khij − ∂jhik).

Thus, we have

Rg
ijkr = −f(r)f ′(r)(−∂ihjk + ∂jhik + ∂ihjk − ∂jhik)

= 0.

Next, we compute

Rg
irjr = −grr

(
∂iΓ̃

r
rj − ∂rΓ̃

r
ij + Γ̃p

rjΓ̃
r
ip − Γ̃p

ijΓ̃
r
rp

)
= −

{
0− ∂r(−f(r)f ′(r)hij) +

(
f ′(r)

f(r)
δpj

)
[−f(r)f ′(r)hip]− 0

}
= −

{
[f ′(r)]

2
+ f(r)f ′′(r)

}
hij + [f ′(r)]

2
hij

= −f(r)f ′′(r)hij .

(3) Using (1) and (2), we compute

Rg
ij = gpqRg

ipjq = gklRg
ikjl + grrRg

irjr

= [f(r)]−2hkl
{
f2(r)Rh

ikjl − f2(r)[f ′(r)]
2
(hijhkl − hilhkj)

}
− f(r)f ′′(r)hij

= hklRh
ikjl − hkl[f ′(r)]

2
(hijhkl − hilhkj)− f(r)f ′′(r)hij

= Rh
ij − [f ′(r)]

2
[(n− 1)hij − hij ]− f(r)f ′′(r)hij

= Rh
ij −

(
(n− 2)[f ′(r)]

2
+ f(r)f ′′(r)

)
hij .

(4) By the first formula in (2), we see that

Rg
ir = gpqRg

iprq = gklRg
ikrl + grrRg

irrr = 0 + 0 = 0.
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Finally, we use the second formula in (2) to get

Rg
rr = gpqRg

rprq = gklRg
rkrl + grrRg

rrrr

= [f(r)]−2hkl[−f(r)f ′′(r)hkl] + 0

= −(n− 1)[f(r)]−1f ′′(r).

Homework 4

Exercise 20 Let S2 =
{
(x, y, z) ∈ R3 : x2 + y2 + z2 = 1

}
be the unit sphere in R3 with induced metric

g. Consider a geodesic c :
[
−π

2 ,
π
2

]
→ S2 defined by c(t) = (cos t, 0, sin t). Define a vector field X along c

by X(t) = (0, cos t, 0). Prove that X is a Jacobi field.

Proof On the sphere S2, we have

DX

dt = πTS2(X
′(t)) = (0,− sin t, 0),

D2X

dt2 = πTS2

(
DX

dt

)
= (0,− cos t, 0) = −X(t),

Rm(X(t), c′(t))c′(t) = 〈c′(t), c′(t)〉X(t)− 〈X(t), c′(t)〉c′(t) = X(t).

Thus, the Jacobi equation is satisfied:

D2X

dt2 + Rm(X(t), c′(t))c′(t) = 0.

Exercise 21 Given a Riemannian manifold (M, g), let π : M̃ → M be a covering map such that g̃ = π∗g.
Prove that g is complete if and only if g̃ is complete.

Proof Assume both M and M̃ are connected.

(⇐) By the assumption, π is a local isometry. Thus if g̃ is complete, π satisfies the hypotheses of the
Ambrose theorem, which implies that g is also complete.

(⇒) Conversely, suppose g is complete. Let p̃ ∈ M̃ and ṽ ∈ TpM̃ be arbitrary, and let p = π(p̃) and
v = dπp̃(ṽ). Completeness of g implies that the geodesic γ with γ(0) = p and γ′(0) = v is defined
for all t ∈ R, and then its lift γ̃ : R → M̃ starting at p̃ is a geodesic in M̃ with initial velocity ṽ, also
defined for all t.

Exercise 22 Let (Mn, g) be a complete, connected Riemannian manifold satisfying

Ric+∇2f ⩾ Kg

for some constant K > 0. If |grad f | ⩽ K on M , prove that M is compact.

Proof SinceM is complete, it follows as a consequence of the Hopf–Rinow theorem that any two points
in M can be joined by a minimizing geodesic. Let γ : [0, ℓ] → M be any such geodesic with unit speed.
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Along γ consider the n− 1 variational vector fields

Vi(t) = sin
(π
ℓ
t
)
Ei(t), i = 1, · · · , n− 1,

where E1, · · · , En−1, together with γ′(t), form an orthonormal frame for Tγ(t)M . Since γ is minimizing,
by the second variation formula we have

0 ⩽ d2E

ds2

∣∣∣∣∣
s=0

=

∫ ℓ

0

∣∣∣∣DVi

dt

∣∣∣∣2 − Rm(Vi, γ
′, Vi, γ

′)dt

=

∫ ℓ

0

(π
ℓ

)2
cos2

(π
ℓ
t
)
− sin2

(π
ℓ
t
)

Rm(Ei, γ
′, Ei, γ

′)dt.

By adding up the contributions to the second variation formula for each variational vector field we get

0 ⩽ (n− 1)
(π
ℓ

)2 ∫ ℓ

0

cos2
(π
ℓ
t
)

dt−
∫ ℓ

0

sin2
(π
ℓ
t
)

Ric(γ′, γ′)dt. (22–1)

Meanwhile, by the assumption on the Ricci curvature, we have

sin2
(π
ℓ
t
)

Ric(γ′, γ′) ⩾ − sin2
(π
ℓ
t
)
∇2f(γ′, γ′) +K sin2

(π
ℓ
t
)
. (22–2)

Since γ is a geodesic,
∇2f(γ′, γ′) = ∇γ′(∇γ′f)−∇(∇γ′γ′)f = (f ◦ γ)′′(t). (22–3)

Combining (22–2) and (22–3) into (22–1) gives

(n− 1)
(π
ℓ

)2 ∫ ℓ

0

cos2
(π
ℓ
t
)

dt ⩾
∫ ℓ

0

sin2
(π
ℓ
t
)

Ric(γ′, γ′)dt

= −
∫ ℓ

0

sin2
(π
ℓ
t
)
(f ◦ γ)′′(t)dt+K

∫ ℓ

0

sin2
(π
ℓ
t
)

dt.
(22–4)

For the first integral on the right-hand side, we can integrate by parts to get

∫ ℓ

0

sin2
(π
ℓ
t
)
(f ◦ γ)′′(t)dt = −2π

ℓ

∫ ℓ

0

sin
(π
ℓ
t
)

cos
(π
ℓ
t
)
(f ◦ γ)′(t)dt

⩽ π

ℓ

∫ ℓ

0

∣∣∣∣sin
(
2π

ℓ
t

)∣∣∣∣|grad f |dt

⩽ π

ℓ
· 2ℓ
π

·K

= 2K,

where we used the fact that

|(f ◦ γ)′(t)| = |〈grad f(γ(t)), γ′(t)〉| ⩽ |grad f | · |γ′| = |grad f | · 1.

Now, (22–4) reduces to

(n− 1) · π
2

ℓ2
· ℓ
2
⩾ −2K +K · ℓ

2
,
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that is,

ℓ2 − 4ℓ− (n− 1)π2

K
⩽ 0.

Solving this quadratic inequality gives

0 ⩽ ℓ ⩽ 2 +

√
4 +

(n− 1)π2

K
.

This gives a bound on diamM . By the Hopf–Rinow theorem, any closed and bounded subset of M is
compact, so M is compact.

Exercise 23 Let Mn be a smooth manifold (without boundary).

(1) Prove that for any Riemannian metric g on M , there exists a smooth function f on M , such that
the conformal metric e−fg is complete.

(2) Prove that if every Riemannian metric on M is complete, then M is compact.

Proof (1) For each point x ∈ M , define

r(x) = sup
{
r > 0 : B(x, r) is compact

}
.

If r(x) = ∞ for some x ∈ M , then g is complete by the Hopf–Rinow theorem. Assume therefore
that r(x) < ∞ for all x ∈ M . If r < r(x) − d(x, y), then r + d(x, y) < r(x), so B(x, r + d(x, y)) is
compact. The triangle inequality ensures that B(y, r) ⊂ B(x, r + d(x, y)). Hence B(y, r), being a
closed subset of a compact set, is compact. This holds for all r < r(x)− d(x, y), so we can take the
supremum over r to get

r(y) ⩾ r(x)− d(x, y).

Reversing the roles of x and y, we similarly obtain

r(x) ⩾ r(y)− d(x, y).

Combining these two inequalities gives

|r(x)− r(y)| ⩽ d(x, y), ∀x, y ∈ M,

which implies that r(x) is a continuous function onM . SinceM is second countable, we can choose
a smooth function ω(x) such that ω(x) > 1

r(x) for all x ∈ M . We define a conformal Riemannian
metric g̃ by g̃x = [ω(x)]2gx at each point x.

In order to show that g̃ is complete, we shall show that B̃
(
x, 1

3

)
⊂ B

(
x, r(x)

2

)
for every x, which

then implies that B̃
(
x, 1

3

)
is compact, and hence any closed and bounded subset of M is compact.

For this purpose, choose y with d(x, y) ⩾ r(x)
2 . For any piecewise smooth curve c : [a, b] → M ,

joining x and y, its g-length L is not smaller than d(x, y) and hence L ⩾ r(x)
2 . We evaluate the

g̃-length L̃ of c. By a mean value theorem, we have

L̃ =

∫ b

a

ω(c(t))

∥∥∥∥dc
dt

∥∥∥∥
g

dt = ω(c(ξ))

∫ b

a

∥∥∥∥dc
dt

∥∥∥∥
g

dt = ω(c(ξ))L >
L

r(c(ξ))
,

where ξ is a number between a and b. Since |r(c(ξ))− r(x)| ⩽ d(x, c(ξ)) ⩽ L, we have r(c(ξ)) ⩽
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r(x) + L so that

L̃ >
L

r(c(ξ))
⩾ L

r(x) + L
⩾

r(x)
2

r(x) + r(x)
2

=
1

3
.

Therefore d̃(x, y) ⩾ 1
3 . This proves that B̃

(
x, 1

3

)c ⊃ B
(
x, r(x)

2

)c
. As stated above, any closed

and bounded subset of M is compact, so the conformal metric g̃ is complete by the Hopf–Rinow
theorem.

(2) Let (M, g) be a noncompact Riemannian manifold. We shall find an incomplete Riemannian metric
g̃ which is conformal to g. By (1), we can assume that g is complete. Fix a point p ∈ M . Since M is
second countable, we can find a smooth function ω(x) on M so that ω(x) ⩾ d(p, x) for all x ∈ M .
Consider the conformal metric g̃ = e−2ωg. For any point q ∈ M , let γ be the minimizing geodesic
(with respect to g) from p to q with unit speed. Then

L̃(γ) =

∫ d(p,q)

0

e−ω(t) dt ⩽
∫ d(p,q)

0

e−d(p,γ(t)) dt =
∫ d(p,q)

0

e−t dt = 1− e−d(p,q) ⩽ 1.

This implies that diam(M, g̃) ⩽ 2. Thus, (M, g̃) is bounded but noncompact, and hence incomplete
by the Hopf–Rinow theorem.

Exercise 24 Given a Riemannian manifold (M, g), let γ : [0, a] → M be a smooth curve and

f(u, v, t) : (−ε, ε)× (−ε, ε)× [0, a] → M

be a smooth map with f(0, 0, t) = γ(t). Denote γu,v(t) = f(u, v, t) and

U(t) =
∂f

∂u

∣∣∣∣∣
(0,0,t)

, V (t) =
∂f

∂v

∣∣∣∣∣
(0,0,t)

.

Suppose γ is a geodesic, find the formula for

∂2

∂u ∂v
E(γu,v)

∣∣∣∣∣
(0,0)

.

Solution We compute

∂

∂v
E(γu,v) =

∂

∂v

{
1

2

∫ a

0

〈ft, ft〉dt
}

=

∫ a

0

〈
∇̃∂v

ft, ft

〉
dt

=

∫ a

0

〈
∇̃∂t

fv, ft

〉
dt,

and then

∂2

∂u ∂v
E(γu,v) =

∫ a

0

〈
∇̃∂u∇̃∂tfv, ft

〉
+
〈
∇̃∂tfv, ∇̃∂uft

〉
dt

=

∫ a

0

〈
∇̃∂u

∇̃∂t
fv, ft

〉
+
〈
∇̃∂t

fv, ∇̃∂t
fu

〉
dt

=

∫ a

0

〈Rm(fu, ft)fv, ft〉+
〈
∇̃∂t

∇̃∂u
fv, ft

〉
+
〈
∇̃∂t

fv, ∇̃∂t
fu

〉
dt.
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Since ∇γ̇ γ̇ = 0, we have

∂2

∂u ∂v
E(γu,v)

∣∣∣∣∣
(0,0)

=

∫ a

0

〈Rm(U, γ̇)V, γ̇〉+ d
dt 〈∇UV, γ̇〉+ 〈∇γ̇U,∇γ̇V 〉dt

=

∫ a

0

〈Rm(U, γ̇)V, γ̇〉+ 〈∇γ̇U,∇γ̇V 〉dt+ 〈∇UV, γ̇〉
∣∣a
0
.

Exercise 25 Let (Mn, g) be a complete Riemannian manifold, and let p ∈ M be a point.

(1) Suppose that along any normalized (unit-speed) geodesic γ with γ(0) = p, the sectional curvatures
of M in any plane σ ⊂ Tγ(t)M containing γ′(t) is ⩽ 1 if 0 ⩽ t < π

2 and ⩽ 0 if t ⩾ π
2 . Show that

the length of any normal Jacobi field J(t) along such a geodesic γ, with J(0) = 0, is nondecreasing
after t = π

2 .

(2) Suppose that along any normalized (unit-speed) geodesic γ with γ(0) = p, the sectional curvatures
of M in any plane σ ⊂ Tγ(t)M containing γ′(t) is ⩾ 1 if 0 ⩽ t < π

2 and > 0 if t ⩾ π
2 . Show that M

is compact.
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Cheat Sheet

� 〈∇XY, Z〉 = 1

2
{X〈Y, Z〉+ Y 〈Z,X〉 − Z〈X,Y 〉 − 〈Y, [X,Z]〉 − 〈Z, [Y,X]〉+ 〈X, [Z, Y ]〉}.

� Γk
ij =

1

2
gkl(∂igjl + ∂jgil − ∂lgij).

� R l
ijk = ∂iΓ

l
jk − ∂jΓ

l
ik + Γm

jkΓ
l
im − Γm

ikΓ
l
jm.

� Rijkl = −glmR m
ijk = −glm

(
∂iΓ

m
jk − ∂jΓ

m
ik + Γp

jkΓ
m
ip − Γp

ikΓ
m
jp

)
.

� Rij = R k
ikj = gkmRikjm.

� R = gijRij .

� In normal coordinates, Rijkl(0) =
1

2
(∂i∂lgjk + ∂j∂kgli − ∂i∂kglj − ∂j∂lgik)(0).

� DtV (t) =
(
V̇ k(t) + γ̇i(t)V j(t)Γk

ij(γ(t))
)
∂k|γ(t) =⇒ ẍk(t) + ẋi(t)ẋj(t)Γk

ij(x(t)) = 0.

� (∇X Rm)(Y, Z)W + (∇Y Rm)(Z,X)W + (∇Z Rm)(X,Y )W = 0.

� For (Sn, gSn), Rm(X,Y, Z,W ) = 〈X,Z〉〈Y,W 〉−〈X,W 〉〈Y, Z〉, since DXn = X and∇XY = DXY +

〈X,Y 〉n.

� h©∧ k(X,Y, Z,W ) = h(X,Z)k(Y,W )− h(X,W )k(Y, Z) + h(Y,W )k(X,Z)− h(Y, Z)k(X,W ).

� trg(h©∧ g) = (n− 2)h+ (trg h)g. In particular, trg(g ©∧ g) = 2(n− 1)g.

� 〈T, h©∧ g〉g = 4〈trg T, h〉g .

� |h©∧ g|2g = 4(n− 2)|h|2g + 4(trg h)2. In particular, |g ©∧ g|2g = 8n(n− 1).

� The Weyl tensor of g is given by W = Rm− 1

n− 2
Ric©∧ g +

R

2(n− 1)(n− 2)
g ©∧ g.

� In dimension 3, Rm = Ric©∧ g − R

4
g ©∧ g.

� In dimension 2, Rm =
R

4
g ©∧ g, Ric =

R

2
g, Ric = Kg, and R = 2K.

� R̊ic = Ric−R

n
g.

� The decomposition Rm = W +
1

n− 2
R̊ic ©∧ g +

R

2n(n− 1)
g ©∧ g is orthogonal.

� |Rm|2 = |W |2 + 4

n− 2
|Ric|2 − 2

(n− 1)(n− 2)
R2.

� Kp(σ) =
Rm(X,Y,X, Y )

1
2 (g ©∧ g)(X,Y,X, Y )

=
Rm(X,Y,X, Y )

〈X,X〉〈Y, Y 〉 − 〈X,Y 〉2
.

� divF = trg(∇F ), where the trace is taken on the first two indices of ∇F ; div(X) = ∇kX
k;

(div(T ))i1···ik−1
= gij∇jTii1···ik−1

.

� (div Rm)kij = (∇i Ric)jk − (∇j Ric)ik, div(Ric) = 1

2
dR.
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� The index form of γ is I(V,W ) =

∫ b

a

[〈DtV,DtW 〉 − Rm(V, γ′,W, γ′)]dt.

� I(V,W ) = −
∫ b

a

〈
D2

tV + Rm(V, γ′)γ′,W
〉

dt+〈DtV,W 〉
∣∣∣t=b

t=a
−

k−1∑
i=1

〈∆i DtV,W (ai)〉, where (a0, · · · , ak)

is an admissible partition for V and W , and ∆i DtV is the jump in DtV at t = ai.

� The Jacobi equation is D2
tV + Rm(V, γ′)γ′ = 0.

� (Bonnet–Myers) Let (M, g) be a complete, connected Riemannian n-manifold, and suppose there
is a positive constant k such that Ric ⩾ (n − 1)kg. Then diam(M) ⩽ π√

k
, and π1(M) is finite. In

particular, M is compact.

� Ds DtV −Dt DsV = Rm(∂sΓ, ∂tΓ)V for any smooth one-parameter family of curves Γ: J×I → M

and any smooth vector field V along Γ.

� Γ(s, t) = expc(s)

(
t
(
T (s) + sW (s)

))
is a geodesic variation of the geodesic γ(t), where

– c(s) is a geodesic with c(0) = γ(0) and c′(0) = J(0).

– T (s) is a parallel vector field along c(s) with T (0) = γ′(0).

– W (s) is a parallel vector field along c(s) with W (0) = J ′(0).

If J(0) = 0, thenΓ(s, t) = expγ(0)

(
t
(
γ′(0)+sJ ′(0)

))
and J(t) =

∂Γ

∂s

∣∣∣∣∣
s=0

=
(

d expγ(0)

)
tγ′(0)

(tJ ′(0)).

� 〈J1(t), J2(t)〉 = 〈J ′
1(0), J

′
2(0)〉t2−

1

3
Rm(J ′

1(0), γ
′(0), J ′

2(0), γ
′(0))t4+O

(
t5
)

when J1(0) = J2(0) = 0.

� In normal coordinates, gij(x) = δij −
1

3
Rikjl(0)x

kxl +O
(
|x|3
)
.

� lim
r→0+

2πr − Lr

r3
=

π

3
Kp(σ), |B(p, r)| = ωnr

n

(
1− R(p)

6(n+ 2)
r2 +O

(
r3
))

.

� div
(
Xi ∂

∂xi

)
=

1√
det g

∂

∂xi

(
Xi
√

det g
)

.

� ∆u =
1√

det g
∂

∂xi

(
gij
√

det g ∂u

∂xj

)
= gij

(
∂i∂ju− Γk

ij∂ku
)
.

� Stereographic projection σ(ξ, τ) =
Rξ

R− τ
, σ−1(u) =

(
2R2u

|u|2 +R2
, R

|u|2 −R2

|u|2 +R2

)
.

� ∇X(ω) =
(
X(ωk)−XjωiΓ

i
jk

)
εk.

� ∇Y = Y i
;j Ei ⊗ εj , with Y i

;j = EjY
i + Y kΓi

jk.

� ∇ω = ωi;jε
i ⊗ εj , with ωi;j = Ejωi − ωkΓ

k
ji.

� ∇2
X,Y F = ∇X(∇Y F )−∇(∇XY )F .

� ∇2u = u;ij dxi ⊗ dxj , with u;ij = ∂j∂iu− Γk
ji∂ku; ∇2u(X,Y ) = X(Y u)− (∇XY )u = 〈Y,∇X∇u〉.

� DtV (t) =
(
V̇ k(t) + γ̇i(t)V j(t)Γk

ij(γ(t))
)
∂k|γ(t).

� ẍk(t) + ẋi(t)ẋj(t)Γk
ij(x(t)) = 0.
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�
∫
M

(v∆u+ 〈∇u,∇v〉)dVg =

∫
∂Ω

v〈∇u,n〉dσg .

� d
ds

∣∣∣∣∣
s=0

Lg(Γs) = −
∫ b

a

〈V,Dtγ
′〉dt−

k−1∑
i=1

〈V (ai),∆iγ
′〉+〈V (b), γ′(b)〉−〈V (a), γ′(a)〉, where (a0, · · · , ak)

is an admissible partition for Γ, and ∆iγ
′ is the jump in γ′ at t = ai.

� (Ambrose) Suppose
(
M̃, g̃

)
and (M, g) are connected Riemannian manifolds with M̃ complete,

and π : M̃ → M is a local isometry. Then M is complete and π is a smooth covering map.

� (Cartan–Hadamard) If (M, g) is a complete, connected Riemannian manifold with nonpositive
sectional curvature, then for every point p ∈ M , the map expp : TpM → M is a smooth covering
map. Thus the universal covering space ofM is diffeomorphic toRn, and ifM is simply connected,
then M itself is diffeomorphic to Rn.

� A complete, simply connected Riemannian manifold with nonpositive sectional curvature is called
a Cartan–Hadamard manifold.

� Suppose M is complete and γ : [0,∞) → M is a unit-speed geodesic from p. For any a > 0, γ(a)
is the cut point of p if and only if γ|[0,a] is minimizing and at least one of the following statements
holds:

– γ(a) is conjugate to p along γ.

– There exists another geodesic segment from p to γ(a).

� If q ∈ Cut(p) and d(p, q) = injp, then at least one of the following statements holds:

– There exists a geodesic segment γ from p to q such that q is conjugate to p along γ.

– There exists another geodesic segment σ from p to q so that γ′(ℓ) = −σ′(ℓ), where ℓ = d(p, q).

� Suppose c : [0, a] → M is a geodesic segment with c(a) /∈ Cut(c(0)), and J(t) is a normal Jacobi
field along c with J(0) = 0. Then for r(x) = f(p, x), we have

∇2r|c(t)(J(t), J(t)) = 〈J(t), J ′(t)〉, t ∈ (0, a].

� On a Hadamard manifold, fp(x) := 1
2d

2(p, x) is strictly convex, i.e., ∇2fp > 0. (In fact, ∇2fp ⩾ g.)

� On a Riemannian manifold, ∇2fp = g at p.

� (Cartan’s Fixed Point Theorem) Let (M, g) be a Hadamard manifold. If φ : M → M is an isometry
and φk = Id for some k, then φ has a fixed point.

� (Cartan’s Torsion Theorem) Suppose (M, g) is a complete, connected Riemannian manifold with
nonpositive sectional curvature. Then π1(M) is torsion-free. In particular, if π1(M) 6= {e}, then
|π1(M)| = ∞.

� For an algebraic curvature tensor T , if T (X,Y,X, Y ) = 0 for any X,Y , then T ≡ 0. ¬ 0 = T (X,Y +

Z,X, Y + Z) = 2T (X,Y,X,Z). ­ 0 = T (X + W,Y,X + W,Z) = T (X,Y,W,Z) + T (W,Y,X,Z).
® Add together T (Y,W,X,Z) = T (X,Y,W,Z), T (Y,W,X,Z) = T (W,X, Y, Z), T (Y,W,X,Z) =

T (Y,W,X,Z) and use the first Bianchi identity to get 3T (Y,W,X,Z) = 0.
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� (Index Lemma) Suppose γ(t) is not conjugate to γ(0) for any t ∈ (0, a]. Let J be a normal Jacobi
field and V a piecewise smooth vector field along γ such that 〈V, γ′〉 ≡ 0. If J(0) = V (0) = 0 and
J(a) = V (a), then I(J, J) ⩽ I(V, V ), with equality holds if and only if V ≡ J .

�
(
|J |2

)′
(a)−

(
|J |2

)′
(0) = 2I(J, J), where J is a Jacobi field along a geodesic γ : [0, a] → M .

� (Rauch’s Comparison Theorem) Let (Mn, g) and
(
M̃n, g̃

)
be complete Riemannian manifolds,

γ : [0, a] → M and γ̃ : [0, a] → M̃ be unit-speed geodesics. If J and J̃ are Jacobi fields along γ and
γ̃, respectively, satisfying

– J(0) = J̃(0) = 0;

– 〈J ′(0), γ′(0)〉g =
〈
J̃ ′(0), γ̃′(0)

〉
g̃
;

– |J ′(0)| =
∣∣∣J̃ ′(0)

∣∣∣;
– γ̃ has no conjugate points;

– Kγ(t)(σ) ⩽ K̃γ̃(t)(σ̃) for all t ∈ [0, a], where σ and σ̃ are planes containing γ′(t) and γ̃′(t),
respectively;

then |J(t)| ⩾
∣∣∣J̃(t)∣∣∣ for all t ∈ [0, a].

� (Special Case of Rauch’s Comparison) °⇝ secM ⩽ sec
M̃

, ­⇝ normal Jacobi fields.

� Suppose (M, g) is a Riemannian manifold with constant sectional curvature k, and γ is a unit-speed
geodesic in M . The normal Jacobi fields along γ vanishing at t = 0 are J(t) = csk(t)E(t), where
E is any parallel unit vector field along γ, c is an arbitrary constant. Moreover, J ′(0) = cE(0) and
|J(t)| = |sk(t)||J ′(0)|.

� If sec ⩽ k on B
(
p, π√

k

)
for k > 0, then d expp is non-singular on B

(
0, π√

k

)
⊂ TpM .

� Let (Mn, g) and
(
M̃n, g̃

)
be two Riemannian manifolds with supK(σ) ⩽ inf K̃(σ̃). Fix p ∈ M ,

p̃ ∈ M̃ , and an isometry i : TpM → Tp̃M̃ . Take r < injp such that d expp is non-singular on B(0, r)
and set Φ = expp̃ ◦i ◦ exp−1

p |B(p,r). If c : [0, a] → B(p, r) is a smooth curve and c̃(s) = Φ(c(s)), then
L(c) ⩾ L(c̃).

� g2 = dr2 + gr, where gr is the metric on {r} × Sn−1.

(0, a)× Sn−1 B(0, a) \ {0} B(p, a) ⊂ M

g2 = l∗g1 g1 = exp∗
p g g

l expp

– If secM ⩾ k, then g2 ⩽ dr2 + s2k(r)gSn−1 .

– If secM ⩽ k, then g2 ⩾ dr2 + s2k(r)gSn−1 .

� Given a Riemannian manifold
(
Nn−1, h

)
, we consider the warped product metric g = dr2+f2(r)h

on M = (0,+∞) × N , where f(r) : (0,+∞) → R is a positive smooth function. In the following,
we use indices i, j, k, l to denote the local coordinates on N . Superscripts g and h will be used to
indicate the quantities computed with respect to the metrics g and h, respectively.

– Rg
ijkl = f2(r)Rh

ijkl − f2(r)[f ′(r)]
2
(hikhjl − hilhjk).
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– Rg
ijkr = 0 and Rg

irjr = −f(r)f ′′(r)hij .

– Rg
ij = Rh

ij −
(
(n− 2)[f ′(r)]

2
+ f(r)f ′′(r)

)
hij .

– Rg
ir = 0 and Rg

rr = −(n− 1)[f(r)]−1f ′′(r).

� s′′k(r) = −ksk(r), [s′k(r)]2 = 1 − ks2k(r). Thus, K(∂θ, ∂r) =
Rθrθr

|∂θ|2|∂r|2
=

−sk(r)s
′′
k(r)

s2k(r)
= k,

K(∂θ1 , ∂θ2) =
Rθ1θ2θ1θ2

|∂θ1 |2|∂θ2 |2
=

s2k(r)− s2k(r)[s
′
k(r)]

2

s4k(r)
=

1− [s′k(r)]
2

s2k(r)
= k. If ρ =

sk
s′k

, then ρ′ = 1+ kρ2.

� (Hessian Comparison) If secM ≶ k, then for q ∈ M\({p}∪Cut(p)) andX ∈ TqM with 〈X,∇r〉 = 0,
we have

∇2r|q(X,X) ≷ s′k(r)

sk(r)
|X|2.

Note that ∇2r(∇r,∇r) = 0 (since r(c(t)) = t =⇒ 〈∇r, c′〉 = 1 =⇒ ∇2r(c′, c′) = 0).

� (Laplacian Comparison) If Ric ⩾ (n − 1)kg, then for q ∈ M \ ({p} ∪ Cut(p)), we have ∆r|q ⩽
(n− 1)

s′k(r)

sk(r)
.

� In normal coordinates, Σr = {|x| = r} and gij(0) = δij , with volume element
√

det(gij)dx1∧· · ·∧

dxn. Restricting on Σr, we get lim
r→0+

m(r)

ωn−1rn−1
= 1, where m(r) is the volume of Σr and ωn−1 is

the volume of Sn−1 ⊂ Rn.

� (Volume Comparison) On a complete Riemannian manifold (Mn, g) with Ric ⩾ (n−1)kg, for any

p ∈ M , |B(p, r)| ⩽ V (n, k, r) =

∫ r

0

ρ(s)ds = ωn−1

∫ r

0

sn−1
k (s)ds, the volume of a ball of radius r

in the model space with constant sectional curvature k.

� (Relative Volume Comparison, Bishop–Gromov) On a complete Riemannian manifold (Mn, g)

with Ric ⩾ (n − 1)kg, |B(p, r)|
V (n, k, r)

is decreasing for r > 0. In particular, |B(p, 2r)|
|B(p, r)|

⩽ V (n, k, 2r)

V (n, k, r)
⩽

C(n, k,Λ) where r ⩽ Λ.

� (Strong Maximum Principle) Let (M, g) be connected and complete, and f : (M, g) → R be contin-
uous with ∆f ⩾ 0 everywhere in the barrier sense. If f has a global maximum, then f is constant.

� (Elliptic Regularity) Let f : (M, g) → R be continuous with ∆f ⩾ 0 and ∆f ⩽ 0 in the barrier
sense. Then f is smooth and ∆f = 0 in the classical sense.

� (Splitting Lemma) If ∇2f ≡ 0 and |∇f | ≡ 1, then (Mn, g) = (Nn−1, gN )× (R, gE).

� (Laplacian Comparison, Calabi) Suppose (Mn, g) is complete and Ric ⩾ (n − 1)kg. Then ∆r ⩽
(n− 1)

s′k(r)

sk(r)
in the barrier sense everywhere for r(x) = d(x, p).

� (Splitting Theorem, Cheeger–Gromoll) Let (Mn, g) be complete, noncompact and suppose Ric ⩾
0. If M contains a geodesic line, then (Mn, g) splits off a line: (Mn, g) = (Nn−1, gN )× (R, gE).

� S3 × S1 does not admit a Ricci-flat metric. (If it does, then its universal cover
(
S3 × R, g̃

)
is Ricci-

flat and contains a geodesic line. Then
(
S3 × R, g̃

)
=
(
N3, gN

)
× (R, gE) with

(
N3, gN

)
(Ricci-)flat.

Since N is simply connected,
(
N3, gN

)
=
(
R3, gE

)
. Thus,

(
S3 × R, g̃

)
=
(
R4, gE

)
, a contradiction.)

�
(
∇X∇Y ω −∇Y ∇Xω −∇[X,Y ]ω

)
(Z) = −ω(Rm(X,Y )Z);∇i∇jωk−∇j∇iωk = −R l

ijk ωl (= Rijklωl

in normal coordinates).
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� ∆(du) = d(∆u) + Ric(∇u) as 1-forms, where Ric(∇u)(X) := Ric(∇u,X).

� (Bochners’ formula) ∆|∇u|2 = 2
∣∣∇2u

∣∣2 + 2Ric(∇u,∇u) + 2〈∇∆u,∇u〉.

� (Structure Theorem, Cheeger–Gromoll) Suppose (Mn, g) is compact with Ric ⩾ 0. Then

– The universal cover
(
M̃, g̃

)
= (N, gN )×

(
Rk, gE

)
, where N is compact.

– The isometry group Iso
(
M̃, g̃

)
= Iso(N, gN )× Iso

(
Rk, gE

)
.

� LV (A(X1, · · · , Xk)) = (LV A)(X1, · · · , Xk) +A(LV X1, · · · , Xk) + · · ·+A(X1, · · · ,LV Xk).
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