
Differentiable Manifolds

Xiaoshuo Lin, Fall 2024

https://xiaoshuo-lin.github.io

https://xiaoshuo-lin.github.io




1

Homework 1

Exercise 1 Prove that, for 1 ⩽ k ⩽ n, the Grassmannian

GrR(k, n) = {k-dimensional linear subspaces ofRn}

is a smoothmanifold, by explicitly constructing open cover and local charts
{
φα : Uα → Vα ⊂ Rk(n−k)

}
α∈I

.

Proof We shall use the following “Smooth Manifold Chart Lemma” which tells us that a set can be given
a topology and a smooth structure under certain conditions:
Smooth Manifold Chart Lemma LetM be a set, and suppose we are given a collection {Uα}α∈Λ of subsets
ofM together with maps ϕα : Uα → Rn, such that the following properties are satisfied:

(i) For each α, ϕα is a bijection between Uα and an open subset ϕα(Uα) ⊂ Rn.

(ii) For each α and β, the sets ϕα(Uα ∩ Uβ) and ϕβ(Uα ∩ Uβ) are open in Rn.

(iii) Whenever Uα ∩ Uβ 6= ∅, the map ϕβ ◦ ϕ−1
α : ϕα(Uα ∩ Uβ) → ϕβ(Uα ∩ Uβ) is smooth.

(iv) Countably many of the sets Uα coverM .

(v) Whenever p, q are distinct points in M , either there exists some Uα containing both p and q or there exist
disjoint sets Uα, Uβ with p ∈ Uα and q ∈ Uβ .

ThenM has a unique smooth manifold structure such that each (Uα, ϕα) is a smooth chart.
Proof of the lemma We begin by showing that

B =
{
ϕ−1
α (V ) : V is open inRn, α ∈ Λ

}
is a topological basis forM . By (i) and (iv), it suffices to show that for any point p in the intersection of
two basis sets ϕ−1

α (V ) and ϕ−1
β (W ), there is a third basis set containing p and contained in the intersec-

tion. In fact, ϕ−1
α (V ) ∩ ϕ−1

β (W ) is itself a basis set. To see this, note that Uα ∩ Uβ 6= ∅, then (iii) implies
that

(
ϕβ ◦ ϕ−1

α

)−1
(W ) is an open subset of ϕα(Uα ∩Uβ), and (ii) implies that this set is also open in Rn.

It follows that
ϕ−1
α (V ) ∩ ϕ−1

β (W ) = ϕ−1
α

(
V ∩

(
ϕβ ◦ ϕ−1

α

)−1
(W )

)
is also a basis set, as claimed.

Eachmapϕα is then a homeomorphism onto its image, wherewe equipM with the topology gener-
ated by the basis B. SoM is locally Euclidean of dimension n. The Hausdorff property follows from (v),
since in the case where distinct points p and q are both contained in some Uα, we can use the homeomor-
phism ϕα : Uα → ϕα(Uα) ⊂ Rn to separate them with disjoint open sets. And the second countability
follows from (iv) and the fact that each Uα is second countable. Finally, (iii) guarantees that the collec-
tion {(Uα, ϕα)} is a smooth atlas. It is clear that this topology and smooth structure are the unique ones
satisfying the conditions of the lemma. 

Now let us construct charts for GrR(k, n) and apply the smooth manifold chart lemma. Let P and
Q be any complementary subspaces of Rn of dimensions k and n − k, respectively. Then Rn = P ⊕ Q.
For any linear map f ∈ L(P,Q), its graph can be identified with a linear subspace of Rn:

Γ(f) := {v + f(v) : v ∈ P}.
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If {e1, · · · , ek} is a basis for P , then {e1 + f(e1), · · · , ek + f(ek)} is a basis for Γ(f). To see this, it suffices
to prove that the set is linearly independent. Suppose that

k∑
i=1

ci[ei + f(ei)] = 0,

then we can rewrite this as
k∑
i=1

ciei + f

(
k∑
i=1

ciei

)
= 0.

Note that the first term is in P and the second term is in Q, so both must be zero. Thus ci = 0 for all i,
as desired. Hence Γ(f) is a k-dimensional subspace of Rn. Any such subspace has the property that its
intersectionwithQ is the zero subspace. Conversely, any k-dimensional subspace S ⊂ Rn that intersects
Q trivially is the graph of a unique linear map f ∈ L(P,Q), which can be constructed as follows: let
πP : Rn → P and πQ : Rn → Q be the projections determined by the direct sum decomposition; then
the hypothesis implies that (πP )|S is an isomorphism from S to P . Therefore, f := [(πQ)|S ] ◦ [(πP )|S ]−1

is a well-defined linear map from P to Q whose graph Γ(f) is S. Denote UQ the subset of GrR(k, n)
consisting of k-dimensional subspaces whose intersections with Q are trivial, then we have a bijection

L(P,Q) UQ

f Γ(f)

[(πQ)|S ] ◦ [(πP )|S ]−1 S

1:1

Γ

φ

By choosing bases for P andQ, we can identify L(P,Q)withM(n−k)×k(R) and hence with Rk(n−k), and
thus we can think of

(
UQ, ϕ := Γ−1

)
as a coordinate chart. Since the image of each such chart is all of

L(P,Q), condition (i) of the lemma is clearly satisfied.

Now let (P ′, Q′) be any other such pair of subspaces, and let πP ′ , πQ′ be the corresponding pro-
jections and ϕ′ : UQ′ → L(P ′, Q′) the corresponding map. We shall prove that ϕ(UQ ∩ UQ′) is open in
L(P,Q), which will establish condition (ii) of the lemma. For each f ∈ ϕ(UQ), define the map

If : P → Rn, v 7→ v + f(v),

which is a bijection from P to Γ(f). Note that Γ(f) = Im If and Q′ = KerπP ′ , hence

f ∈ ϕ(UQ ∩ UQ′) ⇐⇒ Γ(f) ∩Q′ = ∅ ⇐⇒ Im If ∩ KerπP ′ = ∅,

and by linear algebra the last condition is equivalent to

rank(πP ′ ◦ If ) = rank(If ),

namely, the map πP ′ ◦ If has full rank k. Therefore, the corresponding matrix A of πP ′ ◦ If is a non-
singular k × k matrix, i.e. A ∈ GL(k,R). Arrows in the reverse direction then show that f has an open
neighborhood contained in ϕ(UQ ∩ UQ′), which means ϕ(UQ ∩ UQ′) is open in L(P,Q). Thus property
(ii) in the lemma holds.

Weneed to show that the transitionmapϕ′◦ϕ−1 is smooth onϕ(UQ ∩ UQ′). For any f ∈ ϕ(UQ ∩ UQ′),
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letS denote the subspaceΓ(f) ⊂ Rn. Ifweput f ′ := ϕ′◦ϕ−1(f), then as above, f ′ = [(πQ′)|S ]◦[(πP ′)|S ]−1.
Recall that If : P → S is an isomorphism, so we can write

f ′ = [(πQ′)|S ] ◦ If ◦ (If )−1 ◦ [(πP ′)|S ]−1 = (πQ′ ◦ If ) ◦ (πP ′ ◦ If )−1
.

To see that this depends smoothly on f , define linear maps

g = (πP ′)|P , h = (πQ′)|P , j = (πP ′)|Q, k = (πQ′)|Q.

Then for any v ∈ P we have

(πP ′ ◦ If )v = (g + j ◦ f)v, (πQ′ ◦ If )v = (h+ k ◦ f)v,

from which it follows that
f ′ = (h+ k ◦ f) ◦ (g + j ◦ f)−1.

Once we choose bases for P,Q, P ′, Q′, all of these linear maps are represented by matrices, say F, F ′ and
G,H, J,K , respectively. Then

F ′ = (H +KF )(G+ JF )−1.

By Cramer’s rule, the entries of (G+ JF )−1 are rational functions of those of G+ JF , hence the entries
of F ′ depend smoothly on those of F . This proves that ϕ′ ◦ ϕ−1 is a smooth map, so the charts we have
constructed satisfy condition (iii) of the lemma.

To check condition (iv), we just note that GrR(k, n) can in fact be covered by finitely many of the
sets UQ. Let (e1, · · · , en) be a basis for Rn, and consider those (n − k)-dimensional spaces Q that are
spanned by n − k of them. There are

(
n

n−k
)
such spaces. For any k-dimensional subspace S ⊂ Rn,

suppose (f1, · · · , fk) is a basis of S. Then by the Steinitz exchange lemma, we can replace k of the ei,
without loss of generality, say e1, · · · , ek, by (f1, · · · , fk), such that (f1, · · · , fk, ek+1, · · · , en) is a basis for
Rn. Then the (n− k)-dimensional subspaceQ spanned by ek+1, · · · , en is such that S ∈ UQ. Thus, these(
n

n−k
)
charts cover GrR(k, n).

Finally, the Hausdorff condition (v) can be verified by noting that for any two k-dimensional sub-
spaces P, P ′ ⊂ Rn, one can find a subspaceQ of dimension n−kwhose intersections with both P and P ′

are trivial, and then P and P ′ are both contained inUQ. In fact, in the case k > 0, since a real vector space
cannot be a finite union of its proper subspaces, P ∪ P ′ 6= Rn. Hence there exists v1 ∈ Rn \ (P ∪ P ′). If
k < n− 1, we can find v2 ∈ Rn \ ((P ⊕ Span(v1)) ∪ (P ′ ∪ Span(v1))), and so on. This process terminates
at some vn − k with

vn−k ∈ Rn \ ((P ⊕ Span(v1, · · · , vn−k−1)) ∪ (P ′ ⊕ Span(v1, · · · , vn−k−1))).

The process of choosing v1, · · · , vn−k implies that they are linearly independent, so the subspace Q
spanned by them has the desired properties.

Exercise 2 LetM be a smooth manifold and φ ∈ Diff(M). Prove that its graph

Graph(φ) := {(x, φ(x)) : x ∈M}

is a smooth manifold.
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Proof Define the map
F :M → Graph(φ), x 7→ (x, φ(x)).

SinceF is the product of the identitymap IdM and the diffeomorphism x 7→ φ(x), it is smooth. Moreover,
it is clear that F is a bijection, and its inverse is just the projection onto the first factor, which is smooth.
Therefore, F is a diffeomorphism, Graph(φ) 'M is a smooth manifold.

Exercise 3 LetM be a closed smooth manifold and φ ∈ Diff(M). Prove that the mapping torus defined
by

Tϕ(M) := [0, 1]×M/ ∼

is a smooth manifold, where (0, x) is identified with (1, φ(x)) for any x ∈M .

Proof Consider the Z-action on R×M defined by

n. (r, x) = (r + n, φn(x)).

In the sense of quotient topology, the mapping torus Tϕ(M) is just the orbit space (R×M)/Z under this
action. It is clear that this discrete Lie group action is smooth and free. Moreover, sinceM is compact,
the action is proper. To verify this, we need to show that the preimage of any compact set under the
action map

F : Z× (R×M) → (R×M)× (R×M), (n, (r, x)) 7→ ((r + n, φn(x)), (r, x))

is compact. Suppose K ⊂ (R × M) × (R × M) is compact, and let K1 = π1(K) and K2 = π2(K),
where π1, π2 are the projections onto the first and second factors, respectively. Then bothK1 andK2 are
compact in R×M . The projection ofK1 onto R is compact, so (r + n, φn(x)) ∈ K1 holds for only finitely
many integers n. Thus F−1(K) is compact in Z× (R×M) as desired. By the quotient manifold theorem,
Tϕ(M) is a smooth manifold.

Exercise 4 Prove that the following set of matrices

H :=


1 x z

0 1 y

0 0 1

 : x, y, z ∈ R


is a Lie group. Here “H” stands for Heisenberg.

Proof Let us first show that H is group under matrix multiplication. The product of two Heisenberg
matrices is given by 1 x z

0 1 y

0 0 1


1 u w

0 1 v

0 0 1

 =

1 x+ u z + xv + w

0 1 y + v

0 0 1

.
The neutral element of the Heisenberg group is the identity matrix, and inverses are given by

1 x z

0 1 y

0 0 1


−1

=

1 −x xy − z

0 1 −y
0 0 1

.
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We can naturally identify H with R3, and define the multiplication map on R3 by

µ : R3 × R3 → R3, ((x, y, z), (u, v, w)) 7→ (x+ u, y + v, z + xv + w)

and the inverse map by
i : R3 → R3, (x, y, z) 7→ (−x,−y, xy − z).

Both µ and i are smooth maps, so H is a Lie group.

Exercise 5 Assume the orthogonal group O(n) =
{
A ∈Mn×n(R) : AAT = 1

}
is a compact Lie group

of dimension 1
2n(n− 1). Prove that the special orthogonal group

SO(n) := {A ∈ O(n) : det(A) = 1}

is a compact Lie group and calculate its dimension.

Proof Consider the determinant map det : O(n) → R. Since SO(n) = det−1(1) = det−1(R>0), it is
a clopen subgroup of O(n). By openness, SO(n) has the same dimension as O(n); and since SO(n) is
closed in the compact Lie group O(n), it is itself compact. Therefore, SO(n) is a compact Lie group of
dimension 1

2n(n− 1).

Exercise 6 Prove that SO(3) is diffeomorphic to RP 3 as two smooth manifolds.

Proof Any element in SO(3) is a rotation. It can be represented by a pair (v, θ), where v ∈ S2 is a unit
vector along the axis of rotation and θ ∈ [0, 2π] is the angle of rotation about v. Note that this rotation is
equivalent to the rotation about −v by the angle 2π − θ. Therefore we have

SO(3) ' S2 × [0, 2π]

(v, θ) ∼ (−v, 2π − θ) and (v, 0) ∼ (w, 0)
.

In this identification, we define the map

ϕ : SO(3) → RP 3 ' S3

−x ∼ x
, [(v, θ)] 7→

[(
v sin θ

2 , cos
θ
2

)]
.

It is well-defined, since

(v, θ) ∼ (−v, 2π − θ) in SO(3) ↭
(
v sin θ

2 , cos
θ
2

)
∼
(
−v sin 2π−θ

2 , cos 2π−θ
2

)
inRP 3,

(v, 0) ∼ (w, 0) in SO(3) ↭ (v sin 0, cos 0) ∼ (w sin 0, cos 0) inRP 3.

It is straightforward to check that ϕ is a diffeomorphism.

Exercise 7 Identify CPn with the set of equivalence classes in
(
Cn+1 \ {0}

)
/C∗. Consider the map

S : CP 1 × CP 1 → CP 3 by

([(w0, w1)], [(z0, z1)]) 7→ [(w0z0, w0z1, w1z0, w1z1)].

Prove that S is a smooth map. Here, “S” stands for Segre.

Proof The map S is well-defined, since the product wizj (i, j = 0, 1) are all homogeneous of degree 2
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in the variables w0, w1, z0, z1. Take the standard charts (U0, ϕ0) and (U1, ϕ1) on CP 1 given by

U0 = {[w0, w1] : w0 6= 0}, U1 = {[w0, w1] : w1 6= 0}

with local coordinates ϕ0([(w0, w1)]) = w1

w0
on U0 and ϕ1([(w0, w1)]) = w0

w1
on U1. Similarly, we choose

charts for CP 3, denoted by (Vi, ψi) for i = 0, 1, 2, 3.

� If w0z0 6= 0, then we can choose charts (U0 × U0, ϕ0 × ϕ0) for ([(w0, w1)], [(z0, z1)]) and (V0, ψ0) for
[(w0z0, w0z1, w1z0, w1z1)]. Clearly S(U0 × U0) ⊂ V0. The composite map ψ0 ◦ S ◦ (ϕ0 × ϕ0)

−1 is
given by

(x, y)
(φ0×φ0)

−1

([(1, x)], [(1, y)])
S

[(1, y, x, xy)]
ψ0

(y, x, xy),

which is clearly smooth.

� If w0z1 6= 0, then we can choose charts (U0 × U1, ϕ0 × ϕ1) for ([(w0, w1)], [(z0, z1)]) and (V1, ψ1) for
[(w0z0, w0z1, w1z0, w1z1)]. Clearly S(U0 × U1) ⊂ V1. The composite map ψ1 ◦ S ◦ (ϕ0 × ϕ1)

−1 is
given by

(x, y)
(φ0×φ1)

−1

([(1, x)], [(y, 1)])
S

[(y, 1, xy, x)]
ψ1

(y, xy, x),

which is clearly smooth.

� If w1z0 6= 0, then we can choose charts (U1 × U0, ϕ1 × ϕ0) for ([(w0, w1)], [(z0, z1)]) and (V2, ψ2) for
[(w0z0, w0z1, w1z0, w1z1)]. Clearly S(U1 × U0) ⊂ V2. The composite map ψ2 ◦ S ◦ (ϕ1 × ϕ0)

−1 is
given by

(x, y)
(φ1×φ0)

−1

([(x, 1)], [(1, y)])
S

[(x, xy, 1, y)]
ψ2

(x, xy, y),

which is clearly smooth.

� If w1z1 6= 0, then we can choose charts (U1 × U1, ϕ1 × ϕ1) for ([(w0, w1)], [(z0, z1)]) and (V3, ψ3) for
[(w0z0, w0z1, w1z0, w1z1)]. Clearly S(U1 × U1) ⊂ V3. The composite map ψ3 ◦ S ◦ (ϕ1 × ϕ1)

−1 is
given by

(x, y)
(φ1×φ1)

−1

([(x, 1)], [(y, 1)])
S

[(xy, x, y, 1)]
ψ3

(xy, x, y),

which is clearly smooth.

Therefore, S is a smooth map.

Exercise 8 Consider group E(n) := Rn ⋊O(n) where the multiplication is given by

(v,A) · (w,B) = (v +Aw,AB)

where “E” stands for Euclidean. Note thatE(n) is a Lie group. Meanwhile, a representation ofE(n) is a
Lie group homomorphism fromE(n) to GL(k,R) for some k > 0. Construct a non-trivial representation
of E(n) that is injective.

Proof We have already seen in elementary geometry that E(n) is just the isometry group of the n-
dimensional Euclidean space, and E(n) can be viewed as the product manifold Rn × O(n). So we are
left to verify that the group operations are smooth. The multiplication map

µ : E(n)× E(n) → E(n), ((v,A), (w,B)) 7→ (v +Aw,AB)
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is smooth, since it is the product of two smooth maps. Hence E(n) is a Lie group.
A non-trivial representation of E(n) that is injective can be constructed as follows. Consider

Φ : E(n) ↪→ GL(n+ 1,R), (v,A) 7→

(
A v

0 1

)
.

It is well-defined, since the block matrix is invertible if and only ifA is invertible. To see thatΦ is a group
homomorphism, note that for any (v,A), (w,B) ∈ E(n), we have

Φ((v,A) · (w,B)) = Φ(v +Aw,AB) =

(
AB v +Aw

0 1

)
=

(
A v

0 1

)(
B w

0 1

)
= Φ(v,A)Φ(w,B).

Since Φ is clearly smooth, it serves as a non-trivial injective representation of E(n).

Exercise 9 Prove that the upper half-plane in C, denoted by

H := {z ∈ C : Im(z) > 0}

is a homogeneous space.

Proof The Lie group SL(2,R) acts smoothly and transitively on H by Möbius transformations:(
a b

c d

)
. z =

az + b

cz + d
, where ad− bc = 1.

This action is clearly smooth since cz + d 6= 0 for all z ∈ H. To see that it is transitive, let z = x+ iy be a
given point in H. Observe that the matrix(√

y x√
y

0 1√
y

)
∈ SL(2,R)

maps i to z. Since z ∈ H is arbitrary, the orbit of i under the action of SL(2,R) is all of H. Therefore, the
group SL(2,R) acts transitively on H, and H is a homogeneous space.

Exercise 10 Prove that ifM and N are smooth diffeomorphic, then dimM = dimN .

Proof Suppose M is a nonempty smooth m-manifold, N is a nonempty smooth n-manifold, and f :

M → N is a diffeomorphism. Choose any point p ∈ M , and let (U,ϕ) and (V, ψ) be smooth coordinate
charts containing p and f(p), respectively. Then (the restriction of) F := ψ ◦f ◦ϕ−1 is a diffeomorphism
from an open subset X ⊂ Rm to an open subset Y ⊂ Rn. Since F−1 ◦ F = IdX , the chain rule implies
that for each x ∈ X ,

IdRm = D(IdX)(x) = D
(
F−1 ◦ F

)
(x) = D

(
F−1

)
(F (x)) ◦DF (x).

Similarly, F ◦ F−1 = IdY implies that DF (x) ◦ D
(
F−1

)
(F (x)) is the identity on Rn. This implies that

DF (x) is invertible with inverse D
(
F−1

)
(F (x)), and therefore n = m.
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Homework 2

Exercise 11 Given the Grassmannian GrR(k, n), consider the following set

γR(k, n) :=
{
(V, v) ∈ GrR(k, n)× Rk : v ∈ V

}
.

Prove that under the natural projection π(V, v) := V , the structure π : γR(k, n) → GrR(k, n) is a real
vector bundle of rank-k. This vector bundle is called the tautological bundle (over GrR(k, n)).

Proof In Exercise 1 we have constructed local charts on GrR(k, n) of the form

ϕQ : UQ → L(P,Q)
∼−→ Rk(n−k).

Recall that when identifying L(P,Q) with M(n−k)×k(R) and then Rk(n−k), we have chosen some bases
for P and Q, which gives a natural linear isomorphism φQ : P → Rk. Hence we can construct local
trivializations of γR(k, n) as follows:

ΦQ : π−1(UQ) = {(V, v) : V ∈ UQ, v ∈ V } ∼−→ UQ × Rk,

(V, v) 7−→ (V, φQ(v)).

It is immediate that ΦQ preserves the fibers:

ΦQ|π−1({V }) : π
−1({V }) = {V } × V

∼−→ {V } × Rk.

For any two intersecting open sets UQ and UQ′ , the map ΦQ′ ◦ Φ−1
Q has the form

ΦQ′ ◦ Φ−1
Q : (UQ ∩ UQ′)× Rk → (UQ ∩ UQ′)× Rk,

(V, v) 7→
(
V, φQ′ ◦ φ−1

Q (v)
)
.

Here the transition map φQ′ ◦ φ−1
Q : Rk → Rk is a linear isomorphism. Therefore, the structure π :

γR(k, n) → GrR(k, n) is a real vector bundle of rank-k.

Exercise 12 LetX,Y be vector fields onM , and locally (within some (Uα, φα))writeX = (X1, · · · , Xn)

and Y = (Y1, · · · , Yn)whereXi, Yj are smooth functions onUα for 1 ⩽ i, j ⩽ n. Prove that the Lie bracket
locally writes as follows,

[X,Y ] = (DXY1 −DYX1, · · · ,DXYn −DYXn).

Use this to calculate [X,Y ] for X,Y ∈ Γ
(
TR3

)
(in coordinate (x, y, z)) where

X((x, y, z)) = (−y, x, 0) and Y ((x, y, z)) = (0,−z, y).

Proof By the (implicit) definition of the Lie bracket, we have

D[X,Y ]f = DX DY f −DY DXf
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=

n∑
i=1

Xi
∂

∂xi

 n∑
j=1

Yj
∂f

∂xj

−
n∑
j=1

Yj
∂

∂xj

(
n∑
i=1

Xi
∂f

∂xi

)

=

n∑
i,j=1

Xi
∂

∂xi

(
Yj

∂f

∂xj

)
−

n∑
j,i=1

Yj
∂

∂xj

(
Xi

∂f

∂xi

)

=

n∑
i,j=1

Xi

(
∂Yj
∂xi

∂f

∂xj
+ Yj

∂2f

∂xi∂xj

)
−

n∑
j,i=1

Yj

(
∂Xi

∂xj
∂f

∂xi
+Xi

∂2f

∂xj∂xi

)

=

n∑
i,j=1

Xi
∂Yj
∂xi

∂f

∂xj
−

n∑
j,i=1

Yj
∂Xi

∂xj
∂f

∂xi

=

n∑
i,j=1

(
Xi
∂Yj
∂xi

− Yi
∂Xj

∂xi

)
∂f

∂xj

=

n∑
j=1

(
n∑
i=1

Xi
∂Yj
∂xi

−
n∑
i=1

Yi
∂Xj

∂xi

)
∂f

∂xj

= (DXY1 −DYX1, · · · ,DXYn −DYXn)(f)

for any smooth function f . Herewe have used the fact thatmixed partial derivatives of a smooth function
commute. Thus the local computation formula is proved. With this formula, we can calculate

[X,Y ] = (0− z, 0− 0, x− 0) = (−z, 0, x).

Exercise 13 (1) Let T2 denote the 2-dimensional torus S1 × S1. Construct a vector fieldX ∈ Γ
(
TT2

)
that does not have any zero’s.

(2) Construct a vector field X ∈ Γ
(
TS2

)
that has only one zero.

Solution (1) Parametrize the 2-dimensional torus by

r : R2 → R3, (u, v) 7→ ((2 + cosu) cos v, (2 + cosu) sin v, sinu).

Taking partial derivatives with respect to u and v, we get

ru(u, v) = (− sinu cos v,− sinu sin v, cosu),
rv(u, v) = (−(2 + cosu) sin v, (2 + cosu) cos v, 0).

By construction, the vector field X := (ru, rv) is everywhere tangential to T2. To see that it is
nowhere vanishing, we compute

‖ru‖ =
√

sin2 u cos2 v + sin2 u sin2 v + cos2 u = 1

and
‖rv‖ =

√
(2 + cosu)2

(
sin2 v + cos2 v

)
= 2 + cosu ⩾ 1.

(2) Consider the stereographic projection of S2 \ {(0, 0, 1)} onto R2:

σ : S2 \ {(0, 0, 1)} → R2, (x, y, z) 7→
(

x

1− z
,

y

1− z

)
.
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Its inverse is given by

σ−1 : R2 → S2 \ {(0, 0, 1)}, (u, v) 7→
(

2u

u2 + v2 + 1
,

2v

u2 + v2 + 1
,
u2 + v2 − 1

u2 + v2 + 1

)
.

The differential of σ−1 at (u, v) ∈ R2 is represented by its Jacobi matrix,

Jac
(
σ−1

)
((u, v)) =

1

(u2 + v2 + 1)
2

2− 2u2 + 2v2 −4uv

−4uv 2 + 2u2 − 2v2

4u 4v

.
Since U((u, v)) = ∂

∂u is a nowhere vanishing vector field on R2, the pushforward of U at (u, v) by
σ−1 is proportional to (

1− u2 + v2,−2uv, 2u
)
,

and by substituting u =
x

1− z
and v =

y

1− z
, we obtain a nowhere vanishing vector field on

S2 \ {(0, 0, 1)}:
X1((x, y, z)) =

1

(1− z)2
(
2− 2x2 − 2z,−2xy, 2x(1− z)

)
.

This is proportional to the vector field

X((x, y, z)) =
(
x2 + z − 1, xy, x(z − 1)

)
.

This expression allows us to extend X smoothly to the entire S2 by setting X((0, 0, 1)) = (0, 0, 0).
To check that X has only one zero, note that the second component xy vanishes only if x = 0 or
y = 0. When x = 0, the vector field becomes (z − 1, 0, 0), which vanishes only at the north pole
(0, 0, 1). When y = 0, the vector field becomes

(
x2 + z − 1, 0, x(z − 1)

)
, which again vanishes only

at the north pole (0, 0, 1). Therefore X ∈ Γ
(
TS2

)
has only one zero at the north pole.

Exercise 14 On the standard unit sphere S3 in R4, construct three smooth vector fields X,Y, Z ∈
Γ
(
TS3

)
such that for every p ∈ S3, the vectors {X(p), Y (p), Z(p)} form a basis at the fiber TpS3 = π−1(p)

of the tangent bundle π : TS3 → S3.

Solution We use the following proposition to characterize the tangent space at each point p ∈ S3:
Proposition SupposeM is a smooth manifold and S ⊂ M is an embedded submanifold. If Φ : U → N is any
local defining map for S, then TpS = KerdΦp : TpM → TΦ(p)N for each p ∈ S ∩ U .

The defining map for S3 is given by Φ(x1, x2, x3, x4) = x21 + x22 + x23 + x24 − 1. The differential of Φ
at p = (x1, x2, x3, x4) ∈ S3 is dΦp = 2(x1, x2, x3, x4), hence

TpS3 =
{
v ∈ TpS3 : pTv = 0

}
.

Therefore we define for (x, y, z, w) ∈ S3 ⊂ R4 the following three vector fields:

X((x, y, z, w)) = −y ∂
∂x

+ x
∂

∂y
− w

∂

∂z
+ z

∂

∂w
,

Y ((x, y, z, w)) = −z ∂
∂x

+ w
∂

∂y
+ x

∂

∂z
− y

∂

∂w
,

Z((x, y, z, w)) = −w ∂

∂x
− z

∂

∂y
+ y

∂

∂z
+ x

∂

∂w
.
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By the above proposition they form a basis at each tangent space. Since S3 is an embedded submanifold
of R4, X,Y, Z are all smooth vector fields on S3 by composition. To see linear independence, suppose
V := aX(p) + bY (p) + cZ(p) = 0 for some p ∈ S3 and a, b, c ∈ R. Since X,Y, Z are pairwise orthogonal
at each point, we have

0 = 〈V, V 〉 = a2〈X(p), X(p)〉+ b2〈Y (p), Y (p)〉+ c2〈Z(p), Z(p)〉.

This implies a = b = c = 0, so X,Y, Z are linearly independent at each point.

Exercise 15 Prove that for any finite-dimensional vector spacesU, V,W , there exists a map ϕ : U⊗(V ⊗
W ) → (U ⊗ V )⊗W that is an isomorphism and identifies u⊗ (v ⊗ w) and (u⊗ v)⊗ w.

Proof The map
f : U × V ×W → (U ⊗ V )⊗W, (u, v, w) 7→ (u⊗ v)⊗ w

is obviously multilinear, and thus by the universal property of tensor products, it descends to a linear
map

f̃ : U ⊗ V ⊗W → (U ⊗ V )⊗W, u⊗ v ⊗ w 7→ (u⊗ v)⊗ w.

Since (U ⊗V )⊗W is spanned by elements of the form (u⊗ v)⊗w, the map f̃ is surjective, and therefore
it is an isomorphism for dimensional reasons. Similarly, there is an isomorphism

g̃ : U ⊗ V ⊗W → U ⊗ (V ⊗W ), u⊗ v ⊗ w 7→ u⊗ (v ⊗ w).

Finally, the composition ϕ := f̃ ◦ g̃−1 is the desired isomorphism.

Exercise 16 Recall that an element x ∈ V ⊗W is called decomposable if there exist v ∈ V and w ∈ W

such that x = v ⊗ w. Suppose V admits a basis {e1, · · · , en} andW admits a basis {f1, · · · , fm}. Prove
that x =

∑
aij(ei ⊗ fj) ∈ V ⊗W is decomposable if and only if the matrix (aij)1⩽i⩽n,1⩽j⩽m has rank 1.

Proof Denote the matrix (aij)1⩽i⩽n,1⩽j⩽m by A. Formally, we can write

x =

n∑
i=1

m∑
j=1

aij(ei ⊗ fj) =
(
e1 · · · en

)
A


f1
...
fm

.
Then

rankA = 1

m

A =


r1
...
rn

(s1 · · · sm

)
for some ri, sj ∈ R

m

x =
(
e1 · · · en

)
r1
...
rn

(s1 · · · sm

)
f1
...
fm

 =

(
n∑
i=1

riei

)
⊗

 m∑
j=1

sjfj

.
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Exercise 17 For any matrices A ∈ GL(k,R) and B ∈ GL(l,R), prove

det(A⊗B) = [det(A)]l[det(B)]k.

Proof (Proof 1) Let λ1, · · · , λk ∈ C be the eigenvalues of A with associated eigenvectors v1, · · · , vk,
and let µ1, · · · , µl ∈ C be the eigenvalues of B with associated eigenvectors w1, · · · , wl. Then

(A⊗B)(vi ⊗ wj) = Avi ⊗Bwj = λivi ⊗ µjwj = λiµj(vi ⊗ wj).

Hence the eigenvalues of A ⊗ B are λiµj (1 ⩽ i ⩽ k, 1 ⩽ j ⩽ l), counted with multiplicities. It
follows that

det(A⊗B) =

k∏
i=1

l∏
j=1

λiµj =

k∏
i=1

λli

l∏
j=1

µkj = [det(A)]l[det(B)]k.

(Proof 2) Since
det(A⊗ 1l×l) = det(1l×l ⊗A) = det(diag(A, · · · , A︸ ︷︷ ︸

l copies

)) = [det(A)]l,

and similarly
det(1k×k ⊗B) = [det(B)]k,

we have
det(A⊗B) = det((A⊗ 1l×l)(1k×k ⊗B)) = [det(A)]l[det(B)]k.

Exercise 18 Recall that on an even-dimensional manifold M , an almost complex structure denoted by
J is a smooth family of morphisms Jx : TxM → TxM satisfying J2

x = −1. Consider the following
(1, 2)-tensor field

NJ(X,Y ) := [X,Y ] + J [JX, Y ] + J [X, JY ]− [JX, JY ]

for anyX,Y ∈ Γ(TM). A celebrated result fromNewlander-Nirenberg says that J is integrable (induced
by a complex structure) if and only if NJ ≡ 0. Prove that over a closed surface Σ, any almost complex
structure J (if exists) is always integrable.

Proof Let Σ be a closed surface (i.e., a 2-dimensional smooth manifold), and fix a point p ∈ Σ. Let V
be a non-vanishing local vector field defined in a neighborhood of p. Note that {V, JV } forms a basis in
this neighborhood, for if V and JV are linearly dependent, then JV = cV for some c ∈ R, which implies
−V = J2V = cJV = c2V , a contradiction. Then it suffices to show that NJ(V, V ) = 0 = NJ(V, JV ) at p
since NJ is a (1, 2)-tensor field. In fact, using the Lie bracket properties, we have

NJ(V, V ) = [V, V ] + J [JV, V ] + J [V, JV ]− [JV, JV ]

= J [JV, V ] + J [V, JV ]

= J [JV, V ]− J [JV, V ]

= 0

and

NJ(V, JV ) = [V, JV ] + J [JV, JV ] + J
[
V, J2V

]
−
[
JV, J2V

]
= [V, JV ] + J [JV, JV ] + J [V,−V ]− [JV,−V ]
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= [V, JV ]− J [V, V ] + [JV, V ]

= [V, JV ]− [V, JV ]

= 0.

Since p is arbitrary, NJ ≡ 0 on Σ, and thus J is integrable.

Exercise 19 Prove that on any Riemannian manifold (M, g), there exists a unique connection ∇ satis-
fying, for any X,Y, Z ∈ Γ(TM),

(i) (compatibility) Zg(X,Y ) = g(∇ZX,Y ) + g(X,∇ZY ).

(ii) (torsion-free) [X,Y ] = ∇XY −∇YX .

Proof Weprove uniqueness first, by deriving a formula for∇. Suppose that∇ is a connection satisfying
the above conditions (i) and (ii), and let X,Y, Z ∈ Γ(TM). Writing the compatibility equation three
times with X,Y, Z cyclically permuted, we obtain

Xg(Y, Z) = g(∇XY, Z) + g(Y,∇XZ),

Y g(Z,X) = g(∇Y Z,X) + g(Z,∇YX),

Zg(X,Y ) = g(∇ZX,Y ) + g(X,∇ZY ).

Using the torsion-free condition on the last term in each line, this can be rewritten as

Xg(Y, Z) = g(∇XY, Z) + g(Y,∇ZX) + g(Y, [X,Z]),

Y g(Z,X) = g(∇Y Z,X) + g(Z,∇XY ) + g(Z, [Y,X]),

Zg(X,Y ) = g(∇ZX,Y ) + g(X,∇Y Z) + g(X, [Z, Y ]).

Adding the first two of these equations and subtracting the third, we obtain

Xg(Y, Z) + Y g(Z,X)− Zg(X,Y ) = 2g(∇XY, Z) + g(Y, [X,Z]) + g(Z, [Y,X])− g(X, [Z, Y ]).

Finally, solving for g(∇XY, Z), we get

g(∇XY, Z) =
1

2
[Xg(Y, Z) + Y g(Z,X)− Zg(X,Y )− g(Y, [X,Z])− g(Z, [Y,X]) + g(X, [Z, Y ])].

Now suppose∇1 and∇2 are two connections on TM that are torsion-free and compatible with g. Since
the right-hand side of the above formula does not depend on the connection, it follows that

g
(
∇1
XY −∇2

XY, Z
)
= 0

for all X,Y, Z . This can happen only if ∇1
XY = ∇2

XY for all X and Y , so ∇1 = ∇2.
To prove existence, one only need to check that the ∇XY defined by the above formula satisfies

all conditions of a connection and is torsion-free and compatible with g. For any f, h ∈ C∞(M) and
X1, X2, X, Y1, Y2, Y, Z ∈ Γ(TM), with the product rule of the Lie bracket, we have

g(∇fX1+hX2Y, Z) =
1

2
[(fX1 + hX2)g(Y, Z) + Y g(Z, fX1 + hX2)− Zg(fX1 + hX2, Y )

−g(Y, [fX1 + hX2, Z])− g(Z, [Y, fX1 + hX2]) + g(fX1 + hX2, [Z, Y ])]
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=
1

2
[fX1g(Y, Z) + hX2g(Y, Z) + Y fg(Z,X1) + Y hg(Z,X2)

−Zfg(X1, Y )− Zhg(X2, Y )− g(Y, [fX1, Z])− g(Y, [hX2, Z])

−g(Z, [Y, fX1])− g(Z, [Y, hX2]) + fg(X1, [Z, Y ]) + hg(X2, [Z, Y ])]

=
1

2
[fX1g(Y, Z) + hX2g(Y, Z) + Y (f)g(Z,X1) + fY g(Z,X1)

Y (h)g(Z,X2) + hY g(Z,X2)− Z(f)g(X1, Y )− fZg(X1, Y )

−Z(h)g(X2, Y )− hZg(X2, Y )− g(Y, f [X1, Z]− Z(f)X1)

−g(Y, h[X2, Z]− Z(h)X2)− g(Z, f [Y,X1] + Y (f)X1)

−g(Z, h[Y,X2] + Y (h)X2) + fg(X1, [Z, Y ]) + hg(X2, [Z, Y ])]

=fg(∇X1
Y, Z) + hg(∇X2

Y, Z)

=g((f∇X1
+ h∇X2

)Y, Z)

and

g(∇X(Y1 + Y2), Z) =
1

2
[Xg(Y1 + Y2, Z) + (Y1 + Y2)g(Z,X)− Zg(X,Y1 + Y2)

−g(Y1 + Y2, [X,Z])− g(Z, [Y1 + Y2, X]) + g(X, [Z, Y1 + Y2])]

=
1

2
[Xg(Y1, Z) +Xg(Y2, Z) + Y1g(Z,X) + Y2g(Z,X)

−Zg(X,Y1)− Zg(X,Y2)− g(Y1, [X,Z])− g(Y2, [X,Z])

−g(Z, [Y1, X])− g(Z, [Y2, X]) + g(X, [Z, Y1]) + g(X, [Z, Y2])]

=g(∇XY1 +∇XY2, Z).

and finally

g(∇X(fY ), Z) =
1

2
[Xg(fY, Z) + fY g(Z,X)− Zg(X, fY )

−g(fY, [X,Z])− g(Z, [fY,X]) + g(X, [Z, fY ])]

=
1

2
[Xfg(Y, Z) + fY g(Z,X)− Zfg(X,Y )− fg(Y, [X,Z])

−g(Z,−X(f)Y − f [X,Y ]) + g(X,Z(f)Y + f [Z, Y ])]

=
1

2
[X(f)g(Y, Z) + fXg(Y, Z) + fY g(Z,X)− Z(f)g(X,Y )− fZg(X,Y )

−fg(Y, [X,Z]) +X(f)g(Z, Y ) + fg(Z, [X,Y ]) + Z(f)g(X,Y ) + fg(X, [Z, Y ])]

=
1

2
[fXg(Y, Z) + fY g(Z,X)− fZg(X,Y )

−fg(Y, [X,Z])− fg(Z, [Y,X]) + fg(X, [Z, Y ])] +X(f)g(Y, Z)

=fg(∇XY, Z) +X(f)g(Y, Z)

=g(X(f)Y + f∇XY, Z).

To check the torsion-free condition, we have

g(∇XY −∇YX,Z) =
1

2
[−g(Y, [X,Z])− g(Z, [Y,X]) + g(X, [Z, Y ])

+g(X, [Y, Z]) + g(Z, [X,Y ])− g(Y, [Z,X])]
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=
1

2
[−g(Z, [Y,X]) + g(Z, [X,Y ])]

=g([X,Y ], Z),

which implies [X,Y ] = ∇XY −∇YX . Finally, the compatibility condition is obtained from

g(∇ZX,Y ) + g(X,∇ZY )

=
1

2
[Zg(X,Y ) +Xg(Y, Z)− Y g(Z,X)− g(X, [Z, Y ])− g(Y, [X,Z]) + g(Z, [Y,X])]

+
1

2
[Zg(Y,X) + Y g(X,Z)−Xg(Z, Y )− g(Y, [Z,X])− g(X, [Y, Z]) + g(Z, [X,Y ])]

=Zg(X,Y ).

Exercise 20 Given a Riemannian manifold (M, g), prove that for any smooth function F : M → R,
there exists a unique vector field denoted by ∇F satisfying

g(∇F,X) = DXF

for any X ∈ Γ(TM). This vector field is called the gradient of F onM . Also, prove that the function F is
non-decreasing along∇F . Finally, work out (with details) the explicit formula of∇F forF :

(
R2, g

)
→ R

in polar coordinate (r, θ), where g is taken as the standard inner product.

Proof Since the metric tensor g is non-degenerate, it induces the musical isomorphisms [ : TM →
T ∗M, X 7→ g(X, ·) and ] := [−1 : T ∗M → TM . In local coordinates {xi} we have g = gij dxi ⊗ dxj and
the musicalities are given by

[

(
∂

∂xi

)
= gij dxj and ]

(
dxi
)
= gij

∂

∂xj
,

where
[
gij
]
= [gij ]

−1. By definition [(∇F ) = dF , so the gradient ∇F is given by

∇F = ](dF ) = ]

(
∂F

∂xi
dxi
)

=
∂F

∂xi
gij

∂

∂xj
. (20–1)

One can check that this vector field satisfies the given equation:

g(∇F,X) =
∂F

∂xi
gijg

(
∂

∂xj
, X

)
=
∂F

∂xi
gijXkgjk

=
∂F

∂xi
Xkδik =

∂F

∂xi
Xi = DXF.

If there is another vector field ∇F satisfying the equation, then

g
(
∇F −∇F,X

)
= 0,

which implies ∇F = ∇F . Therefore ∇F is unique. Since D∇FF = g(∇F,∇F ) ⩾ 0, the function F is
non-decreasing along ∇F .

To get the explicit formula of∇F for F :
(
R2, g

)
→ R in polar coordinates (r, θ), we need to compute
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the matrices [grθ] and
[
grθ
]
. Let x = r cos θ and y = r sin θ. Then

∂

∂r
=
∂x

∂r

∂

∂x
+
∂y

∂r

∂

∂y
= cos θ ∂

∂x
+ sin θ ∂

∂y
,

∂

∂θ
=
∂x

∂θ

∂

∂x
+
∂y

∂θ

∂

∂y
= −r sin θ ∂

∂x
+ r cos θ ∂

∂y
.

Hence we get

grr = g

(
∂

∂r
,
∂

∂r

)
= cos2 θ + sin2 θ = 1,

grθ = gθr = g

(
∂

∂r
,
∂

∂θ

)
= −r cos θ sin θ + r sin θ cos θ = 0,

gθθ = g

(
∂

∂θ
,
∂

∂θ

)
= r2 sin2 θ + r2 cos2 θ = r2.

Therefore [
grθ
]
= [grθ]

−1 =

(
1 0

0 r2

)−1

=

(
1 0

0 1
r2

)
.

Substituting these into (20–1) gives

∇F =
∂F

∂r

∂

∂r
+

1

r2
∂F

∂θ

∂

∂θ
.

Homework 3

Exercise 21 Let V be a vector space with basis {e1, · · · , en}. Then for a fixed k ∈ {1, · · · , n}, prove that

{
ei1 ∧ · · · ∧ eik : 1 ⩽ i1 < · · · < ik ⩽ n

}
form a basis of

∧k
V ∗. Therefore, dim

∧k
V ∗ = n!

k!(n−k)! .

Proof Let us introduce the multi-index notation I = (i1, · · · , ik) and write eI for (ei1 , · · · , eik) and αI

for ei1 ∧ · · · ∧ eik . Then one has

αI(eJ) = δIJ :=

1, if I = J,

0, if I 6= J.

First, we show linear independence. Suppose
∑
I

cIα
I = 0, cI ∈ R, and I runs over all strictly

ascending multi-indices of length k. Applying both sides to eJ , J = (j1 < · · · < jk), we get

0 =
∑
I

cIα
I(eJ) =

∑
I

cIδ
I
J = cJ ,

since among all strictly ascending multi-indices of length k, there is only one equal to J . This proves
that the αI are linearly independent.

To show that the αI span
∧k

V ∗, let f ∈
∧k

V ∗. We claim that

f =
∑
I

f(eI)α
I ,
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where I runs over all strictly ascending multi-indices of length k. Let g =
∑
I

f(eI)α
I . By k-linearity

and the alternating property, if f and g agree on all eJ , where J = (j1 < · · · < jk), then they are equal.
But

g(eJ) =
∑
I

f(eI)α
I(eJ) =

∑
I

f(eI)δ
I
J = f(eJ).

Therefore, f = g =
∑
I

f(eI)α
I .

We have shown that the eI form a basis of
∧k

V . As a consequence, dim
∧k

V =
(
n
k

)
= n!

k!(n−k)! .

Exercise 22 Let V be a vector space with basis {e1, · · · , en}, equipped with an inner product 〈·, ·〉 with
signature

(−, · · · ,−︸ ︷︷ ︸
p

,+ · · · ,+︸ ︷︷ ︸
q

).

Prove that for the Hodge star operator ? :
∧k

V ∗ →
∧n−k

V ∗, it satisfies

? ◦ ? = (−1)k(n−k)+p · 1∧k V ∗

for any k ∈ {1, · · · , n}.

Proof By Exercise 21, it suffices to prove for a basis element ei1 ∧ · · · ∧ eik , where 1 ⩽ i1 < · · · < ik ⩽ n.
Let eik+1 , · · · , ein be the complementary basis elements with ik+1 < · · · < in. Since ? ◦ ? = ±1∧k V ∗ , we
just need to get the sign right. We have

s := sign
(
1 · · · k k + 1 · · · n

i1 · · · ik ik+1 · · · in

)
sign

(
ik+1 · · · in i1 · · · ik

1 · · · n− k n− k + 1 · · · n

)

= sign
(

i1 · · · ik ik+1 · · · in

ik+1 · · · in i1 · · · ik

)

= sign
(

1 · · · k k + 1 · · · n

k + 1 · · · n 1 · · · k

)
= (−1)k(n−k).

Hence

? ◦ ?
(
ei1 ∧ · · · ∧ eik

)
= s · (ei1 , ei1) · · · (eik , eik)(eik+1

, eik+1
) · · · (ein , ein)ei1 ∧ · · · ∧ eik

= s · (e1, e1) · · · (en, en)ei1 ∧ · · · ∧ eik

= (−1)k(n−k)(−1)p(+1)qei1 ∧ · · · ∧ eik

= (−1)k(n−k)+pei1 ∧ · · · ∧ eik .

Exercise 23 Let {ϕs,t}(s,t)∈R2 be a 2-parametrized group of diffeomorphisms (on a manifoldM). Con-
sider two vector fields defined via the following equations,

∂ϕs,t
∂t

= Xs ◦ ϕs,t and ∂ϕs,t
∂s

= Yt ◦ ϕs,t.

Then prove the following equality,
∂Xs

∂s
− ∂Yt

∂t
= [Xs, Yt]
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where [·, ·] denotes the Poisson bracket of vector fields.

Proof Suppose dimM = n, then in local coordinates we have for each 1 ⩽ i ⩽ n

∂ϕis,t
∂t

(x) = Xi
s(ϕs,t(x)) =: X

i(s, ϕs,t(x)) and
∂ϕis,t(x)

∂s
(x) = Y it (ϕs,t(x)) =: Y

i(s, ϕs,t(x)).

Differentiating both sides of the first equation with respect to s gives

∂

∂s

(
∂ϕis,t
∂t

)
(x) =

∂Xi

∂s
(s, ϕs,t(x)) +

n∑
j=1

∂Xi

∂xj
(s, ϕs,t(x)) ·

∂ϕjs,t
∂s

(x)

=
∂Xi

s

∂s
(ϕs,t(x)) +

n∑
j=1

∂Xi
s

∂xj
(ϕs,t(x)) ·

∂ϕjs,t
∂s

(x).

Using ∂ϕs,t
∂s

= Yt ◦ ϕs,t, this becomes

∂

∂s

(
∂ϕis,t
∂t

)
(x) =

∂Xi
s

∂s
(ϕs,t(x)) +

n∑
j=1

∂Xi
s

∂xj
(ϕs,t(x)) · Y jt (ϕs,t(x)).

Thus, we have
∂

∂s

(
∂ϕis,t
∂t

)
=

∂Xi
s

∂s
+

n∑
j=1

Y jt
∂Xi

s

∂xj

 ◦ ϕs,t. (23–1)

Similar calculations for the second equation yield

∂

∂t

(
∂ϕis,t
∂s

)
=

∂Y it
∂t

+

n∑
j=1

Xj
s

∂Y it
∂xj

 ◦ ϕs,t. (23–2)

Since ϕs,t is smooth in both s and t, the mixed partial derivatives commute. Thus, the left-hand side of
(23–1) equals the left-hand side of (23–2). And since ϕs,t is a diffeomorphism, this gives

∂Xi
s

∂s
+

n∑
j=1

Y jt
∂Xi

s

∂xj
=
∂Y it
∂t

+

n∑
j=1

Xj
s

∂Y it
∂xj

.

Therefore, we have

∂Xi
s

∂s
− ∂Y it

∂t
=

n∑
j=1

Xj
s

∂Y it
∂xj

−
n∑
j=1

Y jt
∂Xi

s

∂xj
= DXsY

i
t −DYtX

i
s.

By Exercise 12, this implies
∂Xs

∂s
− ∂Yt

∂t
= [Xs, Yt].

Exercise 24 Prove that, for vector fields X,Y (on a manifold M), the Lie derivative satisfies LXY =

[X,Y ].

Proof (Proof 1) We begin by showing

(LXω)(Y ) = X(ω(Y ))− ω(LXY ) (24–1)
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for ω ∈ Ω1(M) and X,Y ∈ Γ(TM). For any p ∈M ,

(LXω)(Y )p = lim
t→0

((
ϕXt
)∗
ω
)
p
(Yp)− ωp(Yp)

t

= lim
t→0

ωφX
t (p)

((
dϕXt

)
p
(Yp)

)
− ωp(Yp)

t

= lim
t→0

ωφX
t (p)

(
YφX

t (p)

)
− ωp(Yp)

t
+ lim
t→0

ωφX
t (p)

((
dϕXt

)
p
(Yp)− YφX

t (p)

)
t

= lim
t→0

ω(Y )φX
t (p) − ω(Y )p

t
+ lim
t→0

((
ϕXt
)∗
ω
)
p

(
Yp −

(
dϕX−t

)
φX

t (p)

(
YφX

t (p)

))
t

= X(ω(Y ))p + lim
t→0

((
ϕXt
)∗
ω
)
p
(−t(LXY )p + o(t))

t

= X(ω(Y ))p − lim
t→0

((
ϕXt
)∗
ω
)
p
((LXY )p)

= X(ω(Y ))p − ωp((LXY )p).

Thus (24–1) holds. Actually, this is a special case of (25–1). Using (24–1) and Cartan’s magic
formula, we get

ω(LXY ) = X(ω(Y ))− (LXω)(Y )

= X(ω(Y ))− (ιX dω)(Y )− (dιXω)(Y )

= X(ω(Y ))− dω(X,Y )− d(ω(X))(Y )

= X(ω(Y ))− Y (ω(X))− dω(X,Y )

= ω([X,Y ]).

The last equality follows from the definition of dω. Since ω ∈ Ω1(M) is arbitrary, LXY = [X,Y ].

(Proof 2) For any smooth function f defined near p ∈M , we have

(
dϕX−t

)
φX

t (p)
YφX

t (p)f = YφX
t (p)

(
f ◦ ϕX−t

)
= Y

(
f ◦ ϕX−t

)(
ϕXt (p)

)
=
(
ϕXt
)∗
Y
(
f ◦ ϕX−t

)
=
(
ϕXt
)∗
Y
(
ϕX−t

)∗
(f).

Hence

LXY f =
d
dt

∣∣∣∣∣
t=0

(
dϕX−t

)
φX

t (p)
YφX

t (p)f =
d
dt

∣∣∣∣∣
t=0

(
ϕXt
)∗
Y
(
ϕX−t

)∗
(f)

=
d
dt

∣∣∣∣∣
t=0

(
ϕXt
)∗
Y f +

d
dt

∣∣∣∣∣
t=0

Y
(
ϕX−t

)∗
f

= XY f − Y Xf = [X,Y ]f.

Exercise 25 Recall that given a non-degenerate 2-form ω onM , any function H :M → R corresponds
to a vector field XH defined by −dH = ω(XH , ·). For two functions H,G :M → R, define

{H,G} := ω(XH , XG).
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Then prove that if ω is closed, i.e., dω = 0, then {·, ·} satisfies the Jacobi identity:

{{H,G}, F}+ {{G,F},H}+ {{F,H}, G} = 0

for any functions H,G,F :M → R.

Proof We shall apply a formula expressing the Lie derivative in terms of Lie brackets and ordinary
directional derivatives of functions:
(GTM 218, Corollary 12.33) If V is a smooth vector field and A is a smooth covariant k-tensor field, then for
any smooth vector fields X1, · · · , Xk,

(LVA)(X1, · · · , Xk) =V (A(X1, · · · , Xk))−A([V,X1], X2, · · · , Xk)

− · · · − A(X1, · · · , Xk−1, [V,Xk]).
(25–1)

(Proof 1) To start with, we observe that

� {H,G} is linear over R in both F and G.

� {H,G} = −{G,H}.

These are obvious from the characterization {H,G} = ω(XH , XG) together with the fact that XH

depends linearly on H . Let us first prove that

X{H,G} = [XH , XG]. (25–2)

Because of the non-degeneracy of ω, to prove (25–2), it suffices to show that

ω
(
X{H,G}, Y

)
= ω([XH , XG], Y ) (25–3)

holds for any vector field Y . On the one hand, note that

ω
(
X{H,G}, Y

)
= −d({H,G})(Y ) = −Y {H,G} = −Y ω(XH , XG) = Y dH(XG) = Y XGH.

On the other hand, by Cartan’s magic formula,

LXG
ω = dιXG

ω + ιXG
dω = d(ω(XG, ·)) = −d(dG) = 0,

and then (25–1) yields

0 = (LXG
)ω(XH , Y )

= XG(ω(XH , Y ))− ω([XG, XH ], Y )− ω(XH , [XG, Y ]).
(25–4)

The first and third terms on the right-hand side can be simplified as

XG(ω(XH , Y )) = XG(−dH(Y )) = −XGY H,

and

ω(XH , [XG, Y ]) = −dH([XG, Y ]) = −[XG, Y ]H = −XGY H + Y XGH

= −XGY H + ω
(
X{H,G}, Y

)
.
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Inserting these into (25–4), we obtain (25–3). Finally, by (25–2), we have

{H, {G,F}} = −X{G,F}H = −[XG, XF ]H = −XGXFH +XFXGH

= XG{H,F} −XF {H,G} = −{{H,F}, G}+ {{H,G}, F}

= {{H,G}, F}+ {{F,H}, G}.

This is the desired Jacobi identity.

(Proof 2) By (25–1), we have

{{H,G}, F} = ω(X{H,G}, XF ) = −d{H,G}(XF ) = −XF ({H,G}) = −XF (ω(XH , XG))

= −(LXF
ω)(XH , XG) + ω(LXF

XH , XG) + ω(XH ,LXF
XG)

= ω([XF , XH ], XG) + ω(XH , [XF , XG]).

Likewise, we have

{{G,F},H} = ω([XH , XG], XF ) + ω(XG, [XH , XF ])

= ω([XH , XG], XF ) + ω([XF , XH ], XG)

and

{{F,H}, G} = ω([XG, XF ], XH) + ω(XF , [XG, XH ])

= ω(XH , [XF , XG]) + ω([XH , XG], XF ).

Hence

{{H,G}, F}+ {{G,F},H}+ {{F,H}, G}

=2ω([XF , XH ], XG) + 2ω(XH , [XF , XG]) + 2ω([XH , XG], XF )

=− 2[XF , XH ]G+ 2[XF , XG]H − 2[XH , XG]F

=− 2XFXHG+ 2XHXFG+ 2XFXGH − 2XGXFH − 2XHXGF + 2XGXHF

=− 2XFXHG− 2XHXGF − 2XFXHG− 2XGXFH − 2XHXGF − 2XGXFH

=− 4(XHXGF +XGXFH +XFXHG).

(25–5)

Since dω = 0, we have

0 =dω(XH , XG, XF )

=XH(ω(XG, XF ))−XG(ω(XH , XF )) +XF (ω(XH , XG))

− ω([XH , XG], XF ) + ω([XH , XF ], XG)− ω([XG, XF ], XH)

=XH(−XFG)−XG(−XFH) +XF (−XGH)

− (−[XH , XG]F ) + (−[XH , XF ]G)− (−[XG, XF ]H)

=−XHXFG+XGXFH −XFXGH + [XH , XG]F − [XH , XF ]G+ [XG, XF ]H

=− 2XHXFG+ 2XGXFH − 2XFXGH +XHXGF −XGXHF +XFXHG

=2XHXGF + 2XGXFH + 2XFXHG+XHXGF +XGXFH +XFXHG

=3XHXGF + 3XGXFH + 3XFXHG.

林晓烁 Fall 2024



22

Therefore, we get
XHXGF +XGXFH +XFXHG = 0. (25–6)

Applying (25–6) to (25–5), we obtain the Jacobi identity.

Exercise 26 Consider manifold R2
>0 and ϕ : R2

>0 → R2
>0 defined by

ϕ(x, y) =
(
xy,

y

x

)
.

Compute the pushforward ϕ∗X for a vector field X = x ∂
∂x + y ∂

∂y . Do the same thing for vector field
Y = y ∂

∂x .

Solution The differential of ϕ at a point (x, y) ∈ R2
>0 is represented by its Jacobi matrix,

Jac(ϕ)((x, y)) =
(

y x

− y
x2

1
x

)
.

Hence we have

(ϕ∗X)(u,v) =

(
y x

− y
x2

1
x

)(
x

y

)
= 2xy

∂

∂u
= 2u

∂

∂u

and

(ϕ∗Y )(u,v) =

(
y x

− y
x2

1
x

)(
y

0

)
= y2

∂

∂u
− y2

x2
∂

∂v
= uv

∂

∂u
− v2

∂

∂v
.

Exercise 27 Consider 1-form α = xdy on R2 and map ϕ : R2 → R2 defined by

ϕ(x, y) =
(
xy, e−y

)
.

Compute the pullback ϕ∗α. Also, verify in this concrete case that ϕ∗(dα) = d(ϕ∗α).

Solution The pullback of α is given by

ϕ∗α = (xy)d
(
e−y

)
= −xye−y dy.

Then
d(ϕ∗α) = d

(
−xye−y dy

)
= −ye−y dx ∧ dy.

On the other hand,
dα = d(xdy) = dx ∧ dy,

so
ϕ∗(dα) = ϕ∗(dx ∧ dy) = d(xy) ∧ d

(
e−y

)
= (y dx+ xdy) ∧

(
−e−y dy

)
= −ye−y dx ∧ dy.

Therefore ϕ∗(dα) = d(ϕ∗α) in this example.

Exercise 28 Let X be a smooth vector field onMn such that X(p) 6= 0 at some point p ∈M .

(1) Prove that there exists a local chart (U,ϕ : U → V ) near p, where V is an open subset of Rn in
coordinates (x1, · · · , xn), such that within U , we have ϕ∗(X) = ∂

∂x1
.

林晓烁 Fall 2024



23

(2) Given the following three vector fields on R3,

X1 = x
∂

∂y
− y

∂

∂x
, X2 = y

∂

∂z
− z

∂

∂y
, X3 = z

∂

∂x
− x

∂

∂z
.

Near p = (1, 0, 0), is it possible to find a local chart as above such thatXi maps to ∂
∂xi

for i = 1, 2, 3

at the same time? If so, construct such a local chart; if not, please give a justifying reason.

Proof (1) Choose a local chart
(
Ũ , y1, · · · , yn

)
about p such thatXp =

∂

∂y1

∣∣∣∣∣
p

. DenoteX =

n∑
i=1

ξi
∂

∂yi

on Ũ , where ξi are smooth functions on Ũ . Shrinking Ũ if necessary, we may assume ξ1 6= 0 on Ũ .
Consider the system of ODEs

dyi
dy1 =

ξi
(
y1, y2, · · · , yn

)
ξ1(y1, y2, · · · , yn)

, 2 ⩽ i ⩽ n. (28–1)

By basic theory of ODE, locally for any given initial data
(
z2, · · · , zn

)
, with |z| < ε, the system

above has a unique solution

yi = yi
(
y1, z2, · · · , zn

)
,
∣∣y1∣∣ < ε

with initial condition
yi
(
0, z2, · · · , zn

)
= zi, 2 ⩽ i ⩽ n

and the functions yi depend smoothly on y1 and on zj . Consider the coordinate transformation

y1 = z1,

yi = yi
(
z1, z2, · · · , zn

)
, 2 ⩽ i ⩽ n.

Since the Jacobian
∂
(
y1, · · · , yn

)
∂(z1, · · · , zn)

∣∣∣∣∣
z1=0

= 1,

we can make the change of variables from
(
y1, · · · , yn

)
to
(
z1, · · · , zn

)
, i.e., there exists a neighbor-

hood U ⊂ Ũ of p, with
(
z1, · · · , zn

)
as local coordinate functions. By (28–1), in this new chart

X =

n∑
i=1

ξi
∂

∂yi
= ξ1

n∑
i=1

∂yi

∂z1
∂

∂yi
= ξ1

∂

∂z1
.

Finally if we let x1
(
z1, · · · , zn

)
=

∫ z1

0

dt
ξ1(t, z2, · · · , zn)

and xj = zj for j ⩾ 2, then
{
x1, · · · , xn

}
are local coordinate functions on U such that X = ∂

∂x1 on U .

(2) Suppose there exists a local chart (U,ϕ : U → V ) near p = (1, 0, 0), where V is an open subset of
R3 in coordinates (u, v, w), such that with U , we have

ϕ∗(X1) =
∂

∂u
, ϕ∗(X2) =

∂

∂v
, ϕ∗(X3) =

∂

∂w
.
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Consider the coordinate transformation
x = x(u, v, w),

y = y(u, v, w),

z = z(u, v, w)

with inverse


u = u(x, y, z),

v = v(x, y, z),

w = w(x, y, z).

Then 

∂

∂x
=
∂u

∂x

∂

∂u
+
∂v

∂x

∂

∂v
+
∂w

∂x

∂

∂w
,

∂

∂y
=
∂u

∂y

∂

∂u
+
∂v

∂y

∂

∂v
+
∂w

∂y

∂

∂w
,

∂

∂z
=
∂u

∂z

∂

∂u
+
∂v

∂z

∂

∂v
+
∂w

∂z

∂

∂w
.

In the new basis
{
∂
∂u ,

∂
∂v ,

∂
∂w

}
, the vector fields X1, X2, X3 are represented by

X1 =

(
x
∂u

∂y
− y

∂u

∂x
, x
∂v

∂y
− y

∂v

∂x
, x
∂w

∂y
− y

∂w

∂x

)
= (1, 0, 0),

X2 =

(
y
∂u

∂z
− z

∂u

∂y
, y
∂v

∂z
− z

∂v

∂y
, y
∂w

∂z
− z

∂w

∂y

)
= (0, 1, 0),

X3 =

(
z
∂u

∂x
− x

∂u

∂z
, z
∂v

∂x
− x

∂v

∂z
, z
∂w

∂x
− x

∂w

∂z

)
= (0, 0, 1).

However, at the point p = (x, y, z) = (1, 0, 0), the second component of X2 in the new basis is 0,
contradicting the second equation above. Therefore, it is impossible to find a local chart such that
Xi maps to ∂

∂xi
for i = 1, 2, 3 at the same time.

? An alternative way is to note that

zX1 + xX2 = y

(
x
∂

∂z
− z

∂

∂x

)
= −yX3.

Hence {X1, X2, X3} are linearly dependent near the point (1, 0, 0).

Exercise 29 ConsiderR3 equippedwith themetric g = dx⊗dx+dy⊗dy−dz⊗dz. AKilling vector field
on
(
R3, g

)
is a complete non-trivial vector field X such that LXg = 0. In other words, by the definition

of a Lie derivative, the flow generated by X preserves the metric g.

(1) List as many linearly independent Killing vector fields in
(
R3, g

)
as possible.

(2) Verify that if X,Y are two Killing vector fields in
(
R3, g

)
, then [X,Y ] is also a Killing vector field

in
(
R3, g

)
.

Proof (1) Let D be the Euclidean connection on R3, i.e.,

DXY = X
(
Y 1
) ∂

∂x1
+X

(
Y 2
) ∂

∂x2
+X

(
Y 3
) ∂

∂x3

for any smooth vector fieldsX,Y on R3. SupposeX is a Killing vector field in
(
R3, g

)
. By (25–1),

0 = (LXg)(Y, Z) = Xg(Y, Z)− g([X,Y ], Z)− g(Y, [X,Z]). (29–1)
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Note that

Xg(Y, Z) = Xg

(
Y i

∂

∂xi
, Zj

∂

∂xj

)
= gijX

(
Y iZj

)
= gij

[
X
(
Y i
)
Zj + Y iX

(
Zj
)]

= g(DXY, Z) + g(Y,DXZ).

Hence

0 = g(DXY, Z) + g(Y,DXZ)− g(DXY −DYX,Z)− g(Y,DXZ −DZX)

= g(DYX,Z) + g(Y,DZX).

This is equivalent to having

0 = g

(
D ∂

∂xi
X,

∂

∂xj

)
+ g

(
∂

∂xi
,D ∂

∂xj
X

)
= g

(
∂Xk

∂xi
∂

∂xk
,
∂

∂xj

)
+ g

(
∂

∂xi
,
∂Xk

∂xj
∂

∂xk

)
= gkj

∂Xk

∂xi
+ gik

∂Xk

∂xj

for all i, j. Let G = [gij ] and A = [aij ] =

[
∂Xj

∂xi

]
. Then aikgkj + gikajk = 0, or equivalently,

0 = AG+GAT = AG+ (AG)
T
.

Therefore the matrix AG is skew-symmetric. In this concrete case, we have

AG =



∂X1

∂x1
∂X2

∂x1
∂X3

∂x1

∂X1

∂x2
∂X2

∂x2
∂X3

∂x2

∂X1

∂x3
∂X2

∂x3
∂X3

∂x3


1 0 0

0 1 0

0 0 −1

 =



∂X1

∂x1
∂X2

∂x1
−∂X

3

∂x1

∂X1

∂x2
∂X2

∂x2
−∂X

3

∂x2

∂X1

∂x3
∂X2

∂x3
−∂X

3

∂x3


.

So the skew-symmetry of AG requires that

∂X1

∂x1
=
∂X2

∂x2
=
∂X3

∂x3
= 0,

∂X1

∂x2
+
∂X2

∂x1
= 0,

∂X1

∂x3
=
∂X3

∂x1
,

∂X2

∂x3
=
∂X3

∂x2
.

Thus we may set X1 = f
(
x2, x3

)
, X2 = h

(
x1, x3

)
, and X3 = k

(
x1, x2

)
for some smooth functions
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f, h, k. The above equations give 

∂f

∂x2
+

∂h

∂x1
= 0,

∂f

∂x3
=

∂k

∂x1
,

∂h

∂x3
=

∂k

∂x2
.

The first equation implies that ∂2f

(∂x2)
2 =

∂2h

(∂x1)2
= 0. Similarly, the second and third equations

imply that ∂2f

(∂x3)
2 =

∂2k

(∂x1)
2 = 0 and ∂2h

(∂x3)
2 =

∂2k

(∂x2)
2 = 0. Therefore f, h, k are of the form


f = ax2 + bx3 + d1,

h = −ax1 + cx3 + d2,

k = bx1 + cx2 + d3,

a, b, c, d1, d2, d3 ∈ R.

Hence all Killing vector fields in
(
R3, g

)
are of the form

X
((
x1, x2, x3

))
= a

(
x2,−x1, 0

)
+ b
(
x3, 0, x1

)
+ c
(
0, x3, x2

)
+ (d1, d2, d3),

where a, b, c, d1, d2, d3 ∈ R.

(2) Suppose X,Y are two Killing vector fields in
(
R3, g

)
. The same deduction as in (29–1) gives

Xg(Z,W ) = g([X,Z],W ) + g(Z, [X,W ]),

Y g(Z,W ) = g([Y, Z],W ) + g(Z, [Y,W ]).

With these and the Jacobi identity, we have

[X,Y ]g(Z,W ) =XY g(Z,W )− Y Xg(Z,W )

=Xg([Y, Z],W ) +Xg(Z, [Y,W ])− Y g([X,Z],W )− Y g(Z, [X,W ])

=g([X, [Y, Z]],W ) + g([Y, Z], [X,W ]) + g([X,Z], [Y,W ]) + g(Z, [X, [Y,W ]])

− g([Y, [X,Z]],W )− g([X,Z], [Y,W ])− g([Y, Z], [X,W ])− g(Z, [Y, [X,W ]])

=g([X, [Y, Z]]− [Y, [X,Z]],W ) + g(Z, [X, [Y,W ]]− [Y, [X,W ]])

=g([[X,Y ], Z],W ) + g(Z, [[X,Y ],W ]).

Again, applying (25–1) we find

(
L[X,Y ]g

)
(Z,W ) = [X,Y ]g(Z,W )− g([[X,Y ], Z],W )− g(Z, [[X,Y ],W ]) = 0,

so [X,Y ] is also a Killing vector field in
(
R3, g

)
.

? In this concrete case, by (1), one can also take X =
(
x2,−x1, 0

)
, Y =

(
x3, 0, x1

)
, Z =

(
0, x3, x2

)
,

and compute
[X,Y ] = Z, [X,Z] = −Y, [Y, Z] = −X.

They are again Killing vector fields in
(
R3, g

)
.

林晓烁 Fall 2024



27

Exercise 30 Let α be a 1-form onM3 satisfying α ∧ dα is a nowhere vanishing 3-form onM3.

(1) Prove that there exists a vector field (called aReeb vector field) denoted byRα such that dα(Rα,−) =

0 and α(Rα) = 1.

(2) Confirm that LRαα = 0.

(3) In R3 in coordinates (x, y, z), give an example of such α and work out the associated Rα.

Proof (1) We first show that that every smooth manifold admits a Riemannian metric. LetM be a smooth
manifold and {(Uβ , ϕβ) : β ∈ Λ} a locally finite atlas so that Uβ ⊂M and ϕβ : Uβ → ϕβ(Uβ) ⊂ Rn

are diffeomorphisms. Let {ρβ : β ∈ Λ} be a differentiable partition of unity subordinate to the
given atlas, i.e. such that supp(ρβ) ⊂ Uβ for all β ∈ Λ. Define a Riemannian metric g on M by
g =

∑
β∈Λ

ρβ g̃β , where g̃β = ϕ∗
βg

can. Here gcan is the Euclideanmetric onRn andϕ∗
βg

can is its pullback

along ϕβ . It is straightforward to check that g is a Riemannian metric.

Let {(Uβ , ϕβ)} be an atlas onM such that ϕβ : Uβ → R3 are diffeomorphisms, and g a Riemannian
metric onM . Define A : Γ(TM) → Γ(TM) by

g(AX, Y ) = dα(X,Y ), ∀X,Y ∈ Γ(TM).

This iswell-defined for g is non-degenerate. Sicne g(AX, Y ) = g(X,−AY ), i.e.,A is skew-symmetric,
0 is an eigenvalue of A at each point. Note that tr(A) = 0, so the other two eigenvalues must be
both zero or both non-zero. Recall that a real skew symmetric matrix is always diagonalizable
over C. If A has all eigenvalues zero, then A = 0, contradicting the assumption that dα is nowhere
vanishing. Therefore the eigenspace of A corresponding to the eigenvalue 0 is one-dimensional.

We can show that α(R) 6= 0 for all eigenvectors R of A corresponding to the eigenvalue 0. Indeed,
if α(R) = 0, then

ιR(α ∧ dα) = (ιRα) ∧ dα− α ∧ (ιR dα) = α(R)dα− α ∧ 0 = 0.

This is a contradiction to the assumption that α ∧ dα is nowhere vanishing.

By the above arguments, on each Uβ , we can find eigenvectorRβ ∈ Γ(TUβ) ofA|Uβ
corresponding

to the eigenvalue 0 so that

dα|Uβ
(Rβ ,−) = g(A|Uβ

Rβ ,−) = g(0,−) = 0 and α|Uβ
(Rβ) = 1.

Now we define Rα ∈ Γ(TM) by Rα|Uβ
= Rβ . It is well-defined for if Uβ ∩Uγ 6= ∅, then Rγ = λRβ

for some λ ∈ R. Then

1 = α|Uβ∩Uγ (Rγ) = α|Uβ∩Uγ (λRβ) = λ · α|Uβ∩Uγ (Rβ) = λ,

showing Rγ = Rβ . Therefore Rα is the desired Reeb vector field.

(2) By Cartan’s magic formula,

LRαα = d(ιRα(α)) + ιRα(dα) = d(α(Rα)) + dα(Rα,−) = d(1) + 0 = 0.
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(3) Take α = dz − y dx, then dα = dx ∧ dy and

α ∧ dα = (dz − y dx) ∧ (dx ∧ dy) = dx ∧ dy ∧ dz

is nowhere vanishing on R3. The corresponding Reeb vector field is given by Rα =
∂

∂z
since

dα(Rα,−) = (dx ∧ dy)
(
∂

∂z
,−
)

= 0 and α(Rα) = (dz − y dx)
(
∂

∂z

)
= 1.

Homework 4

Exercise 31 Consider the unit opendiskB2 inR2 defined byB2 =
{
(x, y) ∈ R2 : x2 + y2 < 1

}
equipped

with the following Riemannian metric

g((x, y)) =
4

[1− (x2 + y2)]
2 (dx⊗ dx+ dy ⊗ dy).

Meanwhile, consider the open upper half plane H2 of R2, that is, H2 =
{
(x, y) ∈ R2 : y > 0

}
equipped

with the following Riemannian metric

g′((x, y)) =
1

y2
(dx⊗ dx+ dy ⊗ dy).

Prove that there exists a smooth diffeomorphism F : B2 → H2 such that it preserves the metrics in the
sense that for any vector fields X,Y ∈ Γ

(
TB2

)
, we have g′(F∗(X), F∗(Y )) = g(X,Y ).

Proof The Möbius transformation z 7→ z+i
1+iz is a biholomorphism from the unit disk to the upper half

plane in C. It induces the smooth diffeomorphism

F : B2 → H2, (x, y) 7→

(
2x

x2 + (1− y)2
,
1−

(
x2 + y2

)
x2 + (1− y)2

)
.

The differential of F at a point (x, y) ∈ B2 is represented by its Jacobi matrix,

Jac(F )((x, y)) =


−2x2 + 2(1− y)2

[x2 + (1− y)2]
2

4x(1− y)

[x2 + (1− y)2]
2

−4x(1− y)

[x2 + (1− y)2]
2

−2x2 + 2(1− y)2

[x2 + (1− y)2]
2

.

For any (x, y) ∈ B2, suppose X = X1 ∂
∂x +X2 ∂

∂y and Y = Y 1 ∂
∂x + Y 2 ∂

∂y at (x, y), then

g(X,Y )(x,y) =
4

[1− (x2 + y2)]
2

(
X1Y 1X2Y 2

)
,
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Since

F∗(X((x, y))) = Jac(F )((x, y))
(
X1

X2

)
=


−2x2 + 2(1− y)2

[x2 + (1− y)2]
2 X1 +

4x(1− y)

[x2 + (1− y)2]
2X

2

−4x(1− y)

[x2 + (1− y)2]
2X

1 +
−2x2 + 2(1− y)2

[x2 + (1− y)2]
2 X2


and

F∗(Y ((x, y))) = Jac(F )((x, y))
(
Y 1

Y 2

)
=


−2x2 + 2(1− y)2

[x2 + (1− y)2]
2 Y 1 +

4x(1− y)

[x2 + (1− y)2]
2Y

2

−4x(1− y)

[x2 + (1− y)2]
2Y

1 +
−2x2 + 2(1− y)2

[x2 + (1− y)2]
2 Y 2

,
we have

g′(F∗(X), F∗(Y ))F ((x,y))

=
1[

1−(x2+y2)
x2+(1−y)2

]2{(−2x2+2(1−y)2

[x2+(1−y)2]2 X
1 + 4x(1−y)

[x2+(1−y)2]2X
2
)(

−2x2+2(1−y)2

[x2+(1−y)2]2 Y
1 + 4x(1−y)

[x2+(1−y)2]2Y
2
)

+
(

−4x(1−y)
[x2+(1−y)2]2X

1 + −2x2+2(1−y)2

[x2+(1−y)2]2 X
2
)(

−4x(1−y)
[x2+(1−y)2]2Y

1 + −2x2+2(1−y)2

[x2+(1−y)2]2 Y
2
)}

=
4
{([

−x2 + (1− y)2
]2

+ [2x(1− y)]2
)
X1Y 1 +

(
[2x(1− y)]2 +

[
−x2 + (1− y)2

]
X2Y 2

)}
[1− (x2 + y2)]

2
[x2 + (1− y)2]

2

=
4
[
x2 + (1− y)2

]2(
X1Y 1 +X2Y 2

)
[1− (x2 + y2)]

2
[x2 + (1− y)2]

2

=g(X,Y )(x,y).

Exercise 32 Consider the map Φ : R4 → R2 defined by

Φ(x, y, s, t) =
(
x2 + y, x2 + y2 + s2 + t2 + y

)
.

Show that (0, 1) is a regular value of Φ, and that the level set Φ−1((0, 1)) is diffeomorphic to S2.

Proof The differential of Φ at (x, y, s, t) ∈ R4 is represented by its Jacobi matrix,

Jac(Φ)((x, y, s, t)) =
(
2x 1 0 0

2x 2y + 1 2s 2t

)
.

The level set Φ−1((0, 1)) is the set of points (x, y, s, t) ∈ R4 such that

x2 + y = 0 and y2 + s2 + t2 = 1. (32–1)

Then for any (x, y, s, t) ∈ Φ−1((0, 1)), at least one of the following subdeterminants is nonzero:∣∣∣∣∣2x 1

2x 2y + 1

∣∣∣∣∣ = 4xy,

∣∣∣∣∣ 1 0

2y + 1 2s

∣∣∣∣∣ = 2s,

∣∣∣∣∣ 1 0

2y + 1 2t

∣∣∣∣∣ = 2t.

For example, if s = t = 0, then (32–1) implies y = −1 and x2 = 1, so 4xy 6= 0. Hence rank(Jac(Φ)) = 2
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at any point in Φ−1((0, 1)), which means (0, 1) is a regular value of Φ. By the regular level set theorem,
Φ−1((0, 1)) is an embedded submanifold of R4 of dimension 4− 2 = 2. Consider the map

F : Φ−1((0, 1)) → R3,
(
x,−x2, s, t

)
7→ (x, s, t).

Clearly, F is a diffeomorphism betweenΦ−1((0, 1)) and its imageE :=
{
(x, s, t) ∈ R3 : x4 + s2 + t2 = 1

}
.

Now consider the map
G : E → S2, (x, s, t) 7→ 1√

x2 + s2 + t2
(x, s, t).

Since E is an embedded submanifold of R3 and S2 is an immersed submanifold of R3, G is smooth.
Likewise, the inverse of G given by

G−1 : S2 → E, (u, v, w) 7→
(

u
4
√
u4 + v2 + w2

,
v√

u4 + v2 + w2
,

w√
u4 + v2 + w2

)
is smooth. Therefore G is a diffeomorphism between E and S2, and it follows that G ◦ F is a diffeomor-
phism from Φ−1((0, 1)) to S2.

Exercise 33 LetN be a nonempty smooth compactmanifold. Show that there is no smooth submersion
F : N → Rk for any k > 0.

Proof As a corollary of the constant rank theorem, any submersion is an open map. So if there is a
smooth submersion F : N → Rk for some k > 0, then F (N) is an open in Rk. But Rk is Hausdorff and
F (N) is compact, so F (N) is also closed in Rk. Since Rk is connected, the only nonempty clopen set is
Rk itself. Thus F (N) = Rk, which is a contradiction since Rk is not compact.

Exercise 34 LetN ⊂ Rm be a smooth submanifold of dimension n ⩽ m−3. Prove that the complement
Rm \N is connected and simply connected.

Proof We shall apply the “Whitney Approximation Theorem” and the “Transversality Homotopy Theorem”:
(GTM218, Theorem 6.26) SupposeN is a smoothmanifold with or without boundary,M is a smoothmanifold
(without boundary), and f : N →M is a continuous map. Then f is homotopic to a smooth map g. Moreover, if
f is already smooth on a closed subset A ⊂ N , then g can be chosen so that f |A = g|A.
(GTM218, Theorem 6.36) SupposeM andN are smooth manifolds and Y ⊂M is an embedded submanifold.
Every smooth map f : N →M is homotopic to a smooth map g : N →M that is transverse to Y . Moreover, ifX
is an embedded submanifold of N and f |X is already transverse to Y , then g can be chosen so that f |X = g|X .

To see thatRm\N is path-connected, let p, q ∈ Rm\N and let γ(t) be a path inRm with γ(0) = p and
γ(1) = q. By theWhitney approximation theorem, γ is homotopic to some smooth curve γ′ joining p and
q. Then by the transversality homotopy theorem, γ′ is homotopic to some smooth map γ′′ joining p and
q that is transverse to N . However, since dimN + dim γ′′ = n+ 1 < dimRm, intersecting transversally
means having empty intersection. So γ′′ is a path from p to q which does not touch N , showing Rm \N
is path-connected.

To see thatRm\N is simply connected, let γ1(t) and γ2(t) be two closed loops inRm\N . SinceRm is
simply connected, there is a homotopy F (s, t) = γs(t) between γ1 and γ2. As before, we can perturb the
surface F (s, t) so that it intersects N transversally. However, since dimN + dimF = n + 2 < dimRm,
intersecting transversally means having empty intersection. So we have found a homotopy between γ1
and γ2 which does not touch N , showing Rm \N is simply connected.
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Exercise 35 Let F : M → M be a smooth map. A fixed point p ∈ F (i.e., F (p) = p) is called non-
degenerate if 1 is not an eigenvalue of the pushforward F∗(p) : TpM → TpM . The map F is called a
Lefschetz map if all its fixed points are non-degenerate.

(1) Prove that the “horizontal” rotation rθ : S2 → S2 by angle θ ( 6= 2kπ for any k ∈ N) defined by

rθ(x, y, z) = (x cos θ − y sin θ, x sin θ + y cos θ, z)

is a Lefschetz map, where S2 here is viewed as a submanifold in R3 defined by

{
(x, y, z) ∈ R3 : x2 + y2 + z2 = 1

}
.

(2) Let V be a vector space and F : V → V a linear map. Let ∆ = {(v, v) ∈ V × V : v ∈ V } be the
diagonal of V × V and ΓF = {(v, F (v)) ∈ V × V : v ∈ V } be the graph of F on V . Then deduce
that if M is a compact manifold and F : M → M is a Lefschetz map, then there are only finitely
many fixed points of F .

(3) WhenM is a compact manifold and F :M →M is a Lefschetz map, let

L(F ) :=
∑

fixed point p ofF
sign(det(F∗(p)− 1)).

Here, sign means that if det(F∗(p) − 1) > 0, then sign = +1 and if det(F∗(p) − 1) < 0, then
sign = −1. This L(F ) is a well-defined number and is called the Lefschetz number of Lefschetz map
F . Compute L(rθ) in Question (1) above.

Proof (1) Since θ 6= 2kπ, (0, 0,±1) are the only two fixed points of rθ. For the north pole (0, 0, 1),
take the coordinate chart

ϕ :
{
(x, y, z) ∈ R3 : z > 0

}
→ B2, (x, y, z) 7→ (x, y).

Then the pushforward of rθ at (0, 0, 1) is represented by its Jacobi matrix,

Jac(rθ)((x, y, z)) =
(
cos θ − sin θ
sin θ cos θ

)
.

So the eigenvalues of (rθ)∗ at (0, 0, 1) are e±iθ 6= 1. Similarly, the south pole (0, 0,−1) is also a
non-degenerate fixed point of rθ. Therefore rθ is a Lefschetz map.

(2) Denote by [F ] the matrix representation of F in some basis of V . Since ∆∩ΓF = {(v, v) ∈ V × V :

F (v) = v}, and for any (v, v) ∈ ∆ ∩ ΓF ,

T(v,v)∆ = {(w,w)(v,v) : w ∈ TvV }, T(v,v)ΓF = {(w,Fw)(v,v) : w ∈ TvV },

we have

∆ ⋔ ΓF ⇐⇒ T(v,v)∆+ T(v,v)ΓF = T(v,v)(V × V ), ∀(v, v) ∈ ∆ ∩ ΓF

⇐⇒ 0 6= det
(
1 1

1 [F ]

)
= det

(
1 1

0 [F ]− 1

)
= det([F ]− 1), ∀ fixed point v ofF
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⇐⇒ 1 is not an eigenvalue ofF = F∗ ⇐⇒ F is a Lefschetz map.

Likewise, if F : M → M is a Lefschetz map, then ∆ ⋔ ΓF . It follows that ∆ ∩ ΓF is an embedded
submanifold of M ×M of dimension m + m − (2m) = 0. Since a zero-dimensional manifold is
a discrete set (each singleton is homeomorphic to R0) and M ×M is compact, the set ∆ ∩ ΓF is
finite. In other words, F has only finitely many fixed points.

(3) Since the determinants of (rθ)∗ − 1 at (0, 0,±1) are both equal to

det
(
cos θ − 1 − sin θ

sin θ cos θ − 1

)
= 2− 2 cos θ > 0,

we have L(rθ) = 1 + 1 = 2.

Exercise 36 Recall that the group of 2n-dimensional symplectic matrices is denoted by

Sp(2n) =
{
A ∈M2n×2n(R) : AJ0AT = J0

}
where J0 ∈M2n×2n is defined by

J0 =

(
0 1n×n

−1n×n 0

)
.

Prove that Sp(2n) is a submanifold ofM2n×2n(R). Moreover, compute its dimension.

Proof Denote by Skew(2n) =
{
A ∈M2n×2n(R) : AT = −A

}
the set of 2n × 2n real skew-symmetric

matrices. First we show that Skew(2n) is a smooth manifold. Consider the map

Φ : GL(2n,R) →M2n×2n(R), A 7→ ATA.

We want to compute the differential of Φ at 12n×2n ∈ GL(2n,R). For any B ∈ T12n×2n
GL(2n,R) =

M2n×2n(R), let γ : (−ε, ε) → GL(2n,R) be the curve γ(t) = 12n×2n + tB. Then

dΦ12n×2n
(B) =

d
dt

∣∣∣∣∣
t=0

Φ ◦ γ(t) = d
dt

∣∣∣∣∣
t=0

(12n×2n + tB)
T
(12n×2n + tB) = BT +B.

Note that the orthogonal group O(2n) is equal to the level set Φ−1(12n×2n). Therefore

T12n×2n
O(2n) = KerdΦ12n×2n

=
{
B ∈M2n×2n(R) : BT +B = 0

}
= Skew(2n).

It follows that Skew(2n) is a smooth manifold.
Next we consider the map

F : GL(2n,R) → Skew(2n), A 7→ AJ0A
T.

For any B ∈ TAGL(2n,R) =M2n×2n(R), let β : (−ε, ε) → GL(2n,R) be the curve β(t) = A+ tB. Then

dFA(B) =
d
dt

∣∣∣∣∣
t=0

F ◦ β(t) = d
dt

∣∣∣∣∣
t=0

(A+ tB)J0(A+ tB)
T
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=
d
dt

∣∣∣∣∣
t=0

[
BJ0

(
AT + tBT

)
+ (A+ tB)J0B

T
]

= BJ0A
T +AJ0B

T.

Note that
(
BJ0A

T
)T

= AJ0
TBT = −AJ0BT, so the above differential can be rewritten as

dFA(B) = AJ0B
T −

(
AJ0B

T
)T
.

Since AJ0 ∈ GL(2n,R), as B ranges over M2n×2n(R), AJ0BT also ranges over M2n×2n(R), and thus
dFA(B) ranges over Skew(2n). That is, dFA(M2n×2n(R)) = Skew(2n). Therefore dFA is surjective, i.e.,
F is a submersion.

Now we are able to apply the regular level set theorem. Since F is a submersion, J0 is a regular
value of F . Thus Sp(2n) = F−1(J0) is an embedded submanifold of GL(2n,R), and

dimSp(2n) = dimGL(2n,R)− dimSkew(2n) = (2n)2 − n(2n− 1) = 2n2 + n.

Exercise 37 Prove by definition that if N1 ⊂ Rm1 and N2 ⊂ Rm2 are submanifolds of dimensions n1
and n2 respectively, then N1 ×N2 is a submanifold (of Rm1+m2) of dimension n1 + n2.

Proof For any (p, q) ∈1 ×N2, we can find local charts
(
U1, ϕ : U1

∼−→ V1 ⊂ Rm1

)
of Rm1 near p and(

U2, ψ : U2
∼−→ V2 ⊂ Rm2

)
of Rm2 near q such that

ϕ(U1 ∩N1) = {x ∈ V1 ⊂ Rm1 : xn1+1 = · · · = xm1
= 0},

ψ(U2 ∩N2) = {x ∈ V2 ⊂ Rm2 : xn2+1 = · · · = xm2
= 0}.

Then
(
U1 × U2, ϕ× ψ : U1 × U2

∼−→ V1 × V2

)
is a local chart of Rm1 × Rm2 ' Rm1+m2 near (p, q) such

that
ϕ× ψ((U1 × U2) ∩ (N1 ×N2)) =

{
x ∈ V1 × V2 ⊂ Rm1+m2 :

xn1+1=···=xm1=0,
xm1+n2+1=···=xm1+m2=0

}
.

Thus N1 ×N2 is a submanifold of Rm1+m2 of dimension n1 + n2.

Exercise 38 (1) Prove the Inverse Mapping Theorem: Let F : N → M be a smooth map such that
F∗(p) : TpN → TF (p)M is an isomorphism, then F is a diffeomorphism locally near p.

(2) Deduce from (1) that there is no immersion from Sn to Rn.

Proof (1) The fact that F∗(p) : TpN → TF (p)M is bijective implies that N and M have the same
dimension, say n. Choose smooth charts (U,ϕ) centered at p and (V, ψ) centered at F (p), with
F (U) ⊂ V . Then F̂ = ψ ◦ F ◦ ϕ−1 is a smooth map from the open subset Û = ϕ(U) ⊂ Rn into
V̂ = ψ(V ) ⊂ Rn, with F̂ (0) = 0. Since ϕ and ψ are diffeomorphisms, the differential dF̂0 =

dψF (p) ◦ dFp ◦ d
(
ϕ−1

)
0
is nonsingular. The ordinary inverse function theorem shows that there

connected open subsets Û0 ⊂ Û and V̂0 ⊂ V̂ containing 0 such that F̂ restricts to a diffeomorphism
from Û0 to V̂0. Then U0 = ϕ−1

(
Û0

)
and V0 = ψ−1

(
V̂0

)
are connected open neighborhoods of p

and F (p), respectively, and it follows by composition that F |U0
is a diffeomorphism from U0 to V0.

(2) Suppose there is an immersion F : Sn → Rn. Since Sn and Rn have the same dimension, F is
also a submersion. Hence F is an open map, F (Sn) is open in Rn. But since Sn is compact and F
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is continuous, F (Sn) is compact, i.e., F (Sn) is closed and bounded in Rn. This is a contradiction
sinceRn is connected and the only nonempty clopen set isRn itself, which is unbouded. Therefore
there is no immersion from Sn to Rn.

Exercise 39 Let F : N → M be a smooth map. Recall that the pullback of F is a functor F ∗ : TM →
TN . In particular, F ∗ defines a map for sections (forms) from Ωk(M) to Ωk(N) for any k ∈ N, defined
explicitly as follows,

(F ∗α)(X1, · · · , Xk) := α(F∗(X1), · · · , F∗(Xk))

or even more explicitly when the positions are specified,

(F ∗α)(p)(X1(p), · · · , Xk(p)) := α(F (p))(F∗(p)(X1(p)), · · · , F∗(p)(Xk(p))).

Now, consider map F : R2 → R3, where R2 is in coordinate (x, y) and R3 in coordinate (u, v, w), by
F (x, y) =

(
xy, x2, 3x+ y

)
. For α = uv du + 2w dv − v dw ∈ Ω1

(
R3
)
, compute F ∗α and express it in

terms of dx and dy.

Solution The pullback F ∗α is computed as follows:

F ∗(uv du+ 2w dv − v dw) = (xy)x2 d(xy) + 2(3x+ y)d
(
x2
)
− x2 d(3x+ y)

= x3y(y dx+ xdy) + (6x+ 2y)(2xdx)− x2(3dx+ dy)
=
(
x3y2 + 9x2 + 4xy

)
dx+

(
x4y − x2

)
dy.

We can also compute F ∗α from its definition. First we find the pushforward F∗ in its Jacobi matrix
representation:

Jac(F )((x, y)) =

 y x

2x 0

3 1

.
Then

(F ∗α)((x, y))

(
∂

∂x

)
= α(F (x, y))

(
F∗((x, y))

(
∂

∂x

))
= α

((
xy, x2, 3x+ y

))(
y
∂

∂u
+ 2x

∂

∂v
+ 3

∂

∂w

)
= (xy)x2 du

(
y
∂

∂u

)
+ 2(3x+ y)dv

(
2x

∂

∂v

)
− x2 dw

(
3
∂

∂w

)
= x3y2 + 9x2 + 4xy.

Similarly, we have

(F ∗α)((x, y))

(
∂

∂y

)
= x4y − x2.

These lead to the same result as before.

Exercise 40 Define the map F : R2 → R3 by

F (x, y) =
(
ey cosx, ey sinx, e−y

)
.

Denote by Sr(0) ⊂ R3 the standard 2-sphere centered at 0 with radius r. Recall/Define that a map
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F : N → M is transverse to a submanifold S ⊂ M means for any x ∈ F−1(S), the linear spaces TF (x)S

and F∗(x)(TxN) span TF (x)M .

(1) For which positive numbers r is F transverse to Sr(0) in R3?

(2) For which positive numbers r is F−1(Sr(0)) an embedded submanifold of R2?

Solution (1) The map F will not be transverse to Sr(0) if and only if there is a point (x, y) ∈ R2 such
that |F (x, y)| =

√
e2y + e−2y = r and the vectors

∂xF (x, y) = (−ey sinx, ey cosx, 0) and ∂yF (x, y) =
(
ey cosx, ey sinx,−e−y

)
are parallel to TF (x,y)Sr(0). This last condition is equivalent to

∂xF (x, y) · F (x, y) = 0 and ∂yF (x, y) · F (x, y) = 0.

The first equation holds everywhere, and the second equation gives e2y − e−2y = 0, which has
solution y = 0 and therefore r =

√
2. So F is transverse to Sr(0) unless r =

√
2.

(2) By (1), for positive numbers r 6=
√
2, F−1(Sr(0)) is an embedded submanifold of R2. In the case

r =
√
2, we have

F−1(Sr(0)) =
{
(x, y) ∈ R2 : e2y + e−2y = 2

}
=
{
(x, y) ∈ R2 : y = 0

}
,

which is just the x-axis and is clearly an embedded submanifold of R2. Therefore F−1(Sr(0)) is an
embedded submanifold of R2 for all positive numbers r.

Homework 5

Exercise 41 Let M be a smooth manifold and F : M → Rk be a continuous map. Prove that for any
positive continuous function ε : M → R, there exists a smooth map G : M → Rk such that ‖G(x) −
F (x)‖ ⩽ ε(x) for any x ∈M .

Proof We shall show that there are countably many points {xi}∞i=1 in M and open neighborhoods Ui
of xi inM such that {Ui}∞i=1 is an open cover ofM and

‖F (y)− F (xi)‖ < ε(y), ∀y ∈ Ui. (41–1)

To see this, for any x ∈M , let Ux be an open neighborhood of x small enough such that

ε(y) > 1
2ε(x) and ‖F (y)− F (x)‖ < 1

2ε(x)

for all y ∈ Ux. (Such a neighborhood exists by continuity of ε and F .) Then if y ∈ Ux, we have

‖F (y)− F (x)‖ < 1
2ε(x) < ε(x).

The collection {Ux : x ∈M} is an open cover ofM . Choosing a countable subcover {Uxi}∞i=1 and setting
Ui = Uxi , we have (41–1). Let {ρi} be a smooth partition of unity subordinate to the cover {Ui} of M ,
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and define G :M → Rk by

G(y) =

∞∑
i=1

ρi(y)F (xi).

Then clearly G is smooth. For any y ∈M , the fact that
∞∑
i=1

ρi ≡ 1 implies that

‖G(y)− F (y)‖ =

∥∥∥∥∥
∞∑
i=1

ρi(y)[F (xi)− F (y)]

∥∥∥∥∥
⩽

∞∑
i=1

ρi(y)‖F (xi)− F (y)‖

<

∞∑
i=1

ρi(y)ε(y)

= ε(y).

Exercise 42 Consider θ ∈ Ω2
(
R3
)
defined by

θ = x2 dy ∧ dz + y dz ∧ dx+ z dx ∧ dy.

Denote by S2 :=
{
(x, y, z) ∈ R3 : x2 + y2 + z2 = 1

}
. Compute the integration

∫
S2
i∗θ where i : S2 → R3

is the inclusion.

Solution Let D3 ⊂ R3 be the closed unit ball. By Stokes’ theorem, we have∫
S2
i∗θ =

∫
D3

dθ =
∫
D3

(2x+ 2)dx ∧ dy ∧ dz =
(∫

D3

2xdx ∧ dy ∧ dz
)
+ 2 · 4π

3

=

(∫
S2
x2 dy ∧ dz

)
+

8π

3
.

Consider the map

F : (0, 2π)× (0, π) → S2, (ψ,ϕ) 7→ (sinϕ cosψ, sinϕ sinψ, cosϕ).

Since

Jac(F )(ψ,ϕ) =

− sinϕ sinψ cosϕ cosψ
sinϕ cosψ cosϕ sinψ

0 − sinϕ

,
at the point (ψ,ϕ) =

(
π, π2

)
, we have

F∗

(
∂

∂ψ

)
=

− sinϕ sinψ
sinϕ cosψ

0


(π,π2 )

=

 0

−1

0

 = − ∂

∂y

∣∣∣∣∣
TpS2

and

F∗

(
∂

∂ϕ

)
=

cosϕ cosψ
cosϕ sinψ
− sinϕ


(π,π2 )

=

 0

0

−1

 = − ∂

∂z

∣∣∣∣∣
TpS2

.
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At the point p := F
(
π, π2

)
= (−1, 0, 0), the three tangent vectors

{
− ∂
∂x ,−

∂
∂y ,−

∂
∂z

}
are of opposite

orientation to the standard orientation
{
∂
∂x ,

∂
∂y ,

∂
∂z

}
of R3, i.e.,

{
F∗

(
∂
∂ψ

)
, F∗

(
∂
∂φ

)}
is an orientation-

reversing basis of TpS2. Thus F is an orientation-reversing diffeomorphism, and∫
S2
x2 dy ∧ dz =

∫
F ((0,2π)×(0,π))

x2 dy ∧ dz

= −
∫
(0,2π)×(0,π)

F ∗(x2 dy ∧ dz
)

= −
∫
(0,2π)×(0,π)

sin2 ϕ cos2 ψ d(sinϕ sinψ) ∧ d(cosϕ)

=

∫
(0,2π)×(0,π)

sin4 ϕ cos3 ψ dψ ∧ dϕ

=

∫ 2π

0

cos3 ψ dψ
∫ π

0

sin4 ϕdϕ

= 0.

Therefore, we have
∫
S2
i∗θ =

8π

3
.

Exercise 43

(1) Given a manifoldM and two 1-forms α, β ∈ Ω1(M), prove the following identity

α ∧ (dα)n − β ∧ (dβ)n = (α− β) ∧
n∑
j=0

(dα)j ∧ (dβ)n−j + d

α ∧ β ∧
n−1∑
j=0

(dα)j ∧ (dβ)n−1−j


for any n ∈ N. Here (dα)n := dα ∧ · · · ∧ dα, wedged n times, similarly to others.

(2) Deduce the following proposition from (1): given a closed (i.e., compact without boundary) ori-
entable manifold M of dimension 2n + 1 and a smooth vector field X ∈ Γ(TM), if two 1-forms
α, β ∈ Ω1(M) satisfy

(
φtX
)∗
α = α and

(
φtX
)∗
β = β for any t ∈ R (invariant condition), moreover

α(X) = β(X) = 1, then ∫
M

α ∧ (dα)n =

∫
M

β ∧ (dβ)n.

Proof (1) Direct computation gives

d

α ∧ β ∧
n−1∑
j=0

(dα)j ∧ (dβ)n−1−j


=d(α ∧ β) ∧

n−1∑
j=0

(dα)j ∧ (dβ)n−1−j + α ∧ β ∧
n−1∑
j=0

d
(
(dα)j ∧ (dβ)n−1−j)︸ ︷︷ ︸

=0

=(dα ∧ β − α ∧ dβ) ∧
n−1∑
j=0

(dα)j ∧ (dβ)n−1−j

=

n−1∑
j=0

dα ∧ β ∧ (dα)j ∧ (dβ)n−1−j −
n−1∑
j=0

α ∧ dβ ∧ (dα)j ∧ (dβ)n−1−j

=β ∧
n−1∑
j=0

(dα)j+1 ∧ (dβ)n−1−j − α ∧
n−1∑
j=0

(dα)j ∧ (dβ)n−j
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=α ∧

(dα)n −
n∑
j=0

(dα)j ∧ (dβ)n−j
− β ∧

(dβ)n −
n∑
j=0

(dα)j ∧ (dβ)n−j


=α ∧ (dα)n − β ∧ (dβ)n − (α− β)

n∑
j=0

(dα)j ∧ (dβ)n−j .

(2) Note that α∧ β ∧
n−1∑
j=0

(dα)j ∧ (dβ)n−1−j ∈ Ω2n(M). By (1) and Stokes’ theorem, sinceM is closed,

we have ∫
M

[α ∧ (dα)n − β ∧ (dβ)n] =
∫
M

(α− β) ∧
n∑
j=0

(dα)j ∧ (dβ)n−j .

The invariant condition implies that

LXα = lim
→0

(φtX)
∗
α− α

t
= 0, LXβ = lim

t→0

(φtX)
∗
β − β

t
= 0.

So by Cartan’s magic formula,

0 = LXα = d(ιXα) + ιX(dα) = d(α(X))︸ ︷︷ ︸
=d(1)=0

+ιX(dα) = ιX(dα),

and similarly ιX(dβ) = 0.

We claim that θ := (α − β) ∧
n∑
j=0

(dα)j ∧ (dβ)n−j is in fact identically zero. Since α(X) = 1, the

vector field X is nowhere vanishing. At any point p ∈ M , we can extend Xp to an oriented basis
for TpM , say Xp, v1, · · · , v2n. Now

θp(X, v1, · · · , v2n)

=
1

1!(2n)!

∑
σ∈S2n+1

sign(σ)σ ·

(α− β)⊗
n∑
j=0

(dα)j ∧ (dβ)n−j

p

(Xp, v1, · · · , v2n)

ιX(dβ)=0

ιX(dα)=0 1

(2n)!

∑
τ∈S2n

sign(τ)

(α− β)p(Xp)

n∑
j=0

(dα)jp ∧ (dβ)n−jp

(
vτ(1), · · · , vτ(2n)

)
β(X)=1

α(X)=1

0.

Since p is arbitrary, we have θ ≡ 0. Therefore,∫
M

α ∧ (dα)n −
∫
M

β ∧ (dβ)n =

∫
M

θ = 0.

Exercise 44 LetM be a closed manifold of dimension 2n.

(1) Let ω ∈ Ω2(M) be a 2-form, then ω is non-degenerate (in the sense that at any point x ∈ M , if
v ∈ TxM is not zero, then there exists some w ∈ TxM such that ωx(v, w) 6= 0) if and only if ωn is a
volume form ofM .
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(2) From Exercise 25, we have seen the (Poisson) bracket of two functions H,G :M → R defined by

{H,G} := ω(XH , XG), where − dH = ω(XH , ·), similarly toXG.

Suppose further that ω is closed, then prove that∫
M

{F,G}ωn = 0.

Proof (1) Suppose first that ω is non-degenerate. For any p ∈ M , we show that TpM admits a basis
u1, · · · , un, v1, · · · , vn such that

ωp(uj , uk) = ωp(vj , vk) = 0, ωp(uj , vk) = δjk. (44–1)

The proof is by induction over n. Since ω is non-degenerate, there exist u1, v1 ∈ TpM such that
ωp(u1, v1) = 1. Also, ωp(u1, u1) = ωp(v1, v1) = 0 always holds. Let

W = {v ∈ TpM : ωp(v, w) = 0, ∀w ∈ Span{u1, v1}}.

Define a linear map Φ : TpM → T ∗
pM by Φ(v)(w) = ω(v, w). Since ω is non-degenerate, Φ is an

isomorphism. It identifies W with the annihilator of Span{u1, v1} in T ∗
pM . Thus W is a vector

space of dimension 2n− 2. By the induction hypothesis, there exists a basis u2, · · · , un, v2, · · · , vn
ofW satisfying (44–1). Hence u1, · · · , un, v1, · · · , vn forms a basis of TpM satisfying (44–1).

By (44–1), there is a vector space isomorphism Ψ : T ∗
pM → T ∗

0R2n sending ωp to

ω0 =

n∑
j=1

dxj ∧ dyj ,

where
{

∂
∂x1

, ∂
∂y1

, · · · , ∂
∂xn

, ∂
∂yn

}
is the standard basis of T0R2n.

Since dxi ∧ dxi = dyi ∧ dyi = 0, we have

ωn0 =

 n∑
j=1

dxj ∧ dyj

n

= n!dx1 ∧ dy1 ∧ · · · ∧ dxn ∧ dyn,

which is nonzero. Thus ωn is non-vanishing at p. Since p is arbitrary, ωn is a nowhere vanishing
2n-form onM .

Conversely, supposeω is degenerate. Choose p ∈M and nonzero v1 ∈ TpM such thatωp(v1, w) = 0

for all w ∈ TpM , and extend it to a basis v1, · · · , v2n of TpM . Then ωnp (v1, · · · , v2n) = 0. Hence ωn

is not a volume form ofM .
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(2) First, observe that

ιXG
ωn = ιXG

(
ω ∧ ωn−1

)
= (ιXG

ω) ∧ ωn−1 + ω ∧
(
ιXG

ωn−1
)

= −dG ∧ ωn−1 + ω ∧
(
ιXG

ωn−1
)

= −dG ∧ ωn−1 + ω ∧
(
−dG ∧ ωn−2 + ω ∧

(
ιXG

ωn−2
))

= −2dG ∧ ωn−1 + ω2 ∧
(
ιXG

ωn−2
)

= · · ·

= −(n− 1)dG ∧ ωn−1 + ωn−1 ∧ (ιXG
ω)

= −(n− 1)dG ∧ ωn−1 − ωn−1 ∧ dG
= −ndG ∧ ωn−1,

(44–2)

and similarly
ιXF

ωn+1 = −(n+ 1)dF ∧ ωn. (44–3)

Since dimM = 2n, we have ωn+1 = 0, and then

0 = ιXG
ιXF

ωn+1

(44–3)
−(n+ 1)ιXG

(dF ∧ ωn)

= −(n+ 1)(ιXG
dF ) ∧ ωn + (n+ 1)dF ∧ (ιXG

ωn)

= −(n+ 1)dF (XG) ∧ ωn + (n+ 1)dF ∧ (ιXG
ωn)

= (n+ 1)ω(XF , XG) ∧ ωn + (n+ 1)dF ∧ (ιXG
ωn)

(44–2)
(n+ 1){F,G}ωn + (n+ 1)dF ∧

(
−ndG ∧ ωn−1

)
= (n+ 1)

(
{F,G}ωn + ndG ∧ dF ∧ ωn−1

)
.

Rearranging the terms, we obtain

{F,G}ωn = −ndG ∧ dF ∧ ωn−1.

Let θ = F dG ∧ ωn−1 ∈ Ω2n−1(M). Since ω is closed, so is ωn−1. Hence

dθ = dF ∧ dG ∧ ωn−1 + F d
(
dG ∧ ωn−1

)
= dF ∧ dG ∧ ωn−1 + F

(
d2G ∧ ωn−1 − dG ∧ d

(
ωn−1

))
= dF ∧ dG ∧ ωn−1.

SinceM is closed, by Stokes’ theorem, we have∫
M

{F,G}ωn = n

∫
M

dF ∧ dG ∧ ωn−1 = n

∫
M

dθ = 0.

Exercise 45 LetMm, Nn be orientable manifolds. Let πM :M ×N →M and πN :M ×N → N be the
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projections. Then for forms α ∈ Ωm(M) and β ∈ Ωn(N), consider their “product” defined by

α× β := π∗
Mα ∧ π∗

Nβ ∈ Ωm+n(M ×N).

Prove from definition (of integration on manifolds) that∫
M×N

α× β =

(∫
M

α

)
·
(∫

N

β

)
.

Proof (1) Choose oriented atlases {(Ui, ϕi) : i ∈ I} and {(Vj , ψj) : j ∈ J} forM and N , respectively.
Then the atlas {(Ui × Vj , ϕi × ψj) : i ∈ I, j ∈ J} is an oriented atlas forM ×N , because

det Jac
(
(ψβ1

× ψβ2
) ◦ (ϕα1

× ϕα2
)
−1
)
= det Jac

((
ψβ1

◦ ϕ−1
α1

)
×
(
ψβ2

◦ ϕ−1
α2

))
= det

(
Jac
(
ψβ1 ◦ ϕ−1

α1

)
0

0 Jac
(
ψβ2 ◦ ϕ−1

α2

))
= det Jac

(
ψβ1

◦ ϕ−1
α1

)
det Jac

(
ψβ2

◦ ϕ−1
α2

)
> 0.

SoM ×N is orientable.

(2) Assume first that α is compactly supported in a local chart (U,ϕ) and β is compactly supported in
a local chart (V, ψ). Suppose

(
ϕ−1

)∗
α = f dx1 · · ·dxm,

(
ψ−1

)∗
β = g dy1 · · ·dyn.

Then α× β is compactly supported in the local chart (U × V, ϕ× ψ), and

(
(ϕ× ψ)−1

)∗
(α× β) =

(
(ϕ× ψ)−1

)∗
(π∗
Mα ∧ π∗

Nβ)

=
(
(ϕ× ψ)−1

)∗
(π∗
Mα) ∧

(
(ϕ× ψ)−1

)∗
(π∗
Nβ)

=
(
πM ◦ (ϕ× ψ)−1

)∗
α ∧

(
πN ◦ (ϕ× ψ)−1

)∗
β

=
(
ϕ−1

)∗
α ∧

(
ψ−1

)∗
β

= fg dx1 · · ·dxm dy1 · · ·dyn.

So by Fubini’s theorem on Rm × Rn, we have∫
U×V

α× β =

∫
φ(U)×ψ(V )

fg dx1 · · ·dxm dy1 · · ·dyn

=

(∫
φ(U)

f dx1 · · ·dxm

)
·

(∫
ψ(V )

g dy1 · · ·dyn

)

=

(∫
U

α

)
·
(∫

V

β

)
.

(3) Let {Ui} be a finite open cover of suppα by domains of oriented smooth charts, and let {ρi} be a
subordinate smooth partition of unity. Likewise, choose open cover {Vj} for suppβ and a subor-
dinate partition of unity {σj}. Then {ρiσj} is a partition of unity subordinate to the open cover
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{Ui × Vj}, since for (p, q) ∈M ×N ,

∑
i

∑
j

(ρiσj)(p, q) =

(∑
i

ρi(p)

)
·

∑
j

σj(q)

 = 1,

and other requirements of a partition of unity are easily checked. Hence∫
M×N

α× β =
∑
i,j

∫
M

(ρiσj)α× β

=
∑
i,j

∫
M

(ρiα)× (σjβ)

(2) ∑
i,j

(∫
M

ρiα

)
·
(∫

M

σjβ

)

=

(∑
i

∫
M

ρiα

)
·

∑
j

∫
M

σjβ


=

(∫
M

α

)
·
(∫

N

β

)
.

Homework 6

Exercise 46 For the following matrix groups SL(n,R), O(n), SL(n,R), U(n), and Sp(2n), compute/
confirm their induced Lie algebras as follows.

(1) sl(n,R) := {A ∈ gl(n,R) : tr(A) = 0}.

(2) sl(n,C) := {A ∈ gl(n,C) : tr(A) = 0}.

(3) o(n) :=
{
A ∈ gl(n,R) : AT +A = 0

}
.

(4) u(n) :=
{
A ∈ gl(n,C) : AH +A = 0

}
.

(5) sp(2n) :=
{
A ∈ gl(2n,R) : ATJ + JA = 0

}
, where J =

(
0 1n×n

−1n×n 0

)
.

Proof We shall apply the following theorem.
(GTM 94, Theorem 3.34) Let A be an abstract subgroup of a Lie group G, and let a be a subspace of g. Let U
be an open neighborhood of 0 in g diffeomorphic under the exponential map to an open neighborhood V of e in G.
Suppose that

exp(U ∩ a) = V ∩A.

Then A with the subspace topology is a Lie subgroup of G, a is a subalgebra of g, and a is the Lie algebra of A.

(1) Clearly sl(n,R) is a subspace of gl(n,R). LetU be an open neighborhood of 0 in gl(n,R), diffeomor-
phic under the exponential map to an open neighborhood V of 1n×n in GL(n,R). If A ∈ sl(n,R),
then det(exp(A)) = det

(
eA
)
= etr(A) = 1, so exp(A) ∈ SL(n,R). Conversely, if det(exp(A)) = 1,

since tr(A) ∈ R, we get tr(A) = 0. Thus the above theorem implies that gSL(n,R) = sl(n,R).
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(2) Clearly sl(n,C) is a subspace of gl(n,C). Let U be an open neighborhood of 0 in gl(n,C), diffeo-
morphic under the exponential map to an open neighborhood V of 1n×n in GL(n,C). Since the
trace function is continuous, we can assume that |tr(A)| < 2π for all A ∈ U . If A ∈ sl(n,C), then
det(exp(A)) = det

(
eA
)
= etr(A) = 1, so exp(A) ∈ SL(n,C). Conversely, if det(exp(A)) = 1, then

tr(A) = 2πki for some k ∈ Z. If in additionA ∈ U , then tr(A) = 0. Thus the above theorem implies
that gSL(n,C) = sl(n,C).

(3) Clearly o(n) is a subspace of gl(n,R). LetU be an open neighborhood of 0 in gl(n,R), diffeomorphic
under the exponential map to an open neighborhood V of 1n×n in GL(n,R). We can assume, in
addition, that if A ∈ U , then AT and −A belong to U . For let W be an open neighborhood of
0 in gl(n,R) that is small enough for the exponential map to be a diffeomorphism, and then let
U =W ∩WT ∩ (−W ). If A ∈ U ∩ o(n), then

(exp(A))T =
(
eA
)T

= eAT

= e−A = (exp(A))−1,

so exp(A) ∈ O(n). Conversely, suppose that A ∈ U and that exp(A) ∈ O(n) ∩ V . Then

exp(−A) = (exp(A))−1 = (exp(A))T = exp
(
AT
)
,

which implies that −A = AT since −A and AT also belong to U and since the exponential map is
bijective on U . Thus A ∈ U ∩ o(n). It follows from the theorem above that gO(n) = o(n).

(4) Clearly u(n) is a subspace of gl(n,C). LetU be an open neighborhood of 0 in gl(n,C), diffeomorphic
under the exponential map to an open neighborhood V of 1n×n in GL(n,C). We can assume, in
addition, that if A ∈ U , then A, AT, and −A belong to U . For let W be an open neighborhood of
0 in gl(n,C) that is small enough for the exponential map to be a diffeomorphism, and then let
U =W ∩W ∩WT ∩ (−W ). If A ∈ U ∩ u(n), then

(exp(A))H =
(
eA
)T

=
(
eA
)T

= e(A)
T

= eAH

= e−A = exp(−A) = (exp(A))−1,

so exp(A) ∈ U(n). Conversely, suppose that A ∈ U and that exp(A) ∈ U(n) ∩ V . Then

exp(−A) = (exp(A))−1 = (exp(A))H =
(
eA
)T

= e(A)
T

= exp
(
A
T
)
,

which implies that−A =
(
A
)T since−A and

(
A
)T also belong to U and since the exponential map

is bijective on U . Thus A ∈ U ∩ u(n). It follows from the above theorem that gU(n) = u(n).

(5) Clearly sp(2n) is a subspace of gl(2n,R). Let U be an open neighborhood of 0 in gl(2n,R), diffeo-
morphic under the exponential map to an open neighborhood V of 12n×2n in GL(2n,R). We can
assume, in addition, that ifA ∈ U , thenAT and J(−A)J−1 belong toU . For letW be an open neigh-
borhood of 0 in gl(2n,R) that is small enough for the exponential map to be a diffeomorphism, and
then let U =W ∩WT ∩ J(−W )J−1. If A ∈ sp(2n), then

ATJ = −JA =⇒ AT = J(−A)J−1 =⇒ eAT

= eJ(−A)J−1

= Je−AJ−1.

It follows that
(exp(A))TJ exp(A) = eAT

JeA = Je−AJ−1JeA = J,
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so exp(A) ∈ Sp(2n). Conversely, suppose that A ∈ U and that exp(A) ∈ Sp(2n) ∩ V . Then

eAT

JeA = J =⇒ eAT

= Je−AJ−1 = eJ(−A)J−1

,

which implies that AT = J(−A)J−1 since AT and J(−A)J−1 also belong to U and since the expo-
nential map is bijective on U . Thus ATJ = −JA and A ∈ U ∩ Sp(2n). It follows from the above
theorem that gSp(2n) = sp(2n).

Exercise 47 Given a Lie group G, prove the following equality

exp(−tX) exp(−tY ) exp(tX) exp(tY ) = exp
(
t2[X,Y ] +O

(
t3
))

for any X,Y ∈ gG, when parameter t is sufficiently small.

Proof For any X ∈ gG, g ∈ G and t ∈ R, we have

(Xf)(g exp(tX)) =
d
ds

∣∣∣∣∣
s=0

f(g exp(tX) exp(sX)) =
d
ds

∣∣∣∣∣
s=0

f(g exp((t+ s)X)) =
d
dtf(g exp(tX)).

Using this, one can show by induction that

(Xnf)(g exp(tX)) =
dn
dtn f(g exp(tX)).

In particular, we have

(Xnf)(g) =
dn
dtn

∣∣∣∣∣
t=0

f(g exp(tX)).

Using this formula twice, we get

(XnY mf)(e) =
dn
dtn

∣∣∣∣∣
t=0

(Y mf)(exp(tX)) =
dn
dtn

∣∣∣∣∣
t=0

dm
dsm

∣∣∣∣∣
s=0

f(exp(tX) exp(sY )).

Therefore, the Taylor series for f(exp(tX) exp(sY )) is

f(exp(tX) exp(sY )) =

∞∑
m,n=0

tn

n!

sm

m!
(XnY mf)(e)

for sufficiently small t and s. When s = t, we obtain

f(exp(tX) exp(tY )) = f(e) + t[(Xf)(e) + (Y f)(e)] +
t2

2

[(
X2f

)
(e) + 2(XY f)(e) +

(
Y 2f

)
(e)
]
+O

(
t3
)
.

Now apply this formula to the inverse of the exponential map near e, i.e., the map f defined by

f(exp(tX)) = tX

for t sufficiently small. Then f(e) = 0,

(Xf)(e) =
d
dt

∣∣∣∣∣
t=0

f(exp(tX)) =
d
dt

∣∣∣∣∣
t=0

(tX) = X,
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and for any n > 1,

(Xnf)(e) =
dn
dtn

∣∣∣∣∣
t=0

f(exp(tX)) =
dn
dtn

∣∣∣∣∣
t=0

(tX) = 0.

Note that
X2 + 2XY + Y 2 = (X + Y )2 + [X,Y ],

it follows that
f(exp(tX) exp(tY )) = t(X + Y ) +

t2

2
[X,Y ] +O

(
t3
)
.

Thus
exp(tX) exp(tY ) = exp

{
t(X + Y ) +

t2

2
[X,Y ] +O

(
t3
)}
.

Using this formula twice, we get

exp(−tX) exp(−tY ) exp(tX) exp(tY )

= exp
{
t

(
−(X + Y ) +

t

2
[X,Y ] +O

(
t2
))}

exp
{
t

(
(X + Y ) +

t

2
[X,Y ] +O

(
t2
))}

= exp
{
t
(
t[X,Y ] +O

(
t2
))

+
t2

2

[
−(X + Y ) +

t

2
[X,Y ], (X + Y ) +

t

2
[X,Y ]

]
+O

(
t3
)}

= exp
(
t2[X,Y ] +O

(
t3
))
.

Exercise 48 Prove that the matrix exponential map on elements inMn×n(R) satisfies

det
(
eA
)
= etr(A).

Here, eA = 1+A+ A2

2 + · · · . Please provide all necessary details in your argument. Use this conclusion
to confirm that the following matrix (

−2 0

0 −1

)

can not be written as eA for any A ∈M2×2(R).

Proof (1) Let ‖ · ‖ be a matrix norm onMn×n(C). Then∥∥∥∥∥
∞∑
k=0

Ak

k!

∥∥∥∥∥ ⩽
∞∑
k=0

∥∥Ak∥∥
k!

⩽
∞∑
k=0

‖A‖k

k!
= e∥A∥ <∞,

so the series
∞∑
k=0

Ak

k!
converges for any A ∈Mn×n(C).

Since any complex square matrix is triangularizable, one can find P ∈ GL(n,C) such that

A = P


λ1 ∗ ∗

. . . ∗
λn

P−1, whereλ1, · · · , λn ∈ C.
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Then

eA =

∞∑
k=0

Ak

k!
=

∞∑
k=0

1

k!
P


λ1 ∗ ∗

. . . ∗
λn


k

P−1 = P


eλ1 ∗ ∗

. . . ∗
eλn

P−1. (48–1)

It follows that det
(
eA
)
= eλ1 · · · eλn = etr(A).

(2) Suppose eA =

(
−2 0

0 −1

)
for A ∈ M2×2(R) and the eigenvalues of A are α and β. By (48–1), we

can assume eα = −2 and eβ = −1. Hence α, β /∈ R and they must be complex conjugates of each
other. However,

∣∣eA∣∣ 6= ∣∣eβ∣∣, which is a contradiction.

Exercise 49 Given a Riemannianmetric g, recall that the associated curvature tensor (as a (0, 4)-tensor)
is defined by

R(X,Y, Z,W ) := g(R(X,Y )Z,W )

for vector fields X,Y, Z,W . Prove the following equalities.

(1) R(X,Y, Z,W ) +R(Y, Z,X,W ) +R(Z,X, Y,W ) = 0.

(2) R(X,Y, Z,W ) = −R(Y,X,Z,W ) = −R(X,Y,W,Z).

(3) R(X,Y, Z,W ) = R(Z,W,X, Y ).

Proof (1) Since

R(X,Y )Z +R(Y, Z)X +R(Z,X)Y

=(∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z) + (∇Y∇ZX −∇Z∇YX −∇[Y,Z]X)

+ (∇Z∇XY −∇X∇ZY −∇[Z,X]Y )

=∇X(∇Y Z −∇ZY ) +∇Y (∇ZX −∇XZ) +∇Z(∇XY −∇YX)

−∇[X,Y ]Z −∇[Y,Z]X −∇[Z,X]Y

=∇X([Y, Z]) +∇Y ([Z,X]) +∇Z([X,Y ])−∇[X,Y ]Z −∇[Y,Z]X −∇[Z,X]Y

=[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X,Y ]]

=0,

we have R(X,Y, Z,W ) +R(Y, Z,X,W ) +R(Z,X, Y,W ) = 0.

(2) Since R(X,Y )Z = −R(Y,X)Z, we have R(X,Y, Z,W ) = −R(Y,X,Z,W ). Using compatibility
with the metric, we have

XY |Z|2 = X(2〈∇Y Z,Z〉) = 2〈∇X∇Y Z,Z〉+ 2〈∇Y Z,∇XZ〉,

Y X|Z|2 = Y (2〈∇XZ,Z〉) = 2〈∇Y∇XZ,Z〉+ 2〈∇XZ,∇Y Z〉,

[X,Y ]|Z|2 = 2
〈
∇[X,Y ]Z,Z

〉
.

Subtracting the second and third equations from the first, we get

0 = 2〈∇X∇Y Z,Z〉 − 2〈∇Y∇XZ,Z〉 − 2
〈
∇[X,Y ]Z,Z

〉
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= 2〈R(X,Y )Z,Z〉

= 2R(X,Y, Z, Z).

It follows that

0 = R(X,Y, Z +W,Z +W )

= R(X,Y, Z, Z) +R(X,Y,W,W ) +R(X,Y, Z,W ) +R(X,Y,W,Z)

= R(X,Y, Z,W ) +R(X,Y,W,Z).

(3) Writing the identity in (1) four times with indices cyclically permuted gives

R(X,Y, Z,W ) +R(Y, Z,X,W ) +R(Z,X, Y,W ) = 0,

R(Y, Z,W,X) +R(Z,W, Y,X) +R(W,Y,Z,X) = 0,

R(Z,W,X, Y ) +R(W,X,Z, Y ) +R(X,Z,W, Y ) = 0,

R(W,X, Y, Z) +R(X,Y,W,Z) +R(Y,W,X,Z) = 0.

Now add up all four equations. Applying (2) makes all the terms in the first columns cancel, and
in the last column it yields

2R(Z,X, Y,W ) + 2R(W,Y,Z,X) = 0,

which is equivalent to R(X,Y, Z,W ) = R(Z,W,X, Y ).

Exercise 50 Consider the following (real) 2-dimensional Lie group

G =

{(
x y

0 1

)
: x > 0, y ∈ R

}
.

Complete the following questions.

(1) Verify that its Lie algebra is

gG =

{(
a b

0 0

)
: a, b ∈ R

}
.

(2) Take the following basis of gG in (1),

X1 =

(
1 0

0 0

)
and X2 =

(
0 1

0 0

)
.

Construct a left-invariant metric g on G such that {X1, X2} forms an orthonormal basis.

(3) Verify that the Levi-Civita connection ∇ of g in (2) satisfies the following relations,

∇X1
X1 = ∇X1

X2 = 0, ∇X2
X1 = −X2, ∇X2

X2 = X1.

(4) Compute sectional curvatures of (G, g,∇) for g and ∇ in (2) and (3).
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Proof (1) Let A =

(
a b

0 0

)
, where a, b ∈ R.

� If a = 0, then An = 0 for all n ⩾ 2 and eA =

(
1 0

0 1

)
+

(
0 b

0 0

)
=

(
1 b

0 1

)
.

� If a 6= 0, then An = an−1A for all n ⩾ 1 and

eA =

(
1 0

0 1

)
+

∞∑
n=1

An

n!
=

(
1 0

0 1

)
+

1

a

∞∑
n=1

an

n!
A =

(
ea b(ea−1)

a

0 1

)
.

Clearly a :=

{(
a b

0 0

)
: a, b ∈ R

}
is a subspace of gl(2,R). Let U be an open neighborhood of

0 in gl(2,R), diffeomorphic under the exponential map to an open neighborhood V of 12×2 in
GL(2,R). If B ∈ a, then the above calculation implies that exp(B) ∈ G. Conversely, suppose that

B =

(
a b

c d

)
∈ U and that eB =

(
x y

0 1

)
∈ G ∩ V . Note that eBB = BeB , i.e.,

(
ax+ cy bx+ dy

c d

)
=

(
ax ay + b

cx cy + d

)
.

This implies c = 0, and thenBn =

(
an ∗
0 dn

)
for all n ⩾ 0. Hence

(
x y

0 1

)
= eB =

(
ea ∗
0 ed

)
and

then d = 0. Thus B =

(
a b

0 0

)
∈ a. The theorem in the proof of Exercise 46 implies that gG = a.

(2) Consider the inner product 〈 , 〉 on gG given by〈(
a b

0 0

)
,

(
c d

0 0

)〉
= ac+ bd.

Then define the metric g on G by

gx(X,Y ) = 〈(Lx−1)∗X, (Lx−1)∗Y 〉.

Now for any h ∈ G, we have

(Lh)
∗gx(X,Y ) := ghx((Lh)∗X, (Lh)∗Y )

=
〈(
L(hx)−1

)
∗(Lh)∗X,

(
L(hx)−1

)
∗(Lh)∗Y

〉
= 〈(Lx−1)∗X, (Lx−1)∗Y 〉

= gx(X,Y ).

Therefore g is left-invariant, and {X1, X2} is an orthonormal basis (easily seen at the point 1). Let
∂

∂x
=

(
1 0

0 0

)
and ∂

∂y
=

(
0 1

0 0

)
be the standard coordinate vector fields on G, and denote by

{dx,dy} the dual basis of
{
∂
∂x ,

∂
∂y

}
. Then X1 = x ∂

∂x and X2 = x ∂
∂y . Since G is a Lie subgroup of
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GL(2,R), we get

X1

((
x y

0 1

))
=

(
x y

0 1

)(
1 0

0 0

)
=

(
x 0

0 0

)
= x

∂

∂x
,

X2

((
x y

0 1

))
=

(
x y

0 1

)(
0 1

0 0

)
=

(
0 x

0 0

)
= x

∂

∂y
.

Then we have g = 1
x2 (dx⊗ dx+ dy ⊗ dy).

(3) The Lie bracket of X1 and X2 is

[X1, X2] =

(
0− 0 x− 0

0− 0 0− 0

)
= X2.

For left-invariant vector fields X,Y, Z , the Koszul formula simplifies to

2g(∇XY, Z) = g([X,Y ], Z)− g([X,Z], Y )− g([Y, Z], X). (50–1)

Since {X1, X2} is an orthonormal basis, we have

∇X1
X1 = θ21(X1)X2, ∇X1

X2 = θ12(X1)X1, ∇X2
X1 = θ21(X2)X2, ∇X2

X2 = θ12(X2)X1.

Using (50–1), we obtain

2g(∇X1X1, X2) = −g([X1, X2], X1)− g([X1, X2], X1) = −2g(X2, X1) = 0,

2g(∇X1
X2, X1) = g([X1, X2], X1)− g([X2, X1], X1) = 2g(X2, X1) = 0,

2g(∇X2
X1, X2) = g([X2, X1], X2)− g([X1, X2], X2) = −2g(X2, X2) = −2,

2g(∇X2
X2, X1) = −g([X2, X1], X2)− g([X2, X1], X2) = 2g(X2, X2) = 2.

It follows that

∇X1
X1 = 0, ∇X1

X2 = 0, ∇X2
X1 = −X2, ∇X2

X2 = X1.

(4) From (3) we see that
θ12(X1) = 0 and θ12(X2) = 1,

which implies
θ12 =

1

x
dy.

Thus

Ω1
2 = dθ12 +

2∑
k=1

θk2 ∧ θ1k = dθ12 = − 1

x2
dx ∧ dy.

It follows that

R(X1, X2)X2 =

2∑
j=1

Ωj2(X1, X2)Xj = Ω1
2(X1, X2)X1 = −X1
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and the sectional curvature at the point
(
x y

0 1

)
is

R(X1, X2, X2, X1) = g(R(X1, X2)X2, X1) = g(−X1, X1) = −1.

Homework 7

Exercise 51 Prove that any short exact sequence of cochian complexes (of k-modules)

0 (C•, d•C) (D•, d•D) (E•, d•E) 0
i j

induces a long exact sequence on cohomoogy groups,

· · · H∗(C•;k) H∗(D•;k) H∗(E•;k) H∗+1(C•;k) · · ·i∗ j∗ δ

Please provide all necessary details.

Proof By the definition of short exact sequence of cochain complexes, we have the following commu-
tative diagram with exact columns,

0 0 0

· · · Cn−1 Cn Cn+1 · · ·

· · · Dn−1 Dn Dn+1 · · ·

· · · En−1 En En+1 · · ·

0 0 0

d

i

d

i i

d

j

d

j j

d d

c Cn+1

dd

d Dn Dn+1

e En

∈

i

∈
∈ d

j

∈

The commutativity of the squares means that i and j are chain maps. These therefore induce maps
i∗ and j∗ on cohomology. To define the boundary map δ : Hn(E•;k) → Hn+1(C•;k), let e ∈ En be
a cycle. Since j is surjective, e = j(d) for some d ∈ Dn. The element dd ∈ Dn+1 is in Ker j since
j(dd) = dj(d) = de = 0. So dd = i(c) for some c ∈ Cn+1 since Ker j = Im i. Note that dc = 0 since
i(dc) = di(c) = d2d = 0 and i is injective. We define δ : Hn(E•;k) → Hn+1(C•;k) by sending the
cohomology class of e to the cohomology class of c, δ[e] = [c]. This is well-defined since:

� The element c is uniquely determined by dd since i is injective.

� A different choice of d′ for d would have j(d′) = j(d), so d′ − d is in Ker j = Im i. Thus d′ − d =

i(c′) for some c′, hence d′ = d + i(c′). The effect of replacing d by d + i(c′) is to change c to the
cohomologous element c+ dc′ since i(c+ dc′) = i(c) + i(dc′) = dd+ di(c′) = d(d+ i(c′)).

� A different choice of e within its cohomology class would have the form e + de′. Since e′ = j(d′)

for some d′, we then have e+de′ = e+dj(d′) = e+ j(dd′) = j(d+dd′), so d is replaced by d+dd′,
which leaves dd and therefore also c unchanged.
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The map δ : Hn(E•;k) → Hn+1(C•;k) is a homomorphism since if d[e1] = [c1] and d[e2] = [c2] via
elements d1 and d2 as above, then j(d1 + d2) = j(d1) + j(d2) = e1 + e2 and i(c1 + c2) = i(c1) + i(c2) =

dd1 + dd2 = d(d1 + d2), so d([e1] + [e2]) = [c1] + [c2].
To show that the sequence is exact, there are six things to verify:

Im i∗ ⊂ Ker j∗ This is immediate since ji = 0 implies j∗i∗ = 0.

Im j∗ ⊂ Ker δ We have δj∗ = 0 since in this case dd = 0 in the definition of δ.

Im δ ⊂ Ker i∗ Here i∗δ = 0 since i∗δ takes [e] to [dd] = 0.

Ker j∗ ⊂ Im i∗ A cohomology class in Ker j∗ is represented by a cycle d ∈ Dn with j(d) a boundary,
so j(d) = de′ for some e′ ∈ En+1. Since j is surjective, e′ = j(d′) for some d′ ∈ Dn−1. We have
j(d−dd′) = j(d)− j(dd′) = j(d)−dj(d′) = j(d)−de′ = 0. So d−dd′ = i(c) for some c ∈ Cn. This
c is a cycle since i(da) = di(a) = d(d−dd′) = dd = 0 and i is injective. Thus i∗[c] = [d−dd′] = [d],
showing that i∗ maps onto Ker j∗.

Ker δ ⊂ Im j∗ In the notation used in the definition of δ, if e represents a cohomology class in Ker δ,
then c = dc′ for some c′ ∈ Cn. The element d − i(c′) is a cycle since d(d − i(c′)) = dd − di(c′) =
dd− i(dc′) = dd− i(c) = 0. And j(d− i(c′)) = j(d)− ji(c′) = j(d) = c, so j∗ maps [d− i(c′)] to [e].

Ker i∗ ⊂ Im δ Given a cycle c ∈ Cn+1 such that i(c) = dd for some d ∈ Dn, then j(d) is a cycle since
dj(d) = j(dd) = ji(c) = 0, and δ takes [j(d)] to [c].

Exercise 52 Prove the Künneth formula of de Rham cohomology groups. Explicitly, for manifoldsM
and N with finite good covers, one has

Hk
dR(M ×N ;R) '

⊕
0⩽p,q⩽k, p+q=k

Hp
dR(M ;R)⊗R H

q
dR(N ;R)

for any 0 ⩽ k ⩽ dimM + dimN .

Proof Let πM :M ×N →M and πN :M ×N → N be the standard projections. Then we get a map

Ψ : Ω∗(M)⊗ Ω∗(N) → Ω∗(M ×N), ω1 ⊗ ω2 7→ π∗
Mω1 ∧ π∗

Nω2.

One can check that this map induces a map on cohomologies:

Ψ : H∗
dR(M ;R)⊗R H

∗
dR(N ;R) → H∗

dR(M ×N ;R), [ω1]⊗ [ω2] 7→ [π∗
Mω1 ∧ π∗

Nω2].

To prove that this map is in fact a linear isomorphism, wework by induction on the number l of elements
in a good cover ofM .

If l = 1, i.e.,M is diffeomorphic to Rn, then the Künneth formula follows from the fact that Rn ×N

is homotopy equivalent to N , and Hk
dR(Rn) equals R for k = 0 and 0 otherwise.

Now suppose that the Künneth formula holds for manifolds admitting a good cover with no more
than l − 1 open sets, and suppose thatM = U1 ∪ · · · ∪ Ul is a good cover. Let U = U1 ∪ · · · ∪ Ul−1 and
V = Ul. For simplicity, we denote

Σk(M,N) :=
⊕

0⩽p,q⩽k, p+q=k
Hp

dR(M ;R)⊗R H
q
dR(N ;R).
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Consider the following diagram with exact rows given by the Mayer–Vietoris sequences (note that ten-
soring with the vector space Hq

dR(N ;R) preserves exactness):

Σk(M,N) Σk(U,N)⊕ Σk(V,N) Σk(U ∩ V,N) Σk+1(M,N)

Hk
dR(M ×N ;R) Hk

dR(U ×N ;R)⊕Hk
dR(V ×N ;R) Hk

dR((U ∩ V )×N ;R) Hk+1
dR (M ×N ;R)

Ψ

α

Ψ

β

Ψ

δ

Ψ

α β δ

Wemust prove that this diagram commutes. The only question is in the square at extreme right because
it involves the δ operator used to define the long exact sequence for the Mayer–Vietoris sequence. We
start with an element of Σk(U ∩ V,N) in the upper left corner of this square. We can deal with each
element of this sum separately, so ignore the “⊕” sign. Let [ω1]⊗[ω2] be inHp

dR(U ∩ V ;R)⊗RH
k−p
dR (N ;R).

Then

Ψδ([ω1]⊗ [ω2]) = π∗
M (δ[ω1]) ∧ π∗

N [ω2],

δΨ([ω1]⊗ [ω2]) = δ[π∗
Mω1 ∧ π∗

Nω2].

Let {ρU , ρV } be a partition of unity subordinate to {U, V } such that supp(ρU ) ⋐ U and supp(ρV ) ⋐ V .
To find out δ, we let [ω] ∈ Hp

dR(U ∩ V ;R) represented by ω and τ = (ρUω,−ρV ω) ∈ Ωp(U) ⊕ Ωp(V ), so
that β[τ ] = [ρUω − (−ρV ω)] = [ω]. By diagram chasing, one has

δ[ω] =

[d(ρUω)], onU,
−[d(ρV ω)], onV.

(52–1)

Since the pullback functions {π∗
MρU , π

∗ρV } form a partition of unity onM ×N subordinate to the cover
{U ×N,V ×N}, by (52–1), on (U ∩ V )×N we have

δ[π∗
Mω1 ∧ π∗

Nω2] = [d((π∗
MρU )π

∗
Mω1 ∧ π∗

Nω2)] = [dπ∗
M (ρUω1)] ∧ π∗

N [ω2] = π∗
M (δ[ω1]) ∧ π∗

N [ω2].

So the diagram is commutative.

Now the second and the third Ψ in this commutative diagram are linear isomorphisms by the in-
duction hypothesis. Thus the other Ψ are also linear isomorphisms by the five lemma.

Exercise 53 Compute the de Rham cohomology groups (overR) of the real projective spaceRPn using
Mayer–Vietoris sequence.

Solution We work by induction on n to show that

Hk
dR(RPn;R) =


R, if k = 0,

R, if k = n is odd,
0, otherwise.

(53–1)

For n = 1, (53–1) is true since RP 1 ' S1. Now suppose that (53–1) holds for 1, · · · , n− 1 (n ⩾ 2). Let

U = RPn \ {[0 : · · · : 0 : 1]} ' RPn−1,

V = RPn \ RPn−1 = {[x0 : · · · : xn] ∈ RPn : xn 6= 0} ' Rn.
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Then
U ∩ V ' Rn \ {0} ∼ Sn−1.

Define the inclusion map

i : RPn−1 → U, [x0 : · · · : xn−1] 7→ [x0 : · · · : xn−1 : 0]

and the projection map

π : U → RPn−1, [x0 : · · · : xn−1 : xn] 7→ [x0 : · · · : xn−1].

Then we have π ◦ i = IdRPn−1 and i ◦ π ∼ IdU . So U is homotopy equivalent to RPn−1. The Mayer–
Vietoris sequence for RPn is

0 → H0
dR(RPn;R) H0

dR
(
RPn−1;R

)
⊕H0

dR(Rn;R) H0
dR
(
Sn−1;R

)
H1

dR(RPn;R) H1
dR
(
RPn−1;R

)
⊕H1

dR(Rn;R) H1
dR
(
Sn−1;R

)

· · · · · · · · · · · · Hk−1
dR

(
RPn−1;R

)
⊕Hk−1

dR (Rn;R) Hk−1
dR

(
Sn−1;R

)
Hk

dR(RPn;R) Hk
dR
(
RPn−1;R

)
⊕Hk

dR(Rn;R) Hk
dR
(
Sn−1;R

)
→ · · ·

The first two cases in (53–1) are immediate from the facts that RPn is connected and is orientable if and
only if n is odd. So we are left to show that Hk

dR(RPn;R) = 0 for 1 ⩽ k ⩽ n− 1.

� If n is odd and n ⩾ 3, then Hk
dR
(
RPn−1;R

)
= 0 for k ⩾ 1 by the induction hypothesis. From the

above Mayer–Vietoris sequence, we have

· · · 0

Hk
dR(RPn;R) 0⊕ 0 · · ·

which impliesHk
dR(RPn;R) = 0.

� If n is even and n ⩾ 2, thenHk
dR
(
RPn−1;R

)
=

R, if k = n− 1,

0, otherwise.
for 1 ⩽ k ⩽ n−1 by the induction

hypothesis. When k < n − 1, the same argument as above shows that Hk
dR(RPn;R) = 0. When

k = n− 1, the Mayer–Vietoris sequence gives

· · · 0

Hn−1
dR (RPn;R) R⊕ 0 R

Hn
dR(RPn;R)︸ ︷︷ ︸

=0 sincen is even

· · ·
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which impliesHn−1
dR (RPn;R) = 0.

Therefore (53–1) holds for all n ⩾ 1.

Exercise 54 Let M be a compact oriented manifold. Prove that if dimM = 4n + 2, then its Euler
characteristic χ(M) is even.

Proof Without loss of generality, assume M is connected. Since M is compact, H∗
dR(M ;R) is finite-

dimensional over R by the de Rham theorem. Moreover, by Poincaré duality,

H∗
dR(M ;R) '

(
H4n+2−∗

c (M ;R)
)∗

=
(
H4n+2−∗

dR (M ;R)
)∗ ' H4n+2−∗

dR (M ;R).

Thus

χ(M) =

4n+2∑
k=0

(−1)k dimRH
k
dR(M ;R)

=

2n∑
k=0

[
(−1)k + (−1)4n+2−k]dimRH

k
dR(M ;R) + (−1)2n+1 dimRH

2n+1
dR (M ;R)

= 2

2n∑
k=0

(−1)k dimRH
k
dR(M ;R)− dimRH

2n+1
dR (M ;R).

So the parity of χ(M) is determined by the parity of dimRH
2n+1
dR (M ;R). Now consider the pairing

P : H2n+1
dR (M ;R)×H2n+1

dR (M ;R) → H4n+2
dR (M ;R), ([α], [β]) 7→ [α ∧ β].

Since 2n+ 1 is odd, we have

P ([α], [β]) = (−1)(2n+1)(2n+1)P ([β], [α]) = −P ([β], [α]).

Assume H2n+1
dR (M ;R) ' Rm for some m, and note that H4n+2

dR (M ;R) ' H0
dR(M ;R) ' R by Poincaré

duality and the connectedness ofM . Then, P simply defines an antisymmetric bilinear form φ : Rm ×
Rm → R. Hence we can represent φ by a non-singular skew-symmetric matrix A ∈Mm×m(R). Then

det(A) = det
(
−AT

)
= (−1)m det(A)

implies thatm is even since det(A) 6= 0, and we conclude that χ(M) is even.

Exercise 55 Complete the following two questions on mapping degree.

(1) Let f : Tn → Tn be the map f
(
eiθ1 , · · · , eiθn

)
=
(
eik1θ1 , · · · , eiknθn

)
. Compute deg(f).

(2) Prove that there does not exist a map S2 × S2 → CP 2 with odd degree.

Proof (1) The wedge product
[ω] := [dθ1 ∧ · · · ∧ dθn],

where θ1, · · · , θn are angular coordinates on Tn, is a generator of Hn
dR(Tn;R) = Hn

c (Tn;R). The
map f induces a pullback f∗ on differential forms:

f∗(dθ1 ∧ · · · ∧ dθn) = d(k1θ1) ∧ · · ·d(knθn) = (k1 · · · kn)dθ1 ∧ · · · ∧ dθn.
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So f∗[ω] = k1 · · · kn[ω] and deg(f) = k1 · · · kn.

(2) Recall the cohomologies of CP 2 and S2 × S2:

H2
(
CP 2;Z

)
= Z[α], H4

(
CP 2;Z

)
= Z[[α] ∪ [α]],

H2
(
S2 × S2;Z

)
= Z[π∗

1α1]⊕ Z[π∗
2α2], H4

(
S2 × S2;Z

)
= Z[[π∗

1α1] ∪ [π∗
2α2]],

where [α1] and [α2] are both generators of H2
(
S2;Z

)
, and π1 and π2 are the standard projections.

Let f : S2 × S2 → CP 2 and suppose

f∗[α] = k1[π
∗
1α1] + k2[π

∗
2 ]α2, k1, k2 ∈ Z.

Then

f∗([α] ∪ [α]) = (f∗[α]) ∪ (f∗[α])

= (k1[π
∗
1α1] + k2[π

∗
2α2]) ∪ (k1[π

∗
1α1] + k2[π

∗
2α2])

= k21π
∗
1([α1] ∪ [α1]︸ ︷︷ ︸

=0

) + k22π
∗
2([α2] ∪ [α2]︸ ︷︷ ︸

=0

) + 2k1k2[π
∗
1α1] ∪ [π∗

2α2]

= 2k1k2[π
∗
1α1] ∪ [π∗

2α2].

So deg(f) = 2k1k2 is even.

Homework 8

Exercise 56 Complete the following questions on Hodge–Laplace operator.

(1) LetM be a connected closed manifold and f :M → R be a smooth function. Fix a volume form Ω

onM . Prove that ∆f = 0 or ∆(fΩ) = 0 if and only if f is a constant function.

(2) Under the same hypothesis of (1) above. Prove that
∫
M

fΩ = 0 if and only if there exists a smooth
function g :M → R such that ∆g = f .

Proof (1) The “if” part in either case is trivial. For the “only if” part, since M is connected, f is
constant if and only it is locally constant. Let us pick for every p ∈ M a local coordinate chart
(U,ϕ) around p such that ϕ(U) = Rn, where n = dimM , and compute ∆ in terms of the local
coordinates x1, · · · , xn. For a differential k-form of the shape F dx1 ∧ · · · ∧ dxk. Beginning with
the action of dδ, we obtain

dδ(F dx1 ∧ · · · ∧ dxk)
=(−1)n(k−1)+1 d ? d ? (F dx1 ∧ · · · ∧ dxk)
=(−1)n(k−1)+1 d ? d(F dxk+1 ∧ · · · ∧ dxn)

=(−1)n(k−1)+1
k∑
i=1

d ?
(
∂F

∂xi
dxi ∧ dxk+1 ∧ · · · ∧ dxn

)

=(−1)n(k−1)+1
k∑
i=1

(−1)(k−1)(n−k)+i−1 d
(
∂F

∂xi
dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxk

)
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=

k∑
i=1

(−1)i
(
∂2F

∂x2i
dxi ∧ dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxk

+

n∑
j=k+1

(−1)k−1 ∂2F

∂xi∂xj
dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxk ∧ dxj


=−

k∑
i=1

∂2F

∂x2i
dx1 ∧ · · · ∧ dxk +

k∑
i=1

n∑
j=k+1

(−1)i+k−1 ∂2F

∂xi∂xj
dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxk ∧ dxj .

The simplification of the sign in the second to last equality uses that n(k − 1) + (k − 1)(n − k) =

(k − 1)(2n− k) which is even since k(k − 1) is always even. Meanwhile,

δ d(F dx1 ∧ · · · ∧ dxk)
=(−1)nk+1 ? d ? (dF ∧ dx1 ∧ · · · ∧ dxk)

=(−1)nk+k+1 ? d ?

 n∑
j=k+1

∂F

∂xj
dx1 ∧ · · · ∧ dxk ∧ dxj


=(−1)nk+k+1 ? d

 n∑
j=k+1

(−1)j−k−1 ∂F

∂xj
dxk+1 ∧ · · · ∧ d̂xj ∧ · · · ∧ dxn


=

n∑
j=k+1

(−1)nk+j ?

(
(−1)j−k−1 ∂

2F

∂x2j
dxk+1 ∧ · · · ∧ dxn

+

k∑
i=1

∂2F

∂xi∂xj
dxi ∧ dxk+1 ∧ · · · ∧ d̂xj ∧ · · · ∧ dxn

)

=(−1)nk+k−1+k(n−k)
n∑

j=k+1

∂2F

∂x2j
dx1 ∧ · · · ∧ dxk

+

k∑
i=1

n∑
j=k+1

(−1)nk+j+(i−1)(n−k)+(k−i)(n−k−1)+n−j ∂2F

∂xi∂xj
dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxk ∧ dxj .

Now nk + k − 1 + k(n− k) = −1 + k(2n+ 1− k) is always odd. Meanwhile nk + j + (i− 1)(n−
k) + (k − i)(n− k − 1) + n− j = n(k + 1) + (n− k)(k − 1)− (k − i) = 2kn− k(k − 1)− k − i has
the same parity as i+ k. So we obtain

δ d(F dx1 ∧ · · · ∧ dxk)

=−
n∑

j=k+1

∂2F

∂x2j
dx1 ∧ · · · ∧ dxk +

k∑
i=1

n∑
j=k+1

(−1)i+k
∂2F

∂xi∂xj
dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxk ∧ dxj .

Therefore, we have

∆(F dx1 ∧ · · · ∧ dxk) = −
n∑
i=1

∂2F

∂x2i
dx1 ∧ · · · ∧ dxk. (56–1)

� Take k = 0. Then
∆F = 0 ⇐⇒

n∑
j=1

∂2F

∂x2j
= 0.

By Liouville’s theorem, any bounded harmonic function onRn is constant. So∆f = 0 implies
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that f is (locally) constant.

� Take k = n. Then

∆(F dx1 ∧ · · · ∧ dxn) = 0 ⇐⇒
n∑
i=1

∂2F

∂x2i
dx1 ∧ · · · ∧ dxk = 0 ⇐⇒

n∑
j=1

∂2F

∂x2j
= 0.

Thus again f is (locally) constant.

(2) By the Hodge decomposition theorem, we can write f = ∆g + h for some g ∈ Ω0(M) and h ∈
H0(M). By (1) we know thatH0(M) consists of constant functions onM , so h is in fact a constant.
Since ∆g is orthogonal to H0(M), we have∫

M

∆gΩ = 0.

Therefore,∫
M

fΩ = 0 ⇐⇒
∫
M

(∆g + h)Ω = 0 ⇐⇒ hVol(M) = 0 ⇐⇒ h = 0 ⇐⇒ f = ∆g.

Exercise 57 A contact 1-form onM3 is a 1-form α ∈ Ω1(M) such that dα∧α is nowhere vanishing (i.e.,
a volume form). Complete the following questions.

(1) Prove that the hyperplane field D2 defined by

D2(p) := Kerα(p) = {v ∈ TpM : αp(v) = 0}

for any p ∈ M is not integrable anywhere (called completely non-integrable). Such a completely
non-integrable D2 is called a contact structure onM3.

(2) Following the terminology in (1) right above, for T3 = (R/Z)3 in coordinates (x, y, z), prove that
D2 defined as follows,

D2 = SpanR

〈
∂

∂z
, cos(2πz) ∂

∂x
− sin(2πz) ∂

∂y

〉
is a contact structure on T3.

(3) Draw a closed curve γ in T3 such that everywhere its tangent vector lies in D2. Note that this does
not contradict the Frobenius integrability theorem!

Proof (1) For any X,Y ∈ D2, we have

dα(X,Y ) = X(α(Y ))− Y (α(X))− α([X,Y ]) = 0− 0− α([X,Y ]).

So if D2 is integrable at some point p ∈M , then by the Frobenius integrability theorem, [X,Y ]p ∈
D2 and then dα(X,Y )p = 0. This implies that dα ∧ α vanishes at p, which is a contradiction.
Therefore, D2 is completely non-integrable.

(2) Let α = sin(2πz)dx + cos(2πz)dy ∈ Ω1
(
T3
)
(it is invariant under the action of Z3 on R3 by
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translations, so it descends to a 1-form on T3). Then

dα = −2π cos(2πz)dx ∧ dz + 2π sin(2πz)dy ∧ dz,

and
dα ∧ α =

[
2π cos2(2πz) + 2π sin2(2πz)

]
dx ∧ dy ∧ dz = 2π dx ∧ dy ∧ dz,

which is a volume form on T3. So α is a contact 1-form on T3. Obviously Kerα(p) ⊃ D2(p) for any
p = (x, y, z) ∈ T3. And since dimKerα(p) = 3 − 1 = dimD2(p), they must be equal. Hence by
(1), D2 is completely non-integrable and thus a contact structure on T3.

(3) The red “line” γ(t) =
(
1
2 ,

1
2 , t
)
for t ∈ [0, 1] is a closed curve in T3 whose tangent vector at each

point
(
1
2 ,

1
2 , z
)
∈ γ([0, 1]) is ∂

∂z .

y

x

z

Exercise 58 Use Sard’s theorem and stereographic projection to prove that the n-sphere Sn (for n ⩾ 2)
is simply connected. (Recall that a smooth manifold X is simply connected if it is connected and any
smooth map S1 → X can be continuously deformed to a constant map.)

Proof Let f : S1 → Sn be a smooth map. Sard’s theorem implies that there is a point p ∈ Sn such
that p is a regular value of f . Let σ : Sn \ {p} → Rn be the stereographic projection from p. If there
is an x ∈ S1 such that p = f(x), then dfx : TxS1 → TpSn is a map from a 1-dimensional vector space
to an n-dimensional vector space. This cannot be surjective for dimension reasons. Hence p /∈ Im f .
Then σ ◦ f : S1 → Rn is null-homotopic since Rn is contractible. That is, Im f is contractible and f is
null-homotopic. Therefore, Sn (n ⩾ 2) is simply connected.
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Optional Exercises

Exercise 59 Prove that if n is odd, then RPn is orientable.

Proof Recall the atlas {(Ui, ϕi) : 0 ⩽ i ⩽ n}, where Ui = {[x0, x1, · · · , xn] ∈ RPn : xi 6= 0} and

ϕi : Ui → Rn, [x0, x1, · · · , xn] 7→
(
x0
xi
, · · · , xi−1

xi
,
xi+1

xi
· · · , xn

xi

)
.

To show the transition maps have positive Jacobian determinant, it suffices to consider 0 ⩽ i < j ⩽ n,
since if i = j, the transition map is the identity map which has determinant 1, and if i > j, the transition
is the inverse (so the determinant will still have the same sign). Now the transition maps are given by

(
ϕj ◦ ϕ−1

i

)
(t1, · · · , tn) =

(
t1
tj
, · · · , ti

tj
,
1

tj
,
ti+1

tj
, · · · , tj−1

tj
,
tj+1

tj
, · · · , tn

tj

)
.

Clearly, this ordering is not pretty; the factor 1
tj

seems out of place, and we have a jump in tj−1

tj
,
tj+1

tj
. So,

it would be nice to permute the columns (j−1)− (i+1)+1 = j− i−1 times so that we get the mapping

fij(t1, · · · , tn) =
(
t1
tj
, · · · , tj−1

tj
,
1

tj
,
tj+1

tj
, · · · , tn

tj

)
.

In other words,
(
ϕj ◦ ϕ−1

i

)
= σ ◦ fij , where σ is a permutation that makes j− i− 1many column swaps.

Thus,
det
(
Jac
(
ϕj ◦ ϕ−1

i

)
(t)
)
= (−1)j−i−1 det(Jac(fij)(t)).

We start by calculating the Jacobian matrix for fij :

Jac(fij)(t) =



− t1
t2j

1
tj
1(j−1)×(j−1)

...
− tj−1

t2j

− 1
t2j

− tj+1

t2j
... 1

tj
1(n−j)×(n−j)

− tn
t2j


.

We compute

det
(
Jac
(
ϕj ◦ ϕ−1

i

)
(t)
)

=(−1)j−i−1 det(Jac(fij)(t))
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=(−1)j−i−1

(
1

tj

)j−1
(
− 1

t2j

)(
1

tj

)n−j
det



t1

1(j−1)×(j−1)

...
tj−1

1

tj+1

... 1(n−j)×(n−j)

tn


=
(−1)j−i

tn+1
j

det1n×n

=
(−1)j−i

tn+1
j

.

Unfortunately, these charts are not the oriented ones. Consider ψi = (−1)iϕi. Then, the transition map
is (

ψj ◦ ψ−1
i

)
(t1, · · · , tn) = (−1)j

(
t1
tj
, · · · , ti

tj
,
(−1)i

tj
,
ti+1

tj
, · · · , tj−1

tj
,
tj+1

tj
, · · · , tn

tj

)
.

Hence,

det
(
Jac
(
ψj ◦ ψ−1

i

)
(t)
)
= (−1)nj(−1)i det

(
Jac
(
ϕj ◦ ϕ−1

i

)
(t)
)

= (−1)nj(−1)i
(−1)j−i

tn+1
j

=
(−1)(n+1)j

tn+1
j

.

Thus, for odd values of n, this determinant is positive, and hence for odd n, RPn is orientable, and the
ψi’s provide an oriented atlas.

Exercise 60 LetMm, Nn be smooth manifolds. Prove thatM ×N is orientable if and only ifM andN
are orientable.

Proof (⇐) Suppose M,N are both orientable, and let {(Ui, ϕi) : i ∈ I} and {(Vj , ψj) : j ∈ J} be ori-
ented atlases for M and N , respectively. Then the atlas {(Ui × Vj , ϕi × ψj) : i ∈ I, j ∈ J} is an
oriented atlas forM ×N , because

det Jac
(
(ψβ1 × ψβ2) ◦ (ϕα1 × ϕα2)

−1
)
= det Jac

((
ψβ1 ◦ ϕ−1

α1

)
×
(
ψβ2 ◦ ϕ−1

α2

))
= det

(
Jac
(
ψβ1

◦ ϕ−1
α1

)
0

0 Jac
(
ψβ2

◦ ϕ−1
α2

))
= det Jac

(
ψβ1

◦ ϕ−1
α1

)
det Jac

(
ψβ2

◦ ϕ−1
α2

)
> 0.

(⇒) Note that any open submanifold of an orientable manifold is orientable. So if we pick an open
subset V ⊂ N homeomorphic toRn, thenM×V 'M×Rn is orientable. By induction, it suffices to
show that ifM×R is orientable, thenM is orientable. Choose an open cover {Uα : α ∈ Λ} ofM such
that there are homeomorphisms ϕα : Uα → Rm. Then

{
Uα × R, ψα := ϕα × Id : Uα × R → Rm+1

}
is an atlas forM×R. If needed, we canmodify each ψα by changing the sign of the first component
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into Rm+1 to make it compatible with a fixed orientation inM ×R. This changes correspondingly
the ϕα. Thus

det Jac
(
ψβ ◦ ψ−1

α

)
= det

(
Jac
(
ϕβ ◦ ϕ−1

α

)
0

0 1

)
= det Jac

(
ϕβ ◦ ϕ−1

α

)
> 0.

Therefore {(Uα, ϕα) : α ∈ Λ} is a positive atlas ofM , andM is orientable.

Exercise 61 Prove that the inversion condition is redundant in the definition of a Lie group. That is, if
G is a group with the property that the multiplication map µ : G × G → G is smooth, then the inverse
map i : G→ G is smooth.

Proof Consider the map
F : G×G→ G×G, (g, h) 7→ (g, gh).

Then F is smooth, since µ is smooth. It is straightforward to check that the differential of F at a point
(g, h) ∈ G×G is given by

(dF )(g,h) : TgG× ThG→ TgG× TghG, (X,Y ) 7→ (X, (dRh)g(X) + (dLg)h(Y )),

where Rh : G→ G is right multiplication by h and Lg : G→ G is left multiplication by g.
The map Lg : G → G has a smooth inverse Lg−1 , so it is a diffeomorphism. Thus, (dLg)h is an

isomorphism and hence (dF )(g,h) is surjective. Since the domain and range have the same dimension,
(dF )(g,h) is an isomorphism. This shows that F is a local diffeomorphism. But F is bijective, so F is a
diffeomorphism. In particular, its inverse

F−1 : G×G→ G×G, (g, h) 7→
(
g, g−1h

)
is smooth, and hence the following composition is smooth:

g 7→ (g, e)
F−1

7→
(
g, g−1

)
7→ g−1.

Exercise 62 The dual bundle of a vector bundle π : E → M is the vector bundle π∗ : E∗ → M whose
fibers are the dual spaces to the fibers of E. Prove that if gαβ(x) ∈ GL(n,R) are the transition maps for
E, then the transition maps for E∗ are

(
gαβ(x)

−1
)T.

Proof Fix x ∈ Uα ∩ Uβ and let ` ∈ (Rn)∗. Then for any u ∈ Rn,

〈
g∗αβ(x)`, gαβ(x)u

〉
=
〈
(Φ∗

α)
−1(x, `),

(
Φ−1
α

)
(x, u)

〉
= 〈`, u〉.

Thus for every v ∈ Rn, we have

〈
g∗αβ(x)`, v

〉
=
〈
`, gαβ(x)

−1v
〉
=
〈(
gαβ(x)

−1
)T
`, v
〉
.

Therefore, g∗αβ(x) =
(
gαβ(x)

−1
)T.

Exercise 63 Every vector bundle admits a connection.

Proof Assume π : E → M is a vector bundle and {(Uα,Φα)} is a system of local trivializations. Since
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M is paracompact, we can replace {Uα} with a locally finite refinement and choose a smooth partition
of unity {ρα}. With the trivialization Φα : π−1(Uα) → Uα × Rk, any section s over Uα can be identified
with a smooth map sα : Uα → Rk. Then define ∇α by ∇α

Xs = DXsα (the directional derivative of sα
along X) for any X ∈ Γ(TM). Now we can define a connection ∇ in E by

∇ =
∑
α

ρα∇α.

Because the set of supports of the ρα’s is locally finite, the sum on the right-hand side has only finitely
many nonzero terms in a neighborhood of each point, so it defines a smooth vector field on M . It is
immediate from this definition that ∇XY is linear over R in Y and linear over C∞(M) in X . For the
product rule, by direct computation,

∇X(fY ) =
∑
α

ρα∇α
X(fY )

=
∑
α

ρα[(Xf)Y + f∇α
XY ]

= (Xf)Y
∑
α

ρα + f
∑
α

ρα∇α
XY

= (Xf)Y + f∇XY.

Exercise 64 Prove that if ϕ : G → H is a Lie group homomorphism, then (dϕ)(e) : gG → gH is a Lie
algebra homomorphism.

Proof Since (dϕ)(e) is a linear map, it suffices to show that (dϕ)(e) preserves the Lie bracket. This
follows from the naturality of Lie brackets (see the proposition below) that

[(dϕ)(e)(v), (dϕ)(e)(w)] = (dϕ)(e)([v, w]), ∀v, w ∈ gG.

(GTM218, Proposition 8.30) LetF :M → N be a smooth map between manifolds with or without boundary,
and let X1, X2 ∈ Γ(TM) and Y1, Y2 ∈ Γ(TN) be vector fields such that Xi is F -related to Yi for i = 1, 2. Then
[X1, X2] is F -related to [Y1, Y2].

Exercise 65 If π1(M) is a finite group, then H1
dR(M ;R) = 0.

Proof Choose ω ∈ Ω1(M) with dω = 0 and fix any base point x0 inM . For any loop γ inM based at
x0, we have [γ]np = e in π1(M,x0) for some n ∈ Z \ {0}, since |π1(M)| < ∞. Hence, there exists a path
homotopy F : [0, 1]× [0, 1] →M such that

F (0, t) = γ ∗ · · · ∗ γ︸ ︷︷ ︸
n

(t) and F (1, t) = γx0
(t) ≡ x0, the constant loop atx0.

By Stokes’ theorem (for manifolds with corners), we have

0 =

∫
[0,1]×[0,1]

F ∗ dω =

∫
[0,1]×[0,1]

d(F ∗ω) =

∫
[0,1]

(γx0
)∗ω −

∫
[0,1]

(γ ∗ · · · ∗ γ︸ ︷︷ ︸
n

)∗ω = 0− n

∫
γ

ω.

Hence
∫
γ

ω = 0 holds for any loop γ based at x0, and so ω is exact. Therefore H1
dR(M ;R) = 0.
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