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Homework 1

Exercise 1 Prove that, for 1 < k < n, the Grassmannian
Grgr(k, n) = {k-dimensional linear subspaces of R"}
is a smooth manifold, by explicitly constructing open cover and local charts {an Uy — Vo C RE(R) }QEI.
Proof We shall use the following “Smooth Manifold Chart Lemma” which tells us that a set can be given
a topology and a smooth structure under certain conditions:

Smooth Manifold Chart Lemma Let M be a set, and suppose we are given a collection {Uq }aeca of subsets
of M together with maps @, : Us, — R", such that the following properties are satisfied:

(i) Foreach «, ¢, is a bijection between U, and an open subset ¢, (Uy) C R™.

(ii) For each o and B, the sets ¢, (Uy NUg) and og(U, N Ug) are open in R™.
(iti) Whenever U, NUg # @, the map g 0 05"+ 0a(Ua NUg) — 05Uy N Upg) is smooth.
(iv) Countably many of the sets U, cover M.

(v) Whenever p, q are distinct points in M, either there exists some U, containing both p and q or there exist
disjoint sets Uy, Ug withp € Uy and g € Ug.

Then M has a unique smooth manifold structure such that each (Uy, po) is a smooth chart.
Proof of the lemma We begin by showing that

B={p;'(V):VisopeninR" a € A}

is a topological basis for M. By (i) and (iv), it suffices to show that for any point p in the intersection of
two basis sets ¢ ' (V) and wgl (W), there is a third basis set containing p and contained in the intersec-
tion. In fact, o' (V) N @51(W) is itself a basis set. To see this, note that U, N Ug # @, then (iii) implies
that (¢5 0 ¢, ") “'(W)isan open subset of ¢, (U, NUp), and (ii) implies that this set is also open in R".
It follows that

2 (V)N W) =62 (VN (peowi?)

is also a basis set, as claimed.

W)

Each map ¢, is then a homeomorphism onto its image, where we equip M with the topology gener-
ated by the basis 3. So M is locally Euclidean of dimension n. The Hausdorff property follows from (v),
since in the case where distinct points p and ¢ are both contained in some U, we can use the homeomor-
phism ¢, : Uy = ¢a(Us) C R” to separate them with disjoint open sets. And the second countability
follows from (iv) and the fact that each U, is second countable. Finally, (iii) guarantees that the collec-
tion {(Uq, ¢o)} is a smooth atlas. It is clear that this topology and smooth structure are the unique ones
satisfying the conditions of the lemma. 74

Now let us construct charts for Grg(k,n) and apply the smooth manifold chart lemma. Let P and
@ be any complementary subspaces of R" of dimensions k and n — k, respectively. Then R" = P & Q.
For any linear map f € L(P,Q), its graph can be identified with a linear subspace of R":

I(f) =4{v+ f(v):v € P}



If {e1,- - , e} is abasis for P, then {e1 + f(e1), - ,er + f(exr)} is a basis for I'(f). To see this, it suffices
to prove that the set is linearly independent. Suppose that

k

> ciles + fle)] =0,

i=1

then we can rewrite this as
k k
Z cie; + f (Z Ciei) =0.
i=1 i=1

Note that the first term is in P and the second term is in @), so both must be zero. Thus ¢; = 0 for all i,
as desired. Hence I'(f) is a k-dimensional subspace of R". Any such subspace has the property that its
intersection with @ is the zero subspace. Conversely, any k-dimensional subspace S C R™ that intersects
Q trivially is the graph of a unique linear map f € L(P,Q), which can be constructed as follows: let
mp : R" — Pand mg : R" — @ be the projections determined by the direct sum decomposition; then
the hypothesis implies that (7p)|s is an isomorphism from S to P. Therefore, f == [(mq)|s] o [(7p)|s]
is a well-defined linear map from P to (Q whose graph I'(f) is S. Denote Ug the subset of Grg(k,n)
consisting of k-dimensional subspaces whose intersections with () are trivial, then we have a bijection

L(P,Q) +——1 Ug
i —— )
[(mQ)ls] o [(mp)|s] ™" +—— S

By choosing bases for P and @, we can identify £(P, Q) with M, (R) and hence with R*("=%) and
thus we can think of (Ug, ¢ :=T'"") as a coordinate chart. Since the image of each such chart is all of
L(P,Q), condition (i) of the lemma is clearly satisfied.

Now let (P’, Q') be any other such pair of subspaces, and let 7p/, 7 be the corresponding pro-
jections and ¢’ : Uy — L(P', Q") the corresponding map. We shall prove that ¢(Ug N Ug) is open in
L(P,Q), which will establish condition (ii) of the lemma. For each f € ¢(Ug), define the map

Iy : P —=R", veov+ f(v),
which is a bijection from P to I'(f). Note that I'(f) = Im Iy and Q" = Ker 7p, hence
feplUgnUy) < T(f)NQ' =2 < ImI;NKermp =&,
and by linear algebra the last condition is equivalent to
rank(mwps o I¢) = rank(/¢),

namely, the map 7ps o Iy has full rank k. Therefore, the corresponding matrix A of 7ps o Iy is a non-
singular k x k matrix, i.e. A € GL(k,R). Arrows in the reverse direction then show that f has an open
neighborhood contained in ¢(Ug N Ug/), which means ¢(Ug N Uy ) is open in L(P, Q). Thus property
(ii) in the lemma holds.
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We need to show that the transition map ¢’op ™" is smooth on (U N Ug). Forany f € o(Ug NUgy),



let S denote the subspace T'(f) C R™. If weput f’ := ¢'op ™ (f), thenasabove, f' = [(mg/)|s]|o[(mp/)|s]
Recall that Iy : P — S is an isomorphism, so we can write

= (m@)lslo Iy o (1) o [(wp)ls] ™ = (mqr o Iy) o (wpr o 1)
To see that this depends smoothly on f, define linear maps
g=(mp)lp, h=(rq)lp, j=(mp)lq, k=(mq)le
Then for any v € P we have
(mprolp)v=(g9+joflu, (mqolpv=(h+ko fv,

from which it follows that
fr=(h+kof)o(g+jof) "

Once we choose bases for P, Q, P, @', all of these linear maps are represented by matrices, say F, F’ and
G, H, J, K, respectively. Then
F'=(H+KF)(G+JF)™.

By Cramer’s rule, the entries of (G + JF) ™! are rational functions of those of G + JF, hence the entries
of F’ depend smoothly on those of F. This proves that ¢’ o ¢! is a smooth map, so the charts we have
constructed satisfy condition (iii) of the lemma.

To check condition (iv), we just note that Grr(k,n) can in fact be covered by finitely many of the
sets Ug. Let (eq,--- ,e,) be a basis for R", and consider those (n — k)-dimensional spaces () that are
spanned by n — k of them. There are (,",) such spaces. For any k-dimensional subspace S C R”",
suppose (fi,-- -, fr) is a basis of S. Then by the Steinitz exchange lemma, we can replace k of the e;,
without loss of generality, say e1, - - - , ex, by (f1,- -, fx), such that (f1,--- , fx,€x+1,- - , €,) is a basis for
R™. Then the (n — k)-dimensional subspace () spanned by ex41,- - - , e, is such that S € Ug. Thus, these

(,7,) charts cover Grg(k, n).

Finally, the Hausdorff condition (v) can be verified by noting that for any two k-dimensional sub-
spaces P, P’ C R", one can find a subspace Q of dimension n — k whose intersections with both P and P’
are trivial, and then P and P’ are both contained in Ug. Infact, in the case k > 0, since a real vector space
cannot be a finite union of its proper subspaces, P U P’ # R". Hence there exists v; € R" \ (P U P'). If
k <n—1,wecanfind v € R"\ ((P @ Span(v;)) U (P" USpan(v;))), and so on. This process terminates

at some v,, — k with
vp—k € R™\ ((P & Span(vy, -+ ,vn—k—1)) U (P @& Span(vy, - ,vp_k-1))).

The process of choosing vy, - ,v,—} implies that they are linearly independent, so the subspace @
spanned by them has the desired properties. O

Exercise 2 Let M be a smooth manifold and ¢ € Diff(M). Prove that its graph
Graph(¢) == {(z,¢(z)) : x € M}

is a smooth manifold.



Proof Define the map
F: M — Graph(¢), zw~ (z,¢(z)).

Since F'is the product of the identity map Id s and the diffeomorphism z — ¢(z), it is smooth. Moreover,
it is clear that F is a bijection, and its inverse is just the projection onto the first factor, which is smooth.
Therefore, F is a diffeomorphism, Graph(¢) ~ M is a smooth manifold. O

Exercise 3 Let M be a closed smooth manifold and ¢ € Diff(M). Prove that the mapping torus defined
by
Ty(M) = [0,1] x M/ ~

is a smooth manifold, where (0, x) is identified with (1, ¢(x)) for any = € M.

Proof Consider the Z-action on R x M defined by
n.(r, ) = (r+n,¢"(z)).

In the sense of quotient topology, the mapping torus Ty, (M) is just the orbit space (R x M)/Z under this
action. It is clear that this discrete Lie group action is smooth and free. Moreover, since M is compact,
the action is proper. To verify this, we need to show that the preimage of any compact set under the

action map
F:Zx(RxM)—= (RxM)xRxM), (n(r,z))—=((r+n,¢"(x)),(r x))

is compact. Suppose K C (R x M) x (R x M) is compact, and let K1 = m1(K) and Ky = ma(K),
where 71, 75 are the projections onto the first and second factors, respectively. Then both K; and K are
compact in R x M. The projection of K; onto R is compact, so (r + n, ¢"(z)) € K; holds for only finitely
many integers n. Thus F~!(K) is compactin Z x (R x M) as desired. By the quotient manifold theorem,
T,(M) is a smooth manifold. O

Exercise 4 Prove that the following set of matrices

rx,y,z € R

Il
o O =
o = 8
— < W

is a Lie group. Here “H” stands for Heisenberg.

Proof Let us first show that H is group under matrix multiplication. The product of two Heisenberg

matrices is given by

1 z =z 1 v w 1l z4+u z4+av+w
01 y 01 v]|=1{0 1 y+o
0 0 1 0 0 1 0 0 1

The neutral element of the Heisenberg group is the identity matrix, and inverses are given by

-1

1 = =z 1 —z zy—=z
01 y =10 1 —y
0 0 1 0 0 1



We can naturally identify H with R?, and define the multiplication map on R? by
peREXRY 5 R ((z,9,2), (u,v,w)) = (x 4+ u,y +v, 2 + 20+ w)
and the inverse map by
PR3 = R3 (2,9,2) = (—x, —y,xy — 2).

Both p and ¢ are smooth maps, so H is a Lie group. O

Exercise 5 Assume the orthogonal group O(n) = {4 € M, x,(R) : AAT = 1} is a compact Lie group

of dimension n(n — 1). Prove that the special orthogonal group

SO(n) :={A € O(n) : det(A) =1}
is a compact Lie group and calculate its dimension.

Proof Consider the determinant map det : O(n) — R. Since SO(n) = det™ (1) = det ' (Rs), it is
a clopen subgroup of O(n). By openness, SO(n) has the same dimension as O(n); and since SO(n) is
closed in the compact Lie group O(n), it is itself compact. Therefore, SO(n) is a compact Lie group of
dimension in(n — 1). O

Exercise 6 Prove that SO(3) is diffeomorphic to RP? as two smooth manifolds.

Proof Any element in SO(3) is a rotation. It can be represented by a pair (v, ), where v € S* is a unit
vector along the axis of rotation and 0 € [0, 27] is the angle of rotation about v. Note that this rotation is
equivalent to the rotation about —v by the angle 27 — . Therefore we have

S? x [0, 27]

SO(3) ~ (v,6) ~ (—v,2m — 0) and (v,0) ~ (w,0)

In this identification, we define the map

3
©:50(3) = RP® ~ _xS = [(0,0)] = [(vsin g, cos 3)].

It is well-defined, since

v,0) ~ (—v,21 — 0) in SO(3) e (vsin £, cos ) ~ (—vsin 222 cos 22=9) in RP?,
2 2 ) p

(v,0) ~ (w,0) in SO(3) «~ (vsin0,cos0) ~ (wsin0,cos0) in RP?.

It is straightforward to check that ¢ is a diffeomorphism. O

Exercise 7 Identify CP" with the set of equivalence classes in (C"*'\ {0})/C*. Consider the map
S:CP'x CP' — CP? by

([(wo, w1)], [(20, 21)]) = [(woz0, woz1, w120, w121)].
Prove that S is a smooth map. Here, “S” stands for Segre.

Proof The map S is well-defined, since the product w;z; (i,j = 0,1) are all homogeneous of degree 2



in the variables wy, w;, 2o, z1. Take the standard charts (Up, ¢o) and (Us, 1) on CP' given by
Uop = {[wo,w1] : wo # 0}, Uy = {{wo, w1] : w1 # 0}

with local coordinates ¢o([(wo, w1)]) = 3t on Up and ¢1([(wo, w1)]) = 3¢ on Uy. Similarly, we choose
charts for CP3, denoted by (V;, ;) fori =0,1,2,3.

o If wozg # 0, then we can choose charts (Uy x Uy, po X o) for ([(wo,w1)], [(z0,21)]) and (Vo, 1) for
[(wo20, woz1, w1 20, w121)]. Clearly S(Uy x Ug) C Vi. The composite map vy 0 S o (¢ x @) ' is
given by

(poxepo)? S Yo
(z,y) — (L)L [(Ly)]) = [(Ly z,2y)] — (y,2,2y),
which is clearly smooth.

o If wozy # 0, then we can choose charts (Uy x Uy, po X 1) for ([(wo,w1)], [(20,21)]) and (V1,11) for
[(woz0, woz1, w120, w121)]. Clearly S(Up x Uy) C V4. The composite map 11 o S o (¢g X 1) s
given by

(poxe1)™! S P1
(@, y) — ([(1L,2)), [(y, V]) = [(y, 1, 2y, 2)] — (y, 2y, @),
which is clearly smooth.

o If wyzg # 0, then we can choose charts (U x Uy, ¢1 X o) for ([(wo,w1)], [(20,21)]) and (Vz,13) for
[(woz0, woz1, w120, w121)]. Clearly S(Uy x Up) C Va. The composite map 12 o S o (¢1 X wo) s
given by

(p1xp0) " S P2
(z,y) — ([(=, D], (L y)]) = (2, 2y, L, y)] — (2, 2y, ),
which is clearly smooth.

o If wyz; # 0, then we can choose charts (U x Uy, ¢1 X 1) for ([(wo,w1)], [(20,21)]) and (V3,1)3) for
[((woz0, woz1, w120, w121)]. Clearly S(Uy x Uy) C Vs. The composite map 93 o S o (¢1 X 1) s
given by

(p1xp1) " S b3
(@, y) — ((=, 1)}, (v, D)]) = [(zy, 2,9, 1)] — (zy, 2,y),
which is clearly smooth.

Therefore, S is a smooth map. O

Exercise 8 Consider group E(n) :=R" x O(n) where the multiplication is given by
(Ua A) ! (UJ, B) = (U + va AB)

where “E” stands for Euclidean. Note that F(n) is a Lie group. Meanwhile, a representation of E(n) is a
Lie group homomorphism from E(n) to GL(k,R) for some k > 0. Construct a non-trivial representation
of E(n) that is injective.

Proof We have already seen in elementary geometry that £(n) is just the isometry group of the n-
dimensional Euclidean space, and E(n) can be viewed as the product manifold R" x O(n). So we are
left to verify that the group operations are smooth. The multiplication map

w: E(n)x E(n) = E(n), ((v,4),(w,B))— (v+ Aw, AB)



is smooth, since it is the product of two smooth maps. Hence E(n) is a Lie group.
A non-trivial representation of E(n) that is injective can be constructed as follows. Consider

& : E(n) — GL(n + 1,R), (’U,A)H(? ;’)

It is well-defined, since the block matrix is invertible if and only if A is invertible. To see that ® is a group
homomorphism, note that for any (v, A), (w, B) € E(n), we have

®((v, A) - (w, B)) = ®(v + Aw, AB) = <Af ”+1Aw> — (? 1’) (g T) — ®(v, A)D(w, B).

Since @ is clearly smooth, it serves as a non-trivial injective representation of E(n). O

Exercise 9 Prove that the upper half-plane in C, denoted by
H:= {z € C:Im(z) > 0}

is a homogeneous space.

Proof The Lie group SL(2,R) acts smoothly and transitively on H by M&bius transformations:

(a b>.Z:az+b7 where ad — bc = 1.
c d cz+d

This action is clearly smooth since cz + d # 0 for all z € H. To see that it is transitive, let z = x + iy be a
given point in H. Observe that the matrix

(ﬁ fﬂ) € SL(2,R)

1
0 %

maps i to z. Since z € H is arbitrary, the orbit of i under the action of SL(2, R) is all of H. Therefore, the
group SL(2, R) acts transitively on H, and H is a homogeneous space. O

Exercise 10 Prove that if M and N are smooth diffeomorphic, then dim M = dim N.

Proof Suppose M is a nonempty smooth m-manifold, N is a nonempty smooth n-manifold, and f :
M — N is a diffeomorphism. Choose any point p € M, and let (U, ¢) and (V, ) be smooth coordinate
charts containing p and f(p), respectively. Then (the restriction of) F := 9o f o ™! is a diffeomorphism
from an open subset X C R™ to an open subset Y C R". Since F'~! o I = Idx, the chain rule implies
that foreach z € X,

Idzr = D(Idx)(z) = D(F~' o F)(z) = D(F~})(F(x)) o DF ().

Similarly, F o ' = Idy implies that DF(z) o D(F~')(F(x)) is the identity on R". This implies that
DF(z) is invertible with inverse D(F~")(F(x)), and therefore n = m. O



Homework 2

Exercise 11 Given the Grassmannian Grg(k, n), consider the following set
Yr(k,n) = {(V,v) € Grr(k,n) x RF : v € V}.

Prove that under the natural projection «(V,v) := V, the structure = : yg(k,n) — Grr(k,n) is a real
vector bundle of rank-%. This vector bundle is called the tautological bundle (over Grg(k,n)).

Proof In Exercise 1 we have constructed local charts on Grg(k,n) of the form
¢o : Ug — L(P,Q) = RF(=H).

Recall that when identifying £L(P, Q) with M, _;)x,(R) and then R*™~*) we have chosen some bases
for P and @, which gives a natural linear isomorphism ¢q : P — R*. Hence we can construct local

trivializations of vg(k, n) as follows:

Do N(Ug) = {(V,v) : V € Ug,v € V} =5 Ug x RF,
(Vov) — (V. dg(v)).

It is immediate that ® preserves the fibers:
@Q‘ﬂ-—l({v}) : Wﬁl({V}) = {V} x V= {V} x RF,
For any two intersecting open sets Ug and Ug-, the map ®¢/ o <I>c_?1 has the form

Do 0@, (UgNUg) x RY — (Ug NUg ) x RY,
(V,v) = (V.o o 05! (v))-

Here the transition map ¢¢’ o qSél : R*¥ — RF is a linear isomorphism. Therefore, the structure 7 :

Yr(k,n) — Grr(k,n) is a real vector bundle of rank-k. O

Exercise 12 Let X, Y be vector fields on M, and locally (within some (U, ¢o)) write X = (X1, -+, X,,)
andY = (Y3, --,Y,) where X;, Y, are smooth functions on U,, for 1 < 4, j < n. Prove that the Lie bracket

locally writes as follows,
[X,Y] = (DxY1 — Dy Xy, - ,DxY, — Dy X,,).
Use this to calculate [X,Y] for X,V € I'(TR?) (in coordinate (z,y, z)) where

X((z,y,2)) = (—y,2,0) and Y((z,y,2)) = (0,—2,y).
Proof By the (implicit) definition of the Lie bracket, we have

Dixy)f =DxDyf —DyDxf
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xSy ) sy 0 (o 9
B Xzaxi Zyjﬁzj Zlyjﬁa:j (2){16:&)

i=1 =1 iz <
_i;1Xiaxl<Y§fJ>_j’lz_:l)/jaij(Xigi’)

2 (i vatm) - 28+ vae)
> X5~ X Vi

B ay;  0X;\ of
Z<X8’ Yl(‘)ﬂ)@ﬂ

of
Z 81:’ )81’3

j
= (DXY1 — Dy Xy, - ,DxY, — Dy X,,)(f)

for any smooth function f. Here we have used the fact that mixed partial derivatives of a smooth function
commute. Thus the local computation formula is proved. With this formula, we can calculate

[X,Y]=(0—-20-0,2 —0) = (—2,0,z). O
Exercise 13 (1) Let T? denote the 2-dimensional torus S* x S'. Construct a vector field X € I‘(T’]T2)
that does not have any zero’s.

(2) Construct a vector field X € F(TSZ) that has only one zero.

Solution (1) Parametrize the 2-dimensional torus by
r:R* = R3 (u,v) — ((2+ cosu)cosv, (2 + cosu) sin v, sinu).
Taking partial derivatives with respect to u and v, we get

74 (u,v) = (—sinu cos v, — sinu sinv, cos u),

ry(u,v) = (=(2 4 cosu) sinv, (2 + cosu) cos v, 0).

By construction, the vector field X = (r,,7,) is everywhere tangential to T?. To see that it is

nowhere vanishing, we compute

7]l = Vsin2 wcos? v + sin® usin® v + cos? u = 1

and

ro|l = \/(2 + cosu)?(sin® v + cos? v) = 2+ cosu > 1.

(2) Consider the stereographic projection of S* \ {(0,0, 1)} onto R?:

oS82\ {(0,0,1)} — R, (x,y,z)}—>< r Y )

11—z 1-—2
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Its inverse is given by

2, .2
ot R? - $2\ {(0,0,1)}, (u,v)'—>< 2u 2v u v 1).

w402 4+1"u2+024+17u2+02 41

The differential of 0! at (u,v) € R? is represented by its Jacobi matrix,

. 2 — 2u? + 20° —4uv
Jac(o™") ((u,v) = ————— —duv 2+ 2u? — 20°
2 241
(W +v2+1) 4u y

Since U ((u,v)) = - is a nowhere vanishing vector field on R?, the pushforward of U at (u,v) by
o~ ! is proportional to

(1 —u?+ v2, —2uw, Qu)7

x
and by substituting v = . and v = %, we obtain a nowhere vanishing vector field on

$2\ {(0,0,1)}: - -

L 2
X1((z,y,2)) = E=SE (2 — 227 — 2z, —2xy,22(1 — z))
This is proportional to the vector field
X((z,y,2)) = (2 + 2 — Lzy,z(2 — 1)).

This expression allows us to extend X smoothly to the entire S* by setting X ((0,0,1)) = (0,0, 0).
To check that X has only one zero, note that the second component zy vanishes only if © = 0 or
y = 0. When z = 0, the vector field becomes (z — 1,0, 0), which vanishes only at the north pole
(0,0,1). When y = 0, the vector field becomes (x2 +2z—-1,0,z(z — 1)), which again vanishes only
at the north pole (0,0, 1). Therefore X € I'(TS?) has only one zero at the north pole. O

Exercise 14 On the standard unit sphere S* in R*, construct three smooth vector fields X,Y,Z €
I'(TS?) such that for every p € S?, the vectors {X (p), Y (p), Z(p)} form a basis at the fiber 7),S* = 7! (p)
of the tangent bundle 7 : TS* — S5,

Solution We use the following proposition to characterize the tangent space at each point p € S*:
Proposition Suppose M is a smooth manifold and S C M is an embedded submanifold. If ® : U — N is any
local defining map for S, then T,S = Kerd®,, : T,M — Ty, N foreachp € SNU.

The defining map for S? is given by ®(zy, z9, 73, 74) = 27 + 23 + 23 + 27 — 1. The differential of ®

atp = (z1,z2,23,24) € S? is d®, = 2(x1, 2,23, 24), hence

T,S*={veT,S*: plv= 0}.

Therefore we define for (z,y, z,w) € S* C R* the following three vector fields:

0 0 0 0
X((z,y,2,w)) = —y— Ty, Wy iy

0
Y = —Zz— _— _— =Yy —
((z,y,z,w)) z x—!—w y+:c
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By the above proposition they form a basis at each tangent space. Since S? is an embedded submanifold
of R*, XY, Z are all smooth vector fields on S* by composition. To see linear independence, suppose
V = aX(p) + bY (p) + cZ(p) = 0 for some p € S* and a, b, c € R. Since X, Y, Z are pairwise orthogonal
at each point, we have

0= (V,V) =a*(X(p), X(p)) + V(Y (p), Y (0)) + *(Z(p), Z(p))-
This implies ¢ = b = ¢ = 0, s0 X, Y, Z are linearly independent at each point. O

Exercise 15 Prove that for any finite-dimensional vector spaces U, V, W, there existsamap ¢ : U® (V ®
W) — (U ®V)®W that is an isomorphism and identifies u ® (v ® w) and (u ® v) ® w.

Proof The map
FUXVXW—=UV)eW, (uvw)— u®v)®@w

is obviously multilinear, and thus by the universal property of tensor products, it descends to a linear
map
fUVeW = UaV)eW, uuvew— (udv)®w.

Since (U ® V') ® W is spanned by elements of the form (v ®v) ® w, the map fis surjective, and therefore

it is an isomorphism for dimensional reasons. Similarly, there is an isomorphism
G UQVIW U (VeW), u®vdw—u® (vw).

Finally, the composition ¢ := f o ! is the desired isomorphism. O

Exercise 16 Recall that an element © € V' ® W is called decomposable if there exist v € V and w € W
such that = v ® w. Suppose V admits a basis {e1,--- ,e,} and W admits a basis {fi,--- , fm }. Prove
thatz =Y a;;(e; ® f;) € V ® W is decomposable if and only if the matrix (a;;)1<i<n,1<j<m has rank 1.

Proof Denote the matrix (a;;)1<i<n,1<j<m by A. Formally, we can write

n m fl
JTZZZQU(Cl@fJ):(el €n)A

i=1j=1
fm

Then
rank A =1
T

81
A= (81 sm> for somer;,s; € R

T’ﬂ

(»
T b5l

S N [P =<Z>® Al 0
_

Tn fm
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Exercise 17 For any matrices A € GL(k,R) and B € GL({,R), prove
det(A ® B) = [det(A)]'[det(B)]".

Proof (Proof1) LetAi,---,A; € C be the eigenvalues of A with associated eigenvectors vy, - - - , vk,

and let py,-- -,y € C be the eigenvalues of B with associated eigenvectors wy, - - - ,w;. Then
(A® B)(v; ® wj) = Av; ® Bwj = \v; @ pjw; = A (v; ® wj).

Hence the eigenvalues of A ® B are A\;u; (1 < ¢ < k, 1 < j < I), counted with multiplicities. It
follows that

det(A ® B) H H Nif; = H AL H ph = [det(A))'[det(B)]*.

i=175=1

(Proof 2) Since
det(A ® 1;x;) = det(1;»; ® A) = det(diag(4, --- , A)) = [det(A)]',
———

[ copies

and similarly
det(lyx; ® B) = [det(B)]k,

we have
det(A ® B) = det((A ® Lxi)(Lixk ® B)) = [det(A)]'[det(B)]". O

Exercise 18 Recall that on an even-dimensional manifold M, an almost complex structure denoted by
J is a smooth family of morphisms J, : T,M — T,M satisfying Jg = —1. Consider the following
(1,2)-tensor field

NJ(X,Y) = [X,Y]+ JJX, Y]+ J[X,JY] - [JX, JY]

forany X,Y € I'(T'M). A celebrated result from Newlander-Nirenberg says that .J is integrable (induced
by a complex structure) if and only if N; = 0. Prove that over a closed surface ¥, any almost complex
structure J (if exists) is always integrable.

Proof Let X be a closed surface (i.e., a 2-dimensional smooth manifold), and fix a point p € ¥. Let V/
be a non-vanishing local vector field defined in a neighborhood of p. Note that {V, JV'} forms a basis in
this neighborhood, for if V and JV are linearly dependent, then JV' = ¢V for some ¢ € R, which implies
—V = J*V = ¢JV = ¢*V, a contradiction. Then it suffices to show that N;(V,V) = 0= N,(V,JV) atp
since N is a (1, 2)-tensor field. In fact, using the Lie bracket properties, we have

N;(V,V) = [V,V] + J[JV, V] + J[V, JV] = [JV, JV]
= JJV,V]+ J[V, V]
= JJV,V] = J[JV,V]
=0

and

Ny (V,JV) = [V, JV]+ J[JV, V] + J[V,J?V] — [JV, J?V]
= [V, JV]+ J[JV,JV] + J[V,=V] - [JV,-V]
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=[V,JV] = J[V.V]+ [JV, V]
=[V,JV]-[V,JV]
=0.
Since p is arbitrary, V; = 0 on %, and thus J is integrable. O

Exercise 19 Prove that on any Riemannian manifold (M, g), there exists a unique connection V satis-
fying, for any X,Y, Z € I'(T'M),

(i) (compatibility) Zg(X,Y) =g(VzX,Y)+ g(X,VzY).
(ii) (torsion-free) [X,Y]=VxY — VyX.

Proof We prove uniqueness first, by deriving a formula for V. Suppose that V is a connection satisfying
the above conditions (i) and (ii), and let X,Y,Z € I'(T'M). Writing the compatibility equation three

times with XY, Z cyclically permuted, we obtain

Xg(YV,Z)=g(VxY,Z)+g(Y,Vx Z),
Yg(Z7X> :g(vYZ7X)+g(Z7VYX>7
Zg(X,Y)=9g(VzX,Y)+g(X,VzY).

Using the torsion-free condition on the last term in each line, this can be rewritten as

Xg(Y, Z) = g(vXYa Z) +g(Y, VZX) +9(K [Xa ZD?
Y9(Z,X)=9(VyZ,X) +9(Z,VxY) + g(Z,[Y, X]),
Z9(X,Y)=9(VzX,Y)+9(X,VyZ) +g(X, [Z,Y]).

Adding the first two of these equations and subtracting the third, we obtain
Finally, solving for ¢(VxY, Z), we get
1

Now suppose V' and V? are two connections on 7'M that are torsion-free and compatible with g. Since

the right-hand side of the above formula does not depend on the connection, it follows that
g(VXY = VXY, Z) =0

for all X, Y, Z. This can happen only if V}Y = V%Y forall X and Y, so V! = V2.

To prove existence, one only need to check that the VxY defined by the above formula satisfies
all conditions of a connection and is torsion-free and compatible with g. For any f,h € €*°(M) and
X1,X2, X, 11,Ys,Y, Z € I'(T'M), with the product rule of the Lie bracket, we have

1
IV ixi+nxeY, 2) =5[(f X0+ hX2)g(Y, Z) + Yg(Z, f X1 + hX2) = Zg(f X1 + h X2, Y)

—g(Y, [f X1+ hX2, Z]) — g(Z,[Y, f X1 + hXo]) + g(f X1 + hX,,[Z,Y])]



=S FXag(Y. 2) 4 hXag(Y, 2) + Y fo(Z, X2) + Yhg(Z, Xs)
—Zf9(X1,Y) = Zhg(X2,Y) — g(Y,[f X1, Z]) — g(Y, [h X2, Z])
—9(Z,[Y, fX1]) = 9(Z, [V, hX2]) + fg(X1, [Z,Y]) + hg(X2, [Z,Y])]
=S Xag(Y, 2) + hXag(Y, 2) + ¥ (Pg(Z, X0) + Y 9(2,5)
Y (h)g(Z, X2) + hY g(Z, X2) — Z(f)g(X1,Y) — fZg(X1,Y)
—Z(h)g(X2,Y) — hZg(Xs,Y) — g(Y, f[X1, Z] — Z(f)X1)
—g(Y,h[ X2, Z] — Z(h)X2) — g(Z, [[Y, X1] + Y (f) X1)
—9(Z, Y, Xo] + Y (h) X2) + f9(X1,[Z,Y]) + hg(X2,[Z,Y])]
=f9(Vx,Y,Z) + hg(Vx,Y,Z)
=9((fVx, + hVx,)Y, Z)

and

1
9(Vx (N1 +Y2), 2) =5 [Xg(V1 + Y2, Z) + (V1 + Y2)9(Z, X) — Zg(X, Y1 + Y2)

79()/1 + Y27 [X’ Z]) - g(Z7 [Yl + YQvX]) + g(Xa [Z’}/l + Y2])]

1
T2

—Z9(X.Y1) — Zg(X,Y2) — g(V1, [X, Z]) — g(Y2, [X, Z])

_9(27 [YlaX]) - g(Z, [Y27XD + g(X, [Z7 Yl]) +9(X7 [Z7Y2])]
Zg(VXYl + nyQ,Z).

(Xg(Y1,2) + Xg(Y2, Z) + Y19(Z, X) + Yag(Z, X)

and finally

AV (V). 2) =5[Xg(fY. 2) + [Y9(Z,X) ~ Zg(X. fY)
~g(Y. X, 7)) = g(Z, [FY: X)) + (X, 12, fY))]
=S [XF4(¥, 2) + fYg(Z,X) = Zf9(X,Y) - fo(V,[X. 2]
~9(Z, =X ()Y — fIX,Y]) + g(X, Z(NY + fIZ,Y])

=S X(N9Y.2) + Xq(Y, 2) + [Yg(Z,X) = Z(Dg(X.¥) ~ [Zg(X.Y)

—f9(YV,[X, Z2) + X(Ng(Z,Y) + f9(Z, [ X, Y]) + Z(£)g(X,Y) + f9(X, [2,Y])]

—SUFXg(V,2) + fYg(2,X) ~ 129(X.Y)

~Fgl¥, X, 2) = f(Z.[¥ X)) + Fo(X.[2,Y])] + X(7)g(¥, 2)
=19(VxY, 2) + X (1)g(¥, 2)
:g(X(f)Y + fVxY, Z).

To check the torsion-free condition, we have

=S [0V (X, 2]) — g(Z,[¥. X)) + (X [Z,Y])

+9(X7 [Y, Z]) + 9(27 [X7 Y]) - g(Y7 [Z7 X])]

g(VXY - VYXv Z)

14
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:%[_g(z, Y, X]) + 9(Z,[X,Y])]

=9([X,Y], 2),
which implies [X,Y] = VxY — Vy X. Finally, the compatibility condition is obtained from

g(vZX7Y) + g(Xv VZY)
:%[ZQ(X’ Y) + Xg(Y, Z) - Yg(Z,X) - g(X, [Z7 YD - g(Y7 [X> Z]) +9(Z7 [Y7 X])]

4 51Z0(Y.X) 4 Yg(X. 2) = Xg(Z,Y) ~ 9(¥\[Z, X))  g(X.[¥. Z)) + g(Z,[X. Y]

=Zg(X,Y). O

Exercise 20 Given a Riemannian manifold (1, g), prove that for any smooth function F' : M — R,
there exists a unique vector field denoted by V F satisfying

g(VF,X) =DxF

for any X € I'(T'M). This vector field is called the gradient of F' on M. Also, prove that the function F' is
non-decreasing along V F'. Finally, work out (with details) the explicit formulaof VF for F : (R?, g) — R

in polar coordinate (r, @), where g is taken as the standard inner product.

Proof Since the metric tensor g is non-degenerate, it induces the musical isomorphisms b : TM —
T*M, X — g(X,-)and § :==b~' : T*M — TM. In local coordinates {z’} we have g = 9ij dz’ ® da? and
the musicalities are given by

0 . _ !
— g dad iy _ i 9
b<8xi) gijdz? and f(dz') =g ot

where [¢"/] = [g;;]"". By definition b(VF) = dF, so the gradient VI is given by

or dxi) _or g% i. (20-1)
oxt

One can check that this vector field satisfies the given equation:

g(VF, X) OF i (8 X) a—gwx’fgjk

A = o
oF . OF _ .

= - Xk H = — X’L = D F
ox* d ox* X

If there is another vector field VF satisfying the equation, then
g(VF —VF,X) =0,

which implies VF = VF. Therefore VF is unique. Since DyrF = g(VF,VF) > 0, the function F is
non-decreasing along V F.

To get the explicit formula of VF for F : (R?, g) — Rin polar coordinates (r, #), we need to compute



the matrices [g,¢] and [¢"]. Let + = r cos § and y = rsin§. Then

g_axa dy 0

— = —cos@a +51r198
or  Ordx  Ordy or oy’
g_aja oy 0

Tt = —rsin@2 —l—rcos&2
06  000x 000y Ox oy’
Hence we get

(or

Grr =

Q

\_/

=cos?f +sin?h =1,

9
" or
9gro = Gor = 9 ) —rcosfsing 4 rsinfcosf = 0,

QD\QD SE
SRS ?‘Q

( ) r2sin? 0 4 r2 cos? 0 = 2.
Therefore

Substituting these into (20-1) gives

OF 0 1 0F 0
VE= 5 or T a0 a6

Homework 3

Exercise 21 Let V be a vector space with basis {e1,--- ,e,}. Thenforafixed k € {1,--- ,n}, prove that
{e“ Ao Net 1<y < -es < g én}
form a basis of /\kV*. Therefore, dim /\kV* =

_ n!

Bl(n—k)!"
Proof Let us introduce the multi-index notation I = (i1, - - , i) and write ey for (e;, ,
for et A--- Ae' . Then one has

, L =
o (ey) =05 =
0, ifI#.J.

First, we show linear independence. Suppose Z cra’ =0, ¢c; € R, and I runs over all strictly

I
ascending multi-indices of length k. Applying both sides to e 7, J

-, e, ) and of

=(j1 <--- < jg), we get

0= ZCIOLI(GJ) = Zcﬁf, =cy,
I I

since among all strictly ascending multi-indices of length k, there is only one equal to J. This proves
that the o’ are linearly independent.

To show that the o span NV, let f € N*V*. We claim that

f= Zf(el)alv
I

16
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where I runs over all strictly ascending multi-indices of length k. Let g = Z f(er)a!. By k-linearity
I
and the alternating property, if f and g agree on all e, where J = (j; < --- < ji), then they are equal.
But
gles) = Z f(el)al(eJ) = Z f(€1)5§ = f(es).
I I
Therefore, f = g = Z fler)al.
I

We have shown that the e; form a basis of /\kV. As a consequence, dim /\kV = (Z) = Wik)' O

Exercise 22 Let V be a vector space with basis {e1, - - , e, }, equipped with an inner product (-, -) with
signature
(_7"' R ’+)
—— ——
p q

Prove that for the Hodge star operator » : A*V* — A" 7*V*, it satisfies
x 0k = (=1)k=R)+p. Tpry-

forany k € {1,--- ,n}.

Proof By Exercise 21, it suffices to prove for a basis element et A Aett, wherel < iy < -+ < i < n.
Let e*+1, ... e’ be the complementary basis elements with i; 1 < -+ < i,,. Since x o x = :i:]l/\;c Vs WE
just need to get the sign right. We have

s = sign| | S | sign

1 e 1k Zk:+1 e in 1 [P n_k n_k+1 e n

_ SIgn .Zl e Zk) Zk'Jrl N Zn
Th+1 In 1] 1k

, 1 -k k+1 - n

= sign
E+1l - on 1 -k

_ (_1)k(n7k)

Hence

S eiue’h) o (eimeik)(eik+176ik+1) T (einvein)eil Ao Aek

*xox(e" A Ne') (
(e1,e1) - (en,en)et A--- At

S
= (=PRI (CD)P(41)%e A At
= (=) =RHpein oA gl O

Exercise 23 Let {¢ ¢ }(s,+)er> be a 2-parametrized group of diffeomorphisms (on a manifold /). Con-
sider two vector fields defined via the following equations,

ac;Os,t
s

8@5,1&
ot

- Xs o Ps,t and - Y; o Ps,t-

Then prove the following equality,
ox, oy,

0s ot
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where [, ] denotes the Poisson bracket of vector fields.

Proof Suppose dim M = n, then in local coordinates we have foreach 1 < i < n

ot , Ot (x . ,
Phit (a) = Xi(pua(a)) = Xi(s.puala)) and 22D ) _ v, () = V(s o).

Differentiating both sides of the first equation with respect to s gives

9 (00ic), . 0X X o).,
s (é)t) (z) = E(S’ Ps,t(7)) + Z w(sa Ps,t(2)) - Ds (z)

i n i b jt
= e st >>+j§_;?f (pu(e)) - 225 ).

Poit _ Y; o s+, this becomes

d [ 0¥ 0X; 8X’ _
88( at’t>(x) (ps,t(@ JFZ (s,(2)) - Y{ (ps,0(2)).

Thus, we have

a [ 04t )
85( at’t> - ( ZYtJ ) © Pt (23-1)

Similar calculations for the second equation yield

o [ 0v, o) PN, &
8t< Ds )Z ( ot +2X§@ 0 Pat: (25-2)
_7:

Since ¢, ; is smooth in both s and ¢, the mixed partial derivatives commute. Thus, the left-hand side of

(23-1) equals the left-hand side of (23-2). And since ¢; ; is a diffeomorphism, this gives

n

ox? 0XE aw - aw
55 T2V gu = Z: '

j=1

Therefore, we have

aX;; aw z”: aw 2”: — DY/ — Dy, X'.

By Exercise 12, this implies
0Xs 0%,

Os ot

[XS7}/75] D

Exercise 24 Prove that, for vector fields X,Y (on a manifold M), the Lie derivative satisfies LxY =
[X,Y].

Proof (Proof1) We begin by showing

(Lxw)(Y) = X(w(Y)) —w(LxY) (24-1)
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forw € Q' (M) and X,Y € I'(TM). Forany p € M,

(Lxw)(Y), = lim ((% ) W)p(Yp) —wy(Yy)

t—0 t

) wwf((p)((d‘ptx)p(yp)) — wp(Y)p)
= lim

t—0 t
e wor i (Yor ) —@ol¥) [ e (i), (%) = Yeox )
% t = t

X\* X
— lim W) px ) —w)p +lim ((('Dt ) w)p(y;’ B (d(p*t%f(p) (YWf((p)))
T 50 t t—0 t
((68)7w) (=H(LxY), +o(0)

= X(w(Y)), +lim "
= X((V), ~ lim( () 'w) ((£xY),)

=X(w(Y))p — wp((LxY)p).

Thus (24-1) holds. Actually, this is a special case of (25-1). Using (24-1) and Cartan’s magic

formula, we get

w(LxY) = X(w(Y)) — (Lxw)(Y)
= X (w(Y)) = (ex dw)(Y) = (dexw)(Y)
= X(w(Y)) = dw(X,Y) — d(w(X))(Y)
= X(w(Y)) = Y(w(X)) — dw(X,Y)
= w([X,Y])

The last equality follows from the definition of dw. Since w € Q*(M) is arbitrary, LxY = [X,Y].

(Proof 2) For any smooth function f defined near p € M, we have

(de™)) ox o Yox ] = Yox o (£ 0 9%) =Y (£ 0 0%,) (0¥ (0) = () Y (£ 0 )

= ()Y ()" ().
Hence
d X d X\*yr (X \*
LxYf= ar (d<P7t)g,5((p)Yg;f(p)f = ar (SOt ) Y(Q%Lt) (f)
t=0 t=0
d * d *
=5 @)Y I+g| YRS
t=0 t=0
=XYf-YXf=[XY]f O

Exercise 25 Recall that given a non-degenerate 2-form w on M, any function H : M — R corresponds
to a vector field Xy defined by — dH = w(Xg, ). For two functions H, G : M — R, define

{H,G} =w(Xy,Xqg).
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Then prove that if w is closed, i.e., dw = 0, then {-, -} satisfies the Jacobi identity:
{H, G} FY+ {{G, F},H} + {{FH},G} =0

for any functions H,G, F : M — R.

Proof We shall apply a formula expressing the Lie derivative in terms of Lie brackets and ordinary
directional derivatives of functions:

(GTM 218, Corollary 12.33) If V is a smooth vector field and A is a smooth covariant k-tensor field, then for
any smooth vector fields X, --- , X,

(‘CVA)(Xla"' 7Xk) :V(A(Xla"' 7Xk)) _A([V5X1]5X27"' ;Xk)

(25-1)
... 7A(X1,-~' ,Xk_l, [Van])

(Proof 1) To start with, we observe that

o {H,G} is linear over R in both F' and G.
o {H,G} = —{G,H}.

These are obvious from the characterization {H, G} = w(Xu, X¢) together with the fact that Xy
depends linearly on H. Let us first prove that

Xey = [Xm, Xal. (25-2)
Because of the non-degeneracy of w, to prove (25-2), it suffices to show that
w(XimeyY) = w((Xm, Xcl.Y) (25-3)
holds for any vector field Y. On the one hand, note that
w(X(mey,Y) = —d{H,G)(Y) = ~Y{H,G} = ~Yw(Xu, Xg) = Y dH(Xg) = Y X H.
On the other hand, by Cartan’s magic formula,
Lxow = dixew + ixe dw = d(w(Xg, 1)) = —d(dG) =0,
and then (25-1) yields

0= (L Xu,Y
(Lxg)w(Xm,Y) (25.4)
=Xgw(Xu,Y)) —w([Xg, Xu),Y) —w(Xn, [Xa,Y]).
The first and third terms on the right-hand side can be simplified as
Xew(Xu,Y))=Xag(—dH(Y)) = -XcYH,

and

w(Xu,[Xg,Y]) = —dH([Xg,Y]) = —[Xg,Y|H = —XcYH +YXcH
= —XGYH+w(X{H7G},Y).
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Inserting these into (25-4), we obtain (25-3). Finally, by (25-2), we have

{H,{G,F}} = —Xo,rH = —[X¢,Xp|H = —XcXrpH+ XpXcH
:XG{H’F}fXF{HaG} = 7{{H7F}’G}+{{H3G}3F}
:{{H7G}7F}+{{F7H}7G}'

This is the desired Jacobi identity.

(Proof2) By (25-1), we have

{H.G}, F} =w(Ximqy, Xr) = —d{H,GHXr) = —Xr({H,G}) = —Xr(w(Xn, Xc))
= 7(‘CXFW)(XH7XG) + W(EXFXHa XG) + W(XHa ‘CXFXG)
= w([XF, Xu], Xa¢) +w(XnH, [XrF, Xa]).

Likewise, we have

{{GaF}aH} = w([XHaXGLXF) +W(XG7 [XHaXF])
= w([XH,Xg},XF) +0J([XF,XH]7Xg)

and

{{F’ H}’G} = w([XG7XF}7XH) +(‘*J(‘XF" [XGvXH])
= w(.XH7 [XF,Xg]) +UJ([XH7XG],XF).

Hence

{H,G}, F} + {{G, F}, H} + {{F, H}, G}
=2w([Xr, Xul, Xq) + 2w(Xu, [Xr, Xg]) + 2w([ X, Xc], XF)
=—2[Xp, Xyg|G+2[XF, Xg|H — 2[Xg, Xg|F
=—-2XpXyG+2XyXpG+2XpXgH —2XcXpH — 22Xy XgF +2XgXyF
X pXyG —2XyXGF —2XpXyG — 2XaXpH — 22Xy XaF — 2Xa XpH
— _A(XyXoF + XeXpH+ XpXuG).

(25-5)

Since dw = 0, we have

0 =dw(Xy, X, Xr)

=Xp(w(Xe, Xr)) — Xaw(Xn, Xp) + Xpw(Xy, Xa))

—w([Xm, Xcl, XP) + w([Xn, Xr], Xa) —w([Xa, XFl, Xu)
=Xy (~XpG) — Xe(—XpH) + Xp(—XcH)

— (—[Xu, Xc|F) + (=X, Xr]G) — (—[X¢, Xp|H)
= XuXpG+ XeXpH — XpXoH + Xy, X¢|F — [ Xy, Xr)G + [Xa, Xp]H
= —2XpXpG +2XeXrH — 2XpXcH + Xy XcF — XaXuF + XrpXpG
=2XyXoF +2XcXrpH +2XpXyG+ XyXeF + X XpH + XpXyG
=3XpXaF +3XeXpH + 3XrXyG.
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Therefore, we get
XuXgF +XgXrpH + XpXygG =0. (25-6)

Applying (25-6) to (25-5), we obtain the Jacobi identity. O
Exercise 26 Consider manifold R and ¢ : RZ; — R2 ) defined by
(o Y
o(x,y) = (xy x)

Compute the pushforward ¢, X for a vector field X = z.2 + ya%. Do the same thing for vector field
Y = ya%.

Solution The differential of ¢ at a point (z,y) € R2 is represented by its Jacobi matrix,

Jac() (. ) = (_‘""y T)

Hence we have

and

Exercise 27 Consider 1-form o = 2 dy on R? and map ¢ : R? — R? defined by

o(z,y) = (vy,e7").
Compute the pullback ¢*«a. Also, verify in this concrete case that ¢*(da) = d(¢*«).

Solution The pullback of « is given by

o*a=(zy)d(e™?) = —zye ¥dy.

Then
d(p*a) = d(—xye_y dy) = —ye Ydax Ady.
On the other hand,
da =d(zdy) = dz Ady,
SO

¢*(da) = ¢*(dz Ady) = d(zy) Ad(e™?) = (ydz + zdy) A (—e ¥ dy) = —ye ¥ dz A dy.

Therefore ¢*(da) = d(¢" @) in this example. O

Exercise 28 Let X be a smooth vector field on M" such that X (p) # 0 at some point p € M.

(1) Prove that there exists a local chart (U, : U — V) near p, where V is an open subset of R” in
0

coordinates (z1,- - , ), such that within U, we have ¢, (X) = 8{71'
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(2) Given the following three vector fields on R?,

0 0 0 0 0 0
X i =rx— —y— Xo=y— — z2— Xea=z— —p—.
! x@y T 2= Y%, Z@y’ 5T %0 Yo

Near p = (1,0, 0), is it possible to find a local chart as above such that X; maps to % fori=1,2,3

i

at the same time? If so, construct such a local chart; if not, please give a justifying reason.

9

Proof (1) Choose alocal chart (ﬁ, Yt ,y") about p such that X, = 5
y'L

a—yl . Denote X = 2157
on U, where §; are smooth functions on U. Shrinking U if necessary, we may assume &; # 0 on U.
Consider the system of ODEs

dyt &% y)

dyl - gl(ylayza e 7yn)’ 2 g ' < " (28_1)

By basic theory of ODE, locally for any given initial data (22, ---,2"), with |z| < ¢, the system

above has a unique solution
Yy :yi(yaz7"'7zn)7 ’y1|<5

with initial condition
yi(0,22,o~ ,z") =z 2<i<n

and the functions y* depend smoothly on y' and on z7. Consider the coordinate transformation

yt =2,
y' =y (2" 2% 2"), 2<i<n
Since the Jacobian
a(ylv : ) yn) -1
1. n -
Az, -+, 2m) o
we can make the change of variables from (y', -+ ,y") to (z', -+ ,2"), i.e., there exists a neighbor-
hood U U of p, with (zl, e ,z") as local coordinate functions. By (28-1), in this new chart
- 0 "oyt 0 0
Xx=¢— = A
;f oy’ & — 0z1 Oyt & 0z!
Finally if we let 2" (2", -+ ,2") = /Z1 S S P for j > 2, then {z',--- 2"}
) ’ 0 fl(t,ZQ,'”,Zn) J J = 4y ) ’
are local coordinate functions on U such that X = agl onU.

(2) Suppose there exists a local chart (U, : U — V) near p = (1,0,0), where V is an open subset of

R? in coordinates (u,v,w), such that with U, we have

9] 0 0
@*(Xl) - %7 QD*(XQ) - %7 @*(X:}) - %
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Consider the coordinate transformation

x = z(u,v,w), u=u(z,y,z),

with inverse

y =y(u,v,w), v=v(z,y,2),

z = z(u, v, w) w = w(x,y,2).

Then

8_8u6 ov 0 ow 0
oz 0xdu  oxov | o ow’
8_8u8 ov 0 ow 0
oy~ dyou  ayov oy ow’
6_8u8 ov 0 ow 0
9: " 9:0u T ozo0 920w

In the new basis {%, a%v 6% }, the vector fields X, X5, X5 are represented by

b

ou

ov

ov

ow

= x@— — X — Y, T—— —
7 Moy Yoz Oy Yoz Oy Sy

)=o),

ou Oou Ov ov Ow ow

XQ = <yaz — Zaiy,y@ — Zaiy,ya — Zay> = (0,1,0),
Ju Oou Ov ov  Ow ow

X3 = <Z&L‘ — :Ea,l’% — .’,U&,Z% Iaz> = (0,0,1)

However, at the point p = (z,y,2) = (1,0,0), the second component of X5 in the new basis is 0,

contradicting the second equation above. Therefore, it is impossible to find a local chart such that

X; maps to a% fori =1, 2,3 at the same time.

* An alternative way is to note that

0 0
2 X7 +xXo = y(maz - Z&E) = —yXs.

Hence { X1, X5, X3} are linearly dependent near the point (1,0, 0). O

Exercise 29 Consider R? equipped with the metric ¢ = dr®dr+dy®dy —dz®dz. A Killing vector field
on (Rg, g) is a complete non-trivial vector field X such that £Lxg = 0. In other words, by the definition

of a Lie derivative, the flow generated by X preserves the metric g.

(1) List as many linearly independent Killing vector fields in (R?, g) as possible.

(2) Verify that if X, Y are two Killing vector fields in (R3, g), then [X, Y] is also a Killing vector field

Proof

in (R?, g).
(1) Let D be the Euclidean connection on R?, i.e.,
0 0 0]
DyY = X(Yl)% + X(YQ)w + X(Yﬂﬁ

for any smooth vector fields X, Y on R®. Suppose X is a Killing vector field in (R?, g). By (25-1),

0= (Lxg)(Y,2) =Xg(Y,Z) — g([X, YLZ) -g(Y, [Xv Z]) (29-1)



Note that

Xg(Y,Z) = Xg (Yi

Hence

0

9 irzj N7 L vi (7
5o 715 ) =9 X (V1) =y [X () 20+ X (21)

J

0=9(DxY,Z)+g(Y,DxZ) —g(DxY —DyX,Z) — g(Y,DxZ —DzX)
=g(DyX,Z) +g(Y,DzX).

This is equivalent to having

foralli,j. Let G = [g;;] and A = [a;;] = {

0 0

(Xt 0 9N (0 Xt o

BRANG G I\ 0z a7 OxF
oX*k oxk

= gkjw + gikw

10.¢l

8} . Then a;,gx; + girajr = 0, or equivalently,
:I:Z

0=AG + GAT = AG + (AGQ)".

Therefore the matrix AG is skew-symmetric. In this concrete case, we have

AG =

Xt 0x?

So the skew-symmetry of AG requires that

Thus we may set X!

0x3 oxXt 0Xx? 0x3
83011 8%12 81:13 10 o (‘33011 8x12 783:13
w7 a7 w0 07| B em

0 0 -1

oxt 9x? ox3 ox' 0Xx? 0x?
ox3  Ox3 Oz o3 9z 028

oxX'  9x?  0x? 0

Oxt Ox2 Ox3 ’

oxt x|

0x? = Ozt ’

oxt  oax3

023 0xl’

0x2 o9x3

023~ 022

f(2?,2%), X? = h(z',2?), and X® = k(z', 2?) for some smooth functions

25
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f, h, k. The above equations give

o oh
ox? Ozt 7
of ok
da3 — Oxl’
Ooh 0k
da3  0x?’
The first equation implies that sl = Oh = 0. Similarly, the second and third equations
(022)*  (0x1)2 ’
2
imply that 82f2 = 82k2 =0and 82h2 _ 9 k2 = 0. Therefore f, h, k are of the form
0x3) (0x1) (0x3) (0x2)

f=ax?+ bz + di,
h:—ax1+cx3+d2, a,b,c,dy,ds,ds € R.
k= ba' + cx? + ds,

Hence all Killing vector fields in (RB, g) are of the form
X((x1,$2,x3)) = a(wz, —131,0) + b(x3,0,x1) + c(O,mS,xz) + (d1,d2, d3),

where a, b, ¢, d1,ds, d3 € R.

(2) Suppose X,Y are two Killing vector fields in (R?, g). The same deduction as in (29-1) gives

Xg(Z,W) = g([X, Z]a W) +g(Z, [Xa W]))
Yg(Zv W) = 9([Ya Z]v W) +g(Z, [}/v W])

With these and the Jacobi identity, we have

[X,Y)g(Z,W) =XY g(Z,W) — Y Xg(Z, W)
=Xg([Y, Z], W) + Xg(Z,[Y, W]) = Yg([X, 2, W) = Yg(Z, [X, W])
=g([X, [V, 21, W) + g([Y, 2], [X, W]) + g(IX, 2}, [Y, W]) + g(Z, [ X, [Y, W]))
—9([V, [X, Z]], W) — g([X, 2], [Y, W) = g([Y, Z], [X, W]) = g(Z, [Y, [ X, W]])
=9([X, [V, 2] = [V, [X, Z]], W) + 9(Z, [X, [Y, W] = [V, [X, W]])
=g([[X, Y], 2], W) +9(Z,[[X, Y], W]).

Again, applying (25-1) we find
(E[X,Y]g) (Z,W) = [Xv Y]g(Z, W) — g([[X, YL Z]? W) —g(Z, [[Xa YL W]) =0,

so [X, Y] is also a Killing vector field in (R?, g).
* In this concrete case, by (1), one can also take X = (2, —2',0),Y = (2°,0,2"), Z = (0,2°,27),
and compute

X,Y]=2, [X,Z]=-Y, [V,Z]=-X.

They are again Killing vector fields in (R3, g). O
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Exercise 30 Let a be a 1-form on M? satisfying a A da is a nowhere vanishing 3-form on A°.

(1) Prove that there exists a vector field (called a Reeb vector field) denoted by R, such thatda(R,, —) =
0and a(R,) = 1.

(2) Confirm that Lg_«o = 0.
(3) InR? in coordinates (z,y, z), give an example of such a and work out the associated R.,.

Proof (1) We first show that that every smooth manifold admits a Riemannian metric. Let M be a smooth
manifold and {(Ug, ¢g) : 8 € A} alocally finite atlas so that Ug C M and ¢g : Ug — ¢5(Us) C R"
are diffeomorphisms. Let {pg : 8 € A} be a differentiable partition of unity subordinate to the
given atlas, i.e. such that supp(pg) C Ugs for all 8 € A. Define a Riemannian metric g on M by

* _can

g= Z ppds, where gz = p5g“". Here g
BeA
along @g. It is straightforward to check that g is a Riemannian metric.

can * _can

is the Euclidean metric on R" and ¢j;g“" is its pullback

Let {(Ug, p5)} be an atlas on M such that ¢ : Us — R are diffeomorphisms, and g a Riemannian
metric on M. Define A : I'(TM) — I'(T'M) by

g(AX,Y) =da(X,)Y), VX,Y eT(TM).

This is well-defined for g isnon-degenerate. Sicne g(AX,Y) = g(X, —AY),ie., Ais skew-symmetric,
0 is an eigenvalue of A at each point. Note that tr(4) = 0, so the other two eigenvalues must be
both zero or both non-zero. Recall that a real skew symmetric matrix is always diagonalizable
over C. If A has all eigenvalues zero, then A = 0, contradicting the assumption that da is nowhere
vanishing. Therefore the eigenspace of A corresponding to the eigenvalue 0 is one-dimensional.

We can show that a(R) # 0 for all eigenvectors R of A corresponding to the eigenvalue 0. Indeed,
if «(R) = 0, then

tr(a ANda) = (tra) Ada —a A (tpda) = a(R)da —a A0 = 0.

This is a contradiction to the assumption that o A da is nowhere vanishing.

By the above arguments, on each Ug, we can find eigenvector Rg € I'(TUg) of A|y, corresponding
to the eigenvalue 0 so that

da|U;3(RB7_) = g(AlUﬁR57 _) = 9(07_) =0 and O‘lUﬁ (Rﬁ) =1

Now we define R, € I'(TM) by R.|u, = Rp. It is well-defined for if Us N U, # &, then R, = ARp
for some A € R. Then

1= O‘|U50Uw (R.y) = a|UﬁﬂUv ()\Rﬁ) =\ O‘|UBﬁUw (Rﬁ) = )\,
showing R, = Rg. Therefore R, is the desired Reeb vector field.
(2) By Cartan’s magic formula,

Lr,a=d(g, (o)) + g, (do) =d(a(R,)) + da(Ry, —) =d(1) +0=0.
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(3) Take @ = dz — ydz, then dao = daz A dy and
aANda=(dz —ydz) A(dzAdy) =dzAdy Adz

0
is nowhere vanishing on R®. The corresponding Reeb vector field is given by R,, = P since
z

0

do(Rq, —) = (dmd;,)(az,—) =0 and a(R,) = (dz —ydx)<gz) ~1. .

Homework 4

Exercise 31 Consider the unit open disk B” in R? defined by B> = {(z,y) € R*: 2* + y* < 1} equipped
with the following Riemannian metric
(@)  _(@eedet+dy@dy)
z,y) = —————(dz®@dzx :
T @ P e
Meanwhile, consider the open upper half plane H? of R?, that is, H*> = {(z,y) € R* : y > 0} equipped
with the following Riemannian metric

1

g ((z,y)) = " (dz ® dz + dy ® dy).

Prove that there exists a smooth diffeomorphism F : B> — H? such that it preserves the metrics in the
sense that for any vector fields X, Y € I'(TB?), we have ¢'(F.(X), F.(Y)) = g(X,Y).

Proof The M&bius transformation z — L is a biholomorphism from the unit disk to the upper half

plane in C. It induces the smooth diffeomorphism

.2 2
F:B° — H-, (x,y)r—><x2+

2 1—(J;2+y2)>'

(1-y)? 22+ (1 —y)?

The differential of F at a point (z,y) € B? is represented by its Jacobi matrix,

—22% +2(1 — y)? dz(1-y)
| e a—y Ry
Jac(F)((x,y)) = —4z(1 - y) —22% 4 2(1 — y)?

22+ (=) 2?2+ (1-y)?)?

For any (z,y) € B?, suppose X = Xla% + X28% andY = Yl% + YQ(% at (x,y), then

1 S (XYx?Y?),

XYy = —————
TN ew = [ ey
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Since
—222 +2(1-y)? 4dx(1 —y) 9
Fo(X((z,y))) = Jac(F)(( ))<X1> [22 + (1 — y)2)? X [22 + (1 — y)2)?
L z,y))) = Jac T,y 5 | = 5 9
T
[22 + (1 —y)?] [22 + (1 —y)?]
and
o (T
F (Y((z,9))) =JaC(F)(($7y))<Y2> = (1 0a? + (1 — 12 :
—da( _y)2Y1 _35"'(_ng2
[22 + (1 —y)?] [22 + (1 —y)?]
we have

9 (Fu(X), Fa(Y) F((a)

1 —2224+2(1-9)? 1 4z(1—y) 2\ [ —2z%+2(1-y)*y 1 4z(1—y) 2
[1_(xz+yz)r{( e )( (e L T (L )

THI-y)?

—4z(1—y) 1, —2z%42(1—y)? 2)( —4z(1—y) 1, —2z242(1—y)? 2)}
Hman e X+ TR ) (S + TSy

4{ ([—x2 +(1—y)?) + 2201 — y)]2)X1Y1 + (2e(1— )2 + [-22+ (1 - y)2]X2Y2)}
[1— (2% + P[22 + (1 — y)?)°
AP+ (- (XY 4 XY
1= (22 + )P+ (1 -y
:g(X,Y)(m,y). D

Exercise 32 Consider the map ® : R* — R? defined by
®(z,y,5,1) = (2" +y, 2% + 1" + 5" + 17 + ).

Show that (0, 1) is a regular value of ®, and that the level set ®((0, 1)) is diffeomorphic to S?.

Proof The differential of ® at (x,y,s,t) € R*is represented by its Jacobi matrix,

2 L0 0
]aC((I))((xay787t)):<2i 2u+1 2s 2t>-

The level set ®71((0, 1)) is the set of points (z,y, s,t) € R* such that
2 +y=0 and y*+s*+12=1. (32-1)
Then for any (z,y, s,t) € ®~*((0, 1)), at least one of the following subdeterminants is nonzero:

1 0
2y+1 2t

1 0
2y+1 2s

2z 1
2z 2y+1

= 2t.

= 4xy,

For example, if s = ¢ = 0, then (32-1) implies y = —1 and 2? = 1, so 42y # 0. Hence rank(Jac(®)) = 2
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at any point in ®~*((0, 1)), which means (0, 1) is a regular value of ®. By the regular level set theorem,
®71((0,1)) is an embedded submanifold of R* of dimension 4 — 2 = 2. Consider the map

F:d7(0,1)) — R?, (Jc, —a:z,s,t) — (x,8,t).

Clearly, F is a diffeomorphism between ' ((0, 1)) and itsimage E = {(z,s,t) € R* : 2" + s> + ¢* = 1}.

Now consider the map
1

Va? 4 52 4 t2

Since E is an embedded submanifold of R? and S? is an immersed submanifold of R?, G is smooth.

G:E—S% (x,81)— (z,s,1).

Likewise, the inverse of G given by

Gl1:S2°%E, (uvw |—>< Y , v , v )

( ) Vut+ 02 +w? Vut 4+ 02 +w? Vut 4+ 02 + w?
is smooth. Therefore G is a diffeomorphism between E and S?, and it follows that G o F is a diffeomor-
phism from ®~1((0,1)) to S*. O

Exercise 33 Let N be a nonempty smooth compact manifold. Show that there is no smooth submersion
F:N — R* for any k > 0.

Proof As a corollary of the constant rank theorem, any submersion is an open map. So if there is a
smooth submersion F : N — R* for some k > 0, then F(N) is an open in R*. But R* is Hausdorff and
F(N) is compact, so F'(N) is also closed in R¥. Since R¥ is connected, the only nonempty clopen set is
R* itself. Thus F(N) = R¥, which is a contradiction since R" is not compact. O

Exercise 34 Let N C R™ be asmooth submanifold of dimensionn < m—3. Prove that the complement
R™ \ N is connected and simply connected.

Proof We shall apply the “Whitney Approximation Theorem” and the “Transversality Homotopy Theorem”:
(GTM 218, Theorem 6.26)  Suppose N is a smooth manifold with or without boundary, M is a smooth manifold
(without boundary), and f : N — M is a continuous map. Then f is homotopic to a smooth map g. Moreover, if
f is already smooth on a closed subset A C N, then g can be chosen so that f|4 = g|a.

(GTM 218, Theorem 6.36) Suppose M and N are smooth manifolds and Y C M is an embedded submanifold.
Every smooth map f : N — M is homotopic to a smooth map g : N — M that is transverse to Y. Moreover, if X
is an embedded submanifold of N and f|x is already transverse to Y, then g can be chosen so that f|x = g|x.

To see that R\ N is path-connected, let p, ¢ € R™\ N and let v(¢) be a path in R™ with v(0) = p and
7(1) = ¢. By the Whitney approximation theorem, ~ is homotopic to some smooth curve ' joining p and
¢. Then by the transversality homotopy theorem, 4 is homotopic to some smooth map +” joining p and
q that is transverse to N. However, since dim N + dim+" = n + 1 < dimR"™, intersecting transversally
means having empty intersection. So 7" is a path from p to ¢ which does not touch N, showing R™ \ N
is path-connected.

To see that R\ N is simply connected, let v, (t) and 2 (t) be two closed loops in R™\ N. Since R™ is
simply connected, there is a homotopy F'(s,t) = 75 (t) between v; and 2. As before, we can perturb the
surface F'(s,t) so that it intersects N transversally. However, since dim N + dim F = n + 2 < dimR™,
intersecting transversally means having empty intersection. So we have found a homotopy between 7,
and ~, which does not touch N, showing R™ \ N is simply connected. O
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Exercise 35 Let F' : M — M be a smooth map. A fixed point p € F' (i.e., F(p) = p) is called non-
degenerate if 1 is not an eigenvalue of the pushforward F,(p) : T,M — T,M. The map F is called a

Lefschetz map if all its fixed points are non-degenerate.

(1) Prove that the “horizontal” rotation rg : S* — S? by angle 0 (# 2k for any k € N) defined by
ro(z,y,z) = (xcosf — ysinf, zsinf + y cos b, )
is a Lefschetz map, where S? here is viewed as a submanifold in R? defined by
{(z,y,2) € R?: 22 442 + 2% = 1}.

(2) Let V be a vector space and F : V — V alinear map. Let A = {(v,v) € V x V : v € V} be the
diagonal of V x Vand I'r = {(v, F(v)) € V x V : v € V} be the graph of F on V. Then deduce
that if M is a compact manifold and F' : M — M is a Lefschetz map, then there are only finitely
many fixed points of F'.

(3) When M is a compact manifold and F' : M — M is a Lefschetz map, let

L(F)y= Y sign(det(F.(p) — 1)).

fixed point p of F/

Here, sign means that if det(F.(p) — 1) > 0, then sign = +1 and if det(F.(p) — 1) < 0, then
sign = —1. This L(F) is a well-defined number and is called the Lefschetz number of Lefschetz map
F. Compute L(rg) in Question (1) above.

Proof (1) Since § # 2km, (0,0,+1) are the only two fixed points of 4. For the north pole (0,0, 1),
take the coordinate chart

p: {(Jc,y,z) eR?:z> 0} — B2, (z,y,2) — (z,y).
Then the pushforward of rg at (0, 0, 1) is represented by its Jacobi matrix,

Jac(re) (., 2)) = (“’so SM).

sinf cosf

So the eigenvalues of (rg). at (0,0,1) are e*’ # 1. Similarly, the south pole (0,0, —1) is also a

non-degenerate fixed point of 9. Therefore 7 is a Lefschetz map.

(2) Denote by [F] the matrix representation of F' in some basis of V. Since ANT'r = {(v,v) € V x V :
F(v) = v}, and for any (v,v) € ANTp,

T(u,v)A = {(w,w)(v’v) LW E TvV}, T(v,v)FF = {(w,Fw)(v’v) Tw e TUV},
we have
ANTlp <— T(v,u)A + T(U,U)FF = T(M)(V X V), V(’U,’U) e ANTpg

1 1 1 1 . .
<= 0#det (]l [F]) = det(O P ]l) = det([F] — 1), V fixed pointv of F’



32

<= lisnotan eigenvalue of I' = F, <= F'is a Lefschetz map.

Likewise, if F' : M — M is a Lefschetz map, then A th I'r. It follows that A N I'r is an embedded
submanifold of M x M of dimension m + m — (2m) = 0. Since a zero-dimensional manifold is
a discrete set (each singleton is homeomorphic to ]RO) and M x M is compact, the set ANT'p is
finite. In other words, F’ has only finitely many fixed points.

(3) Since the determinants of (). — 1 at (0,0, £1) are both equal to

cosf# —1 —sinf
det
sin 6 cosf — 1

> =2-—2cosf >0,
wehave L(rg) =14+1=2. O

Exercise 36 Recall that the group of 2n-dimensional symplectic matrices is denoted by

Sp(2n) = {A € Mapx2n(R) : AJGAT = Jo}

0 Lnxn
Jo = .
*]lnxn O

Prove that Sp(2n) is a submanifold of My, 2, (R). Moreover, compute its dimension.

where Jy € Ma, %2y, is defined by

Proof Denote by Skew(2n) = {A € Ma,x2,(R) : AT = —A} the set of 2n x 2n real skew-symmetric

matrices. First we show that Skew(2n) is a smooth manifold. Consider the map
® : GL(2n,R) — Mapx2n(R), A ATA.

We want to compute the differential of ® at 13,,x2, € GL(2n,R). For any B € Ty,,,,, GL(2n,R) =
Moy won(R), lety : (—e,e) — GL(2n, R) be the curve v(t) = 12, %2, + tB. Then

(]l2n><2n + tB)T(]]-QnXQn + tB) - BT + B
t=0

dq)]12nx2n (B) = 37 @ O’Y(t) = 37

t=0

Note that the orthogonal group O(2n) is equal to the level set o1 (12, x2n ). Therefore
T, 0, O(2n) = Kerd®y,, ,, = {B € Mayx2,(R) : BT + B =0} = Skew(2n).

It follows that Skew(2n) is a smooth manifold.

Next we consider the map
F :GL(2n,R) — Skew(2n), A — AJyAT.

For any B € T4 GL(2n,R) = M, x2,(R), let 5 : (—¢,e) — GL(2n, R) be the curve 5(t) = A+ tB. Then

dFA(B) = —| Fof(t)=—~—| (A+tB)Jo(A+tB)"

t=0

t=0
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= % [BJo(AT +tBT) + (A+tB)JyBT]
t=0

= BJyAT + AJ,BT.
Note that (BJOAT)T = AJo"BT = —AJyBT, so the above differential can be rewritten as
dFa(B) = AJyBT — (AJ,BT)".

Since AJy € GL(2n,R), as B ranges over May,x2,(R), AJyBT also ranges over Ma,x2,(R), and thus
dF4(B) ranges over Skew(2n). That is, dF4(May,x2,(R)) = Skew(2n). Therefore dF4 is surjective, i.e.,
I is a submersion.

Now we are able to apply the regular level set theorem. Since F' is a submersion, J is a regular
value of F. Thus Sp(2n) = F~'(Jy) is an embedded submanifold of GL(2n, R), and

dim Sp(2n) = dim GL(2n, R) — dim Skew(2n) = (2n)? — n(2n — 1) = 2n? + n. O

Exercise 37 Prove by definition that if N; C R™! and N, C R™? are submanifolds of dimensions n;
and nj respectively, then N; x N is a submanifold (of R™**"?) of dimension nj + na.

Proof For any (p,q) €1 xN3, we can find local charts (Ul, 0:U V) C le) of R™* near p and
(Ug,w Uy = Vs C R’”?) of R™2 near ¢ such that

@(Ulle) = {erl CR™ :izp 1= =opm, :O}’
w(U20N2)2{$€VQCRm2 :xn2+1:~'~:$m2:0}.

Then (U1 x Uy, xp:Up x Uy — V; x Vg) is a local chart of R™* x R™2 ~ R™ ™2 near (p, q) such
that
© X w((Ul X UQ) N (Nl X NQ)) = {QE € V1 X V2 C leerz : Try 1= =my =0, }

Ty 4ng+1=""=Tm +mg=0

Thus N x N is a submanifold of R™ T2 of dimension n; + ns. O

Exercise 38 (1) Prove the Inverse Mapping Theorem: Let F' : N — M be a smooth map such that
F.(p) : T,N — Tp()M is an isomorphism, then F is a diffeomorphism locally near p.

(2) Deduce from (1) that there is no immersion from S™ to R".

Proof (1) The fact that Fi.(p) : T,N — Tp(,)M is bijective implies that N and M have the same
dimension, say n. Choose smooth charts (U, ¢) centered at p and (V, 1) centered at F'(p), with
F(U) C V. Then F = ¢y o F o ¢! is a smooth map from the open subset U = ¢(U) C R” into
V = (V) C R", with F(0) = 0. Since ¢ and v are diffeomorphisms, the differential dF, =
dipp(p) o dF, o d(go_l)o is nonsingular. The ordinary inverse function theorem shows that there
connected open subsets Uy C U and Vj C V containing 0 such that F restricts to a diffeomorphism
from (70 to IA/O. Then Uy = ¢! (170> and V) = ¢! (%) are connected open neighborhoods of p
and F'(p), respectively, and it follows by composition that F'|, is a diffeomorphism from Uj to V.

(2) Suppose there is an immersion F' : S — R". Since S" and R" have the same dimension, F' is

also a submersion. Hence F' is an open map, F'(S") is open in R™. But since S" is compact and F
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is continuous, F'(S™) is compact, i.e., F|(S") is closed and bounded in R". This is a contradiction
since R" is connected and the only nonempty clopen set is R" itself, which is unbouded. Therefore
there is no immersion from S™ to R". O

Exercise 39 Let F': N — M be a smooth map. Recall that the pullback of F is a functor F* : TM —
TN. In particular, F* defines a map for sections (forms) from Q¥ (M) to QF(N) for any k € N, defined
explicitly as follows,

(Fra)(Xy, -, Xg) = a(Fu(X1), -, Fu(Xk))

or even more explicitly when the positions are specified,

(Fa)(p)(X1(p), -+, Xk(p)) = a(F(p)) (Fx(p)(X1(P)), -+, Fi(p)(Xk(p)))-

Now, consider map F' : R? — R?, where R? is in coordinate (r,y) and R? in coordinate (u,v,w), by
F(z,y) = (zy,2°,3z +y). For a = wvdu + 2wdv — vdw € Q'(R?), compute F*« and express it in
terms of dx and dy.

Solution The pullback F"*« is computed as follows:

F*(wdu + 2wdv — vdw) = (zy)2® d(zy) + 2(3z + y) d(2*) — 2> d(3z + y)
= 2%y(yda + zdy) + (62 + 2y)(2x dz) — 2%(3dx + dy)
= (2% + 92° + dzy) dx + (2'y — 2?) dy.

We can also compute F*« from its definition. First we find the pushforward F, in its Jacobi matrix

representation:
Y
Jac(F)((z.y)) = |2z 0
3 1
Then

et (5) = e (w05
0

0 0
= a((zy,2*,32 +y)) (yau + 2;10% + 3611))

0 0 0
_ 2 g\ 2 9
= (zy)z du(y8u> +2(3x+y)dv (29:81)) x*dw <38w>

= 2%y% + 922 + dxy.

Similarly, we have
(7)) (5, ) ='s -
These lead to the same result as before. O

Exercise 40 Define the map F' : R? — R® by
F(z,y) = (e¥ cosz,e’sinz, e ).

Denote by S,(0) C R? the standard 2-sphere centered at 0 with radius . Recall/Define that a map
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F : N — M is transverse to a submanifold S C M means for any z € F*I(S), the linear spaces Tr()S
and F.(z)(T,N) span Tpz) M.

(1) For which positive numbers r is F transverse to S,.(0) in R*?
(2) For which positive numbers r is F~!(S,.(0)) an embedded submanifold of R*?

Solution (1) The map F will not be transverse to S,.(0) if and only if there is a point (z,y) € R? such

that | F(z,y)| = V€% + e~2¥ = r and the vectors
0. F(z,y) = (—eYsinz, e’ cosz,0) and 9, F(z,y) = (¥ cosz,e’sinz, —e V)
are parallel to Tz, .S, (0). This last condition is equivalent to
0. F(z,y) - F(z,y) =0 and O,F(x,y)- F(z,y) =0.

The first equation holds everywhere, and the second equation gives e — e~ ? = 0, which has
solution 3 = 0 and therefore » = /2. So F is transverse to S,.(0) unless 7 = v/2.

(2) By (1), for positive numbers r # v/2, F~1(S,.(0)) is an embedded submanifold of R?. In the case
r = v/2, we have

FY(S.(0) = {(2,y) € R*:e¥ 42 =2} = {(2,y) e R>: y = 0},

which is just the z-axis and is clearly an embedded submanifold of R?. Therefore F~*(S,.(0)) is an
embedded submanifold of R? for all positive numbers 7. O

Homework 5

Exercise 41 Let M be a smooth manifold and F : M — R* be a continuous map. Prove that for any
positive continuous function ¢ : M — R, there exists a smooth map G : M — R* such that ||G(z) —
F(z)|| € e(x) for any z € M.

Proof We shall show that there are countably many points {z;};2; in M and open neighborhoods U;
of x; in M such that {U;};2, is an open cover of M and

1E(y) = F(z:)|| <ely), Vye U (41-1)
To see this, for any « € M, let U, be an open neighborhood of = small enough such that
e(y) > 3e(x) and [F(y) — F(o)|| < 3¢(2)
for all y € U,. (Such a neighborhood exists by continuity of ¢ and F.) Then if y € U,, we have
IF(y) — F(a)| < 3e(x) < e(2).

The collection {U,, : © € M} is an open cover of M. Choosing a countable subcover {U,, }:2; and setting
U; = U,,, we have (41-1). Let {p;} be a smooth partition of unity subordinate to the cover {U;} of M,
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and define G : M — R* by

= ZM(?J)F x

Then clearly G is smooth. For any y € M, the fact that Z pi = 1 implies that
i=1

1G(y) - F(y)]

sz E (i) = F(y)l

< Zm(y)&?(y)
=1

=e(y). O

Exercise 42 Consider 6 € Q*(R?) defined by
0 =2%dy Adz +ydz Adz + zdz Ady.

Denote by §? := {(z,y,2) € R* : 2> + y* + 2> = 1}. Compute the integration/ i*0 where i : S* — R?
SQ
is the inclusion.

Solution LetD? C R3 be the closed unit ball. By Stokes’ theorem, we have

/i*@:/ d0:/ (2x+2)dx/\dy/\dz:</ 2:ml:mdymlz>+2.47T
S2 D3 D3 D3 3
—(/ xzdy/\dz)+8ﬂ.
- 3

Consider the map
F:(0,27) x (0,7) = %, (3, ¢) > (sin g cos v, sin psin 1, cos ).
Since

—sinpsiny cosycosy
Jac(F) (¢, ) = | sinpcosy  cospsiny |,

0 —sing
at the point (¢, ¢) = (m, 5 ), we have
e . 0
. i - .smgpsmw B 1 __2
\ag) = sin p cos ¢ ol il B
0 TpS?
(%)
and
COS  COS 0
PV Dttt IR (6o BT}
“\og) = cos psiny = =5
T,S?

— sin —1
7/ (m3)
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At the point p == F(m,%) = (—1,0,0), the three tangent vectors {—%, —a%, —%} are of opposite

Oox’ Oy’ 0z Op
reversing basis of T, pSz. Thus F is an orientation-reversing diffeomorphism, and

/xQdy/\dz:/ z?dy Adz
52 F((0,27) x (0,7))

:_/ F*(dey/\dz)
(0,27) % (0,7)

= - / sin? o cos? ¢ d(sin ¢ sin ) A d(cos )
(0,2m) % (0,7)

orientation to the standard orientation {@ 2 Q} of R?, ie., {F* (%) , F, (i> } is an orientation-

= / sin* ¢ cos® ¢ i A do
(0,2m)x (0,7)

2w ™
= / cos® ¢ dy / sin® pdy
0 0

Therefore, we have / 170 = 8% O
SQ

Exercise 43

(1) Given a manifold M and two 1-forms a, 3 € Q'(M), prove the following identity
n n—1
A (da)™ — B A (dB)" BYAD (da) A(dB)™ T +d|anBAD (da) A(dB)"
j=0 j=0

for any n € N. Here (da)" :== da A - - - A do, wedged n times, similarly to others.

(2) Deduce the following proposition from (1): given a closed (i.e., compact without boundary) ori-
entable manifold M of dimension 2n + 1 and a smooth vector field X € I'(T'M), if two 1-forms
a, B € QY (M) satisfy (¢') @ = aand (¢! )" 8 = j for any ¢ € R (invariant condition), moreover

a(X) = p(X) =1, then
/ a A (da)” /B/\ (dp)"

Proof (1) Direct computation gives

n—1
d (a ABAD (da)! A (db’)"‘l‘j)

3=0
=d(aAB) A i(da)j AAB)" T L aABA i: d((da)? A (dB)"177)
=0 =

=0

n—1
=(darB—andB)AD (da) A(dp)"'
3=0

n—-1 n—1
=Y daAfA(da) A(dB)" 1 = Y andBA(da) A(ds) Tt
7=0 =0

n—1

n—1
=BAY (dayTrA(AB)" T —a A Y (da) A(dB)"

=0 =0
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=a A ((da)" =) (da) ) BA ( =) (da)’ A (dﬁ)”‘j)

i=0 iz
=a A (da)” — B A (dB)" 8)> (da)’ A (dB)"
7=0
n—1 . )
(2) Note thata ABA Y (da)? A(dB)"~'~7 € Q*"(M). By (1) and Stokes’ theorem, since M is closed,
=0

we have

[ fontay —5a@ar) = [ (@=5)a3 @ay )

j=0
The invariant condition implies that
t * t * -
—0 t t—0 t

So by Cartan’s magic formula,

0=Lxa=d(xa)+ix(da) =d(a(X))+itx(da) = tx(da),

——
=d(1)=0

and similarly ¢x (dg) = 0.

We claim that 6 = ) A Z (da)? A (dB)" is in fact identically zero. Since a(X) = 1, the

vector field X is nowhere Vamshmg At any point p € M, we can extend X, to an oriented basis
for T,M, say Xp,v1, -+ ,V2n. Now

Op(X,v1, -+, v2n)

1 i , ,
= 12n)! > sign(o)o - ((a—ﬁ) ® Y (da)’ A (cw)"—J) (Xp, 01, »Van)
’ ’ 0€Gant1 7=0 »
tx (da)=0 1 ) n ) .
m (27],)' Z Slgl’l(T) ((a - B)P(Xp) Z(da);{) A (d/B)p J (U‘r(l)a T ?UT(2’I’L))>
' TE€G, j=0
a(X)=1
B(X)=1 0

Since p is arbitrary, we have § = 0. Therefore,

/Ma/\ (da)™ /ﬁ/\ (dp)" /M =0. o

Exercise 44 Let M be a closed manifold of dimension 2n.

(1) Letw € Q*(M) be a 2-form, then w is non-degenerate (in the sense that at any point = € M, if
v € T, M is not zero, then there exists some w € T, M such that w, (v, w) # 0) if and only if w™ is a
volume form of M.
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(2) From Exercise 25, we have seen the (Poisson) bracket of two functions H, G : M — R defined by
{H,G} =w(Xy,Xg), where —dH =w(Xy,-), similarly to X¢.

Suppose further that w is closed, then prove that

/M{F, Glw" = 0.

Proof (1) Suppose first that w is non-degenerate. For any p € M, we show that T, M admits a basis

Uy, -+, Up, V1, , Uy such that
wp(uj’uk’) = wp(vjﬁvk) =0, wp(ujvvk') = Ojk- (44_1)

The proof is by induction over n. Since w is non-degenerate, there exist u;,v; € T, M such that
wp(u1,v1) = 1. Also, wy(u1,u1) = wp(v1,v1) = 0 always holds. Let

W ={veT,M:wy(v,w) =0, Vw € Span{u, vy }}.
Define a linear map ® : T, M — T,;M by ®(v)(w) = w(v,w). Since w is non-degenerate, ® is an
isomorphism. It identifies W with the annihilator of Span{us,v;} in T, M. Thus W is a vector

space of dimension 2n — 2. By the induction hypothesis, there exists a basis ug, - - - , upn, v2,- -+, Up
of W satisfying (44-1). Hence uy,- - , up,v1,- - , vy, forms a basis of T), M satisfying (44-1).

By (44-1), there is a vector space isomorphism W : T M — T3 R*" sending w, to

wo = Zdl'] A dyj,

j=1
where {8%17 8%1, cee %, %} is the standard basis of TyR?".
Since dx; A dx; = dy; A dy; = 0, we have
n
n
wy = dej/\dyj =nldxy Adyy A--- Adz, A dyy,

j=1

which is nonzero. Thus w" is non-vanishing at p. Since p is arbitrary, w” is a nowhere vanishing

2n-form on M.

Conversely, suppose w is degenerate. Choose p € M and nonzero v, € T,,M such thatw,(v1,w) =0
for all w € T}, M, and extend it to a basis vy, - - - ,va, of T, M. Then wy (v, ,v2,) = 0. Hence w"
is not a volume form of M.
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(2) First, observe that

Lxow" = txg (wAW"™)
= (txgw) Aw" T+ w A (1xow™ )
=—dGAW" T+ wA (Lxcwnfl)
=—dGAW" T +wA (—dG AW 2+ wA (1xew"?))
= —2dG AW P +w? A (LXGw"_Q) (44-2)

=—(n—-1DdGAW" P+ WA (1x,w)
=—(n—-1)dGAW" ™ —w" AdG
= -—ndGAw" 1,

and similarly
txpw" T = —(n+1)dF Aw™. (44-3)
Since dim M = 2n, we have w™! = 0, and then
0=1x,txpw"

(44-3)

—(n+ 1)ix, (dF Aw™)

=—n+1)(tx dF) Aw™ + (n+1)dF A (txw™)
=—(n+1)dF(Xg) Aw" + (n+1)dF A (tx,w™)
=n+DwXp, Xe) Aw" + (n+1)dF A (tx,w™)

(44-2)
== (n+ 1){F,G}w" + (n+1)dF A (—ndG Aw™ ")

= (n+1)({F,Glw" + ndG AdF Aw" ™).

Rearranging the terms, we obtain
{F,G}w" = —ndG AdF Aw™ L.
Let 0 = FAG Aw™! € Q*"1(M). Since w is closed, so is w™~*. Hence

df =dF AdGAwW" ' + Fd(dG Aw" ")
=dFAAG AW ' + F(d?°GAw"™ ' —dG Ad(w" 1))
=dF AdG Aw™

Since M is closed, by Stokes’ theorem, we have

/{F,G}w":n/ dF/\dG/\w"_lzn/ do =0.
M M M 0

Exercise 45 Let M™, N" be orientable manifolds. Letwp; : M x N - M and 7y : M x N — N be the
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projections. Then for forms a € ™ (M) and 5 € Q" (), consider their “product” defined by
ax B =myaATyB e QT (M x N).

Prove from definition (of integration on manifolds) that

Ju o= (o) (1)

Proof (1) Choose oriented atlases {(U;, ;) : i € I} and {(V},v;) : j € J} for M and N, respectively.
Then the atlas {(U; x V},¢; x ¢;) : i € I, j € J} is an oriented atlas for M x N, because

detJaC((wﬁ’l X 1/}[32) © (‘p(n X 90042)_1> = det]aC((t/JBl © 90(;11) X (11[}/32 © 90;21))

 det (Iacwm opil) 0 )

0 Jac (1#52 o (p&j)
= detJac(vs, o ¢, ) detJac(vs, o ¢,))
> 0.

So M x N is orientable.

(2) Assume first that « is compactly supported in a local chart (U, ) and 3 is compactly supported in
a local chart (V,v). Suppose

(80_1)*04 = fdzy---da,,, (z/fl)*ﬁ = gdyr - dyy.

Then « x f3 is compactly supported in the local chart (U x V, ¢ x %), and

((ex ) ™) (ax B) = ((¢x ¥) ") (whya AmyB)
= (e x¥)™) (mhe) A (o x ) ™) (73 B)
= (mmo(px¥) ) an (ryo(pxv)™)'B
= (@) an(w)s

= fgday---dwp, dy; - - - dyn.

So by Fubini’s theorem on R™ x R", we have

/ axﬁz/ fgdzy---dxy, dyy - - - dy,
UxV P(U)xp(V)

= ( SD(U)folgcl...dgcm> . (/ﬁ)(v)gdyl...dy»
NVORV

(3) Let {U,} be a finite open cover of supp a by domains of oriented smooth charts, and let {p;} be a
subordinate smooth partition of unity. Likewise, choose open cover {V;} for supp 3 and a subor-
dinate partition of unity {o;}. Then {p;0;} is a partition of unity subordinate to the open cover
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{U; x V;}, since for (p,q) € M x N,

ZZ(pm)(p, q) = (Zm(zﬂ) : (Z%(Q)) =1,

and other requirements of a partition of unity are easily checked. Hence

/MxNa xB= ;j/M(Pin)a x 3
=3 [ o x e

A VRORVED
_ <Z /M pia) . (zj: /M ajﬁ)
-([,2)-(L2) :

Homework 6

Exercise 46 For the following matrix groups SL(n,R), O(n), SL(n,R), U(n), and Sp(2n), compute/

confirm their induced Lie algebras as follows.
(1) sl(n,R) :={A € gl(n,R) : tr(4) = 0}.
(2) sl(n,C) :={A € gl(n,C): tr(A) = 0}.
(3) o(n) ={A€gl(n,R): AT+ A=0}.

(4) u(n) =={A€gl(n,C): A" + A=0}.

(5) sp(2n) = {A € gI(2n,R) : ATJ + JA =0}, where J = ( IlO n"g").
—AnXxXn
Proof We shall apply the following theorem.
(GTM 94, Theorem 3.34) Let A be an abstract subgroup of a Lie group G, and let a be a subspace of g. Let U
be an open neighborhood of 0 in g diffeomorphic under the exponential map to an open neighborhood V of e in G.
Suppose that
exp(UNa)=VNA.

Then A with the subspace topology is a Lie subgroup of G, a is a subalgebra of g, and a is the Lie algebra of A.

(1) Clearly sl(n,R) is a subspace of gl(n, R). Let U be an open neighborhood of 0 in gl(n, R), diffeomor-
phic under the exponential map to an open neighborhood V of 1,,,, in GL(n,R). If A € sl(n,R),
then det(exp(A4)) = det(e?) = ™) =1, s0 exp(A4) € SL(n,R). Conversely, if det(exp(A)) = 1,
since tr(A4) € R, we get tr(A) = 0. Thus the above theorem implies that gs; (, r) = sl(n, R).
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Clearly sl(n,C) is a subspace of gl(n,C). Let U be an open neighborhood of 0 in gl(n, C), diffeo-
morphic under the exponential map to an open neighborhood V' of 1,,,, in GL(n,C). Since the
trace function is continuous, we can assume that |tr(A)| < 27 forall A € U. If A € sl(n,C), then
det(exp(A)) = det(e?) = ™™ = 1, s0 exp(A) € SL(n,C). Conversely, if det(exp(4)) = 1, then
tr(A) = 2nkifor some k € Z. If in addition A € U, then tr(A) = 0. Thus the above theorem implies
that gsi (n,c) = sl(n,C).

Clearly o(n) is a subspace of gl(n, R). Let U be an open neighborhood of 0 in gl(n, R), diffeomorphic
under the exponential map to an open neighborhood V' of 1,,,, in GL(n,R). We can assume, in
addition, that if A € U, then AT and —A belong to U. For let W be an open neighborhood of
0 in gl(n,R) that is small enough for the exponential map to be a diffeomorphism, and then let
U=WnWTn(-W).If A€ Uno(n), then

(exp(4)" = ()" = e = e~ = (exp(4)) 7,
so exp(A) € O(n). Conversely, suppose that A € U and that exp(A4) € O(n) N V. Then
exp(—A) = (exp(4)) ™" = (exp(4))" = exp(AT),

which implies that —A = AT since —A and AT also belong to U and since the exponential map is
bijective on U. Thus A € U N o(n). It follows from the theorem above that go(,) = o(n).

Clearly u(n) is a subspace of gl(n, C). Let U be an open neighborhood of 0 in gl(n, C), diffeomorphic
under the exponential map to an open neighborhood V of 1,,,, in GL(n,C). We can assume, in
addition, that if A € U, then 4, AT, and — A4 belong to U. For let W be an open neighborhood of
0 in gl(n, C) that is small enough for the exponential map to be a diffeomorphism, and then let
U=WnWnWT'n(=W).If A e Unu(n), then

(exp(A))H = (e7>T = (eZ>T — el

so exp(A) € U(n). Conversely, suppose that A € U and that exp(A4) € U(n) N V. Then

—\T

A) et —e A= exp(—A) = (exp(A)) 1,

exp(—A) = (exp(A))~! = (exp(A))H = <e7>T —e(@) = exp(ZT),

which implies that —A = (A) T since —A and (Z)T also belong to U and since the exponential map
is bijective on U. Thus A € U Nu(n). It follows from the above theorem that gy,) = u(n).

Clearly sp(2n) is a subspace of gl(2n,R). Let U be an open neighborhood of 0 in gl(2n, R), diffeo-
morphic under the exponential map to an open neighborhood V' of 13,2, in GL(2n,R). We can
assume, in addition, thatif A € U, then AT and J(—A).J ! belong to U. For let W be an open neigh-
borhood of 0 in g[(2n, R) that is small enough for the exponential map to be a diffeomorphism, and
thenlet U = W NWT NJ(-W)J L If A € sp(2n), then

ATJ = —JA — AT=J(—A)J ' = eV =/ = Je AL,

It follows that
(exp(A))TJexp(A) — et Jet = Je AT et = J,



so exp(A) € Sp(2n). Conversely, suppose that A € U and that exp(A4) € Sp(2n) N V. Then

T T -1
et Jer=J = et =Je Ayt =l

which implies that AT = J(—A)J " since AT and J(—A)J~* also belong to U and since the expo-
nential map is bijective on U. Thus ATJ = —JA and A € U N Sp(2n). It follows from the above

theorem that gs,(2n,) = 5p(2n).

Exercise 47 Given a Lie group G, prove the following equality
exp(—tX) exp(—tY) exp(tX) exp(tY) = exp(*[X, Y] + O(¢*))
for any X, Y € gg, when parameter ¢ is sufficiently small.

Proof Forany X € gg, g € Gandt € R, we have

Flgexp((t +9)X) = S flgexp(ix)).

s=0

(XPgexp(tX)) = | flgexp(tX) exp(sX)) = -

s=0
Using this, one can show by induction that

n

(X" [){g exp(1X)) = S lgexp(i)).

In particular, we have

n

(X" f)(g) = &

Sl fgexp(ex)),

t=0

Using this formula twice, we get

n

dm

dsm
t=0

= e =

(Xnme) (6) - d»
t=0

f(exp(tX)exp(sY)).

s=0

Therefore, the Taylor series for f(exp(tX)exp(sY)) is

& g™

flexp(tX)exp(sY)) = Z EW(XWYMJC)(@)
m,n=0 " ’

for sufficiently small ¢t and s. When s = t, we obtain

t2
Flexp(tX) exp(tY)) = f(e) + t{(Xf)(e) + (Y )(e)] + 5 [(X2f)(e) + 2XV f)(e) + (Y2f)(e)] + O(F).
Now apply this formula to the inverse of the exponential map near e, i.e., the map f defined by

Flexp(tX)) = X

for ¢ sufficiently small. Then f(e) = 0,

(XN =G| feeex) =5 0=x,
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and forany n > 1,

n _ dn — dn —
(X" f)(e) = T f(exp(tX)) = I (tX) =
t=0 t=0
Note that
X2 42XY +Y? = (X +Y)? +[X,Y],
it follows that )
t
flexp(tX)exp(tY)) =t(X +Y) + §[X7 Y]+ O(%).
Thus

exp(tX)exp(tY) = exp{t(X +Y)+ g[x Y]+ O(#) }
Using this formula twice, we get
(—tX) exp(—tY) exp(tX) exp(tY)
:exp{t (X+Y)+3 [X, Y]+ O(t2)> } exp{t((X +Y)+ %[X, Y]+ O(t2)) }
{

exps t(t[X, Y]+ O(?)) + t; {—(X+Y)+ ;[X,Y],(X+Y)+;[X,Y]] +O(t3)}

Exercise 48 Prove that the matrix exponential map on elements in M, ,, (R) satisfies
det(eA) = etr(4),

Here, e = 1+ A+ ATQ + - - -. Please provide all necessary details in your argument. Use this conclusion

)

to confirm that the following matrix

can not be written as e” for any A € Mayo(R).

Proof (1) Let| - || be a matrix norm on M,,«,(C). Then

SIS

so the series Z o converges for any A € M, ., (C).
k=0

Since any complex square matrix is triangularizable, one can find P € GL(n, C) such that

)\1 * *
A=P .« | P, where),---, )\, €C.
An
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Then
k
. Alox % M x x
A =1
A _ Z _ Z . -1 _ . -1
k=0 =0 A\ oA

It follows that det(eA) =eM ... et = (),

-2 0
(2) Suppose e = ( 0 1) for A € Msx2(R) and the eigenvalues of A are « and . By (48-1), we

can assume e® = —2 and e’ = —1. Hence o, ¢ R and they must be complex conjugates of each

eA| # |e5 , which is a contradiction. O

other. However,

Exercise 49 Given a Riemannian metric g, recall that the associated curvature tensor (as a (0, 4)-tensor)

is defined by
R(X,Y,Z, W) = g(R(X,Y)Z,W)

for vector fields X, Y, Z, W. Prove the following equalities.
(1) RX,Y,Z,W)+R(Y,Z,X,W)+ R(Z,X,Y, W) =0.
(2) R(X,KZ, W) - 7R(Y*a Xv Z7 W) = 7R(X7KWa Z)
(3) R(X,Y,Z,W) = R(Z,W,X,Y),
Proof (1) Since
RX,Y)Z+R(Y,Z)X + R(Z,X)Y
=(VxVyZ = VyVxZ - Vixy1Z) + (VyVzX = VzVyX — Viy 71 X)
+(VzVxY = VxVzY = Vz xY)
=Vx(VyZ -VzY)+Vy(VzX - VxZ)+Vz(VxY — VyX)
—Vixy)Z — V71X = Vizx¥
=Vx([Y,Z]) + Vv ([Z,X]) + Vz((X,Y]) = Vixv)Z = Vy 71X = Vizx)Y
=X, [V, Z]] + [V, [Z2, X]] + [Z,[X, Y]]
=0,
we have R(X,)Y, Z W)+ R(Y,Z, X, W)+ R(Z, X, Y,W) = 0.
(2) Since R(X,Y)Z = —R(Y,X)Z, we have R(X,Y,Z,W) = —R(Y, X, Z,W). Using compatibility

with the metric, we have

XY|Z|?=X(2(VyZ,2)) =2(VxVyZ,Z) +2(Ny Z,Vx Z),
YX|Z?=Y(2(VxZ,2)) =2(VNyVxZ,Z) +2(NxZ,VyZ),
(X, Y|Z]> = 2(Vixv)Z, Z).

Subtracting the second and third equations from the first, we get

0=2(VxVyZ,Z)—-2(VyVxZ,Z) — 2<V[X7Y]Z, Z>
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=2R(X,Y)Z,Z)
=2R(X,Y,Z,2).

It follows that

0

RIX,)Y,Z+W,Z+ W)
R(X,Y,Z,Z)+ R(X,Y,W,W) + R(X,Y, Z,W) + R(X,Y,W, Z)
R(X,Y,Z,W)+ R(X,Y,W, Z).

(3) Writing the identity in (1) four times with indices cyclically permuted gives

R(X,Y,Z, W)+ R(Y,Z,X,W)+ R(Z, X,Y,W) =0,
R(Y,Z,W,X) + R(Z,W,Y,X) + ROW,Y, Z,X) = 0,
R(Z,W,X,Y)+ R(W,X,Z,Y)+ R(X,Z,W,Y) =0,
R(W,X,Y,Z) + R(X,Y,W,Z) + R(Y,W, X, Z) = .

Now add up all four equations. Applying (2) makes all the terms in the first columns cancel, and
in the last column it yields

2R(Z,X,Y, W)+ 2R(W,Y, Z, X) =0,
which is equivalent to R(X,Y, Z,W) = R(Z,W, X,Y). O

Exercise 50 Consider the following (real) 2-dimensional Lie group

G:{<x y) :x>0,ye}R}.
0 1

Complete the following questions.

(1) Verify that its Lie algebra is

(2) Take the following basis of g¢ in (1),

10 0 1
X 1= and X2 = .
0 0 0 0
Construct a left-invariant metric g on G such that { X1, X5} forms an orthonormal basis.

(3) Verify that the Levi-Civita connection V of g in (2) satisfies the following relations,

Vx, X1 =Vx, Xo=0, Vx,X;=-X5, Vx,Xo=X,.

(4) Compute sectional curvatures of (G, g, V) for g and V in (2) and (3).
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b
Proof (1) LetA = (g O> ,Where a,b € R.

1 b 1 0
o Ifa=0,then A” =0foralln > 2and e? = 0 + 0 = .
0 1 0 0 0 1

o Ifa# 0, then A" = a" 'Aforalln > 1and

1 0y 4 (10| 1Xan e ML
A § § :
e’ = =+ _— = + — —A: a .
(0 1) n! (0 1) a = nl (0 1

n=1

b
Clearly a = g NE a,be R} is a subspace of gl(2,R). Let U be an open neighborhood of

0 in gl(2,R), diffeomorphic under the exponential map to an open neighborhood V' of 1549 in
GL(2,R). If B € a, then the above calculation implies that exp(B) € G. Conversely, suppose that

b
B= (a d) € U and thate” = <g 11/> € GNV. Note that e’ B = Be?, i.e.,

c
ar+cy br+dy\ [ax ay+b
c d ez cy+d)

.. . n a * r y B *
This implies ¢ = 0, and then B" = forall n > 0. Hence —=e” = u and
0 4" 0 1 0 e

b
then d = 0. Thus B = ?) 0 € a. The theorem in the proof of Exercise 46 implies that g¢ = a.

(2) Consider the inner product (,) on gg given by

(5 () -eesm

Then define the metric g on G by
9 (X, Y) = (Lp-1)s X, (Ly-1).Y).
Now for any h € G, we have

(Ln)*9:(X,Y) = gnha((Ln)«X, (Ln)+Y)
= ((Lray1) (Ln)o X, (Linay 1) (Ln)Y')
= ((Lg-1)+X, (Lg-1).Y)
= g(X,Y).

Therefore g is left-invariant, and { X1, X5} is an orthonormal basis (easily seen at the point 1). Let

9 (0 and 9 ~ (0! be the standard coordinate vector fields on G, and denote by
9z \0 0 dy  \0

{dz, dy} the dual basis of {a%’ 8%}. Then X; = 2.2 and X, = :ca%. Since G is a Lie subgroup of

o



3)

(4)
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GL(2,R), we get

Ty z y\[(1 O z 0 0
Xl = = =r—,
0 1 0 1/\0 0 0 0 Ox
Ty z y\[0 1 0 =z 0
X2 = = = .
0 1 0 1/\0 0 0 0 dy
Then we have g = 2 (dz ® dz + dy ® dy).
The Lie bracket of X; and X is
0-0 -0
X, X _
0, Xe) (0—0 0—0) ?
For left-invariant vector fields X, Y, Z, the Koszul formula simplifies to

Since { X7, X5} is an orthonormal basis, we have
Vx, X1 =03(X1)Xo, Vx, Xo=03(X1)X1, Vx,X1=02(X2)Xs, Vx,Xo=03(X5)X.
Using (50-1), we obtain

29(Vx, X1, X2) = —g([X1, Xa], X1) — g([ X1, Xo], X1) = —29(X3, X1) =0,
29(Vx, Xo, X1) = g([X1, Xo], X1) — g([X2, Xu], X1) = 29(X>, X1) =0,
29(Vx, X1, X2) = g([X2, Xi], X2) — g([X1, Xo], Xo) = —29(X2, X5) = -2,
29(Vx, X2, X1) = —g([X2, X1], X2) — g([X2, X1], X2) = 29(X2, X5) = 2.

It follows that

Vx, X1 =0, Vx,Xo=0, Vx,Xi=-X5 VxXo=X;.

From (3) we see that
03(X1) =0 and 63(X,) =1,

which implies

Thus )
1
1 1 E k 1 1
Q2 = d92 +k7192 /\Hk: = d92 = —?dl’/\dy

It follows that )
R(X1,X2)Xo = (X1, X2)X; = Q3(X1, X) X1 = - X,

j=1
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T
and the sectional curvature at the point (O ?) is

R(X1, X2, X2, X1) = g(R(X1, X2) X2, X1) = g(—= X1, X1) = —1. O

Homework 7

Exercise 51 Prove that any short exact sequence of cochian complexes (of k-modules)
0 —— (C*,d%) — (D*,d%) —— (E*,d%) — 0
induces a long exact sequence on cohomoogy groups,
S H*(C%k) —= H*(D*k) —2 H*(E%K) —> H*Y(C* k) — -

Please provide all necessary details.

Proof By the definition of short exact sequence of cochain complexes, we have the following commu-

tative diagram with exact columns,

Cl d, s Cl% ( 560"“\
T ST /ﬂ%J
AU SR A R

S | |

The commutativity of the squares means that i and j are chain maps. These therefore induce maps
i« and j. on cohomology. To define the boundary map § : H"(E®;k) — H"t'(C*;k), lete € E" be
a cycle. Since j is surjective, ¢ = j(d) for some d € D". The element dd € D""! is in Ker j since
j(dd) = dj(d) = de = 0. So dd = i(c) for some ¢ € C"! since Kerj = Imi. Note that dc = 0 since
i(de) = di(c) = d?d = 0 and i is injective. We define § : H"(E®*;k) — H""'(C*;k) by sending the

cohomology class of e to the cohomology class of ¢, d[e] = [c]. This is well-defined since:
¢ The element c is uniquely determined by dd since ¢ is injective.

o A different choice of d’ for d would have j(d') = j(d),so d’ — disin Kerj = Imi. Thusd —d =
i(c") for some ¢, hence d' = d + i(c’). The effect of replacing d by d + i(c’) is to change c to the
cohomologous element ¢ + d¢’ since i(c + dc’) = i(c) +i(dc’) = dd + di(¢') = d(d + i(c)).

o A different choice of e within its cohomology class would have the form e + de’. Since ¢’ = j(d')
for some d’, we then have e + de’ = e+dj(d') = e+ j(dd') = j(d+dd’'), so d is replaced by d + dd’,
which leaves dd and therefore also ¢ unchanged.
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The map § : H"(E®;k) — H"'(C*;k) is a homomorphism since if d[e;] = [¢;] and d[es] = [co] via
elements d; and ds as above, then j(d; + d3) = j(d1) + j(d2) = e1 + ez and i(c; + ¢2) = i(c1) + i(e2) =
ddy + dds = d(d1 + da), so d([e1] + [e2]) = [c1] + [e2].

To show that the sequence is exact, there are six things to verify:

Imi, C Kerj, | Thisisimmediate since ji = 0 implies j.i, = 0.
Imj, Cc Kerd| We have 64, = 0 since in this case dd = 0 in the definition of 4.

Imé C Keri, | Herei,.6 = 0 since 7.0 takes [¢] to [dd] = 0.

Kerj, C Imi,| A cohomology class in Ker j, is represented by a cycle d € D" with j(d) a boundary,
s0 j(d) = de’ for some ¢’ € E"*!. Since j is surjective, ¢’ = j(d') for some d’ € D"~'. We have
j(d—dd') =j(d)—j(dd) = j(d) —dj(d") = j(d) —de’ = 0. Sod —dd’ = i(c) for some ¢ € C". This
cisa cycle since i(da) = di(a) = d(d — dd') = dd = 0 and i is injective. Thus i, [c] = [d — dd'] = [d],
showing that i, maps onto Ker j.,.

Kerd C Imj. | In the notation used in the definition of ¢, if e represents a cohomology class in Ker 9,
then ¢ = d¢’ for some ¢ € C". The element d — i(¢’) is a cycle since d(d — i(¢')) = dd — di(¢') =
dd —i(d¢’) =dd —i(c) = 0. And j(d —i(c")) = j(d) — ji(c') = j(d) = ¢, s0 j. maps [d —i(c)] to [e].

Keri, CImd| Givenacyclec € C™*! such that i(c) = dd for some d € D", then j(d) is a cycle since
dj(d) = j(dd) = ji(c) = 0, and ¢ takes [j(d)] to [¢]. O

Exercise 52 Prove the Kiinneth formula of de Rham cohomology groups. Explicitly, for manifolds M
and N with finite good covers, one has

Hlg(M x N;R) ~ @ Hir(M;R) @r Hig(N;R)
0<p,q<k, p+q=k

forany 0 < k < dim M + dim V.

Proof Letmy : M x N — M and 7y : M x N — N be the standard projections. Then we get a map
U:Q"(M)@Q(N) = Q" (M X N), w Quws > Thwi ATywa.
One can check that this map induces a map on cohomologies:
i Hip (MiR) ©x Hig(NiR) — Hip(M x NiR),  [wr] @ [ws] s [mhjer A whas).

To prove that this map is in fact a linear isomorphism, we work by induction on the number / of elements
in a good cover of M.

If i = 1,i.e., M is diffeomorphic to R”, then the Kiinneth formula follows from the fact that R" x N
is homotopy equivalent to N, and H%; (R") equals R for k = 0 and 0 otherwise.

Now suppose that the Kiinneth formula holds for manifolds admitting a good cover with no more
than [ — 1 open sets, and suppose that M = U; U--- U U; isa good cover. Let U = U; U --- U U;_; and
V = U,. For simplicity, we denote

SF(M,N) = b HE (M;R) @r HI(N;R).

0<p,q<k, p+a=k
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Consider the following diagram with exact rows given by the Mayer—Vietoris sequences (note that ten-
soring with the vector space H{; (N;R) preserves exactness):

S (M, N) —2—— S*U,N) @ S*(V,N) —2—— " U nV,N) —2— SF (M, N)

v v v v

HiR(M x N;R) % HY(U x N;R) ® Hig(V x N;R) 2 HR(UNV) x N;R) % HYNN(M x N;R)

We must prove that this diagram commutes. The only question is in the square at extreme right because
it involves the § operator used to define the long exact sequence for the Mayer—Vietoris sequence. We
start with an element of $*(U N V, N) in the upper left corner of this square. We can deal with each
element of this sum separately, so ignore the “&” sign. Let [w1]®[ws] bein Hi (U NV R)®r HCIICR_ P(N;R).
Then

Vo([wr] ® [wa]) = mhy (Slan]) A7 [wal,
00 (Jw1] ® [we]) = O[mhsw1 A Tywa).
Let {pu, pv } be a partition of unity subordinate to {U, V'} such that supp(py) € U and supp(py) € V.

To find out 6, we let [w] € Hi (U NV;R) represented by w and 7 = (pyw, —pyw) € QP (U) & QP (V), so
that 5[7] = [pyw — (—pyw)] = [w]. By diagram chasing, one has

(52-1)

5] = [d(pvw)],  onU,
—[d(pvw)], onV.

Since the pullback functions {7}, pu, 7" py } form a partition of unity on M x N subordinate to the cover
{UX N,V x N}, by (52-1), on (U NV) x N we have
d[mywr Amywe] = [d((marpu)mywn A myws)] = [dm(puwn)] Ay [we] = my(S]wn]) A mv[wa].

So the diagram is commutative.

Now the second and the third ¥ in this commutative diagram are linear isomorphisms by the in-

duction hypothesis. Thus the other ¥ are also linear isomorphisms by the five lemma. O

Exercise 53 Compute the de Rham cohomology groups (over R) of the real projective space RP" using
Mayer-Vietoris sequence.

Solution We work by induction on n to show that

R, ifk =0,
HY(RP™R) =R, ifk = nisodd, (53-1)
0, otherwise.

For n = 1, (53-1) is true since RP' ~ S'. Now suppose that (53-1) holds for 1,-- ,n — 1 (n > 2). Let

U=RP"\{[0:---:0:1]} ~RP" 1
V=RP"\RP" ' ={[xg:---:2,] €ERP" : 1, # 0} ~ R".
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Then
UNV ~R"\ {0} ~S" 1.
Define the inclusion map
i:RP"Y U, [wo:-:@pq]=[@o::2n_1:0]

and the projection map
7:U=>RP™ [xg: - iap g x| = [o: - 2]

Then we have 7 0 i = Idgpn-1 and i o 7 ~ Idy. So U is homotopy equivalent to RP"~*. The Mayer-
Vietoris sequence for RP" is

0— HR(RP"R) —— HR(RP" L R) @ HR(R";R) ——— Hgp(S" L R) --

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

“» Hip(RP"R) ———— HE (RP"LR) @ HE (R R) ——— Hi (S HR) — - -

The first two cases in (53-1) are immediate from the facts that RP" is connected and is orientable if and
only if n is odd. So we are left to show that Hi(RP";R) =0for 1 <k <n — 1.

o If nisodd and n > 3, then Hf; (RP"";R) = 0 for k > 1 by the induction hypothesis. From the
above Mayer—Vietoris sequence, we have

s HR(RP™R) —— 090 — -
which implies H}z (RP™;R) = 0.

) & = R, ifk=n-—1, ) )
o Ifnisevenandn > 2, then Hip (RP" 1 R) = for 1 < k < n—1by the induction
0, otherwise.

hypothesis. When k < n — 1, the same argument as above shows that Hz (RP";R) = 0. When
k =n — 1, the Mayer—Vietoris sequence gives

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

-» HR(RP";R) —— ---
————

=0 since n is even
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which implies Hj; ' (RP™;R) = 0.
Therefore (53-1) holds for all n > 1. O

Exercise 54 Let M be a compact oriented manifold. Prove that if dim M = 4n + 2, then its Euler
characteristic x (M) is even.

Proof Without loss of generality, assume A/ is connected. Since M is compact, Hjz(M;R) is finite-
dimensional over R by the de Rham theorem. Moreover, by Poincaré duality,

Hi(M;R) ~ (HI" P27 (M;R)) = (Hig ™ *(M;R)) ~ Hip P> *(M;R).

Thus

4An+2
X(M) =" (=1)* dimg Hjg (M;R)
k=0
2n
=D [(=DF + (=)*"**7F] dimg Hip(M;R) + (=1)*"*" dimg Hyp ™ (M;R)
k=0
2n
=2) (-1)*dimg Hiz(M;R) — dimg Hiz T (M;R).
k=0

So the parity of x(M) is determined by the parity of dimg Hiz "' (M;R). Now consider the pairing
Pi Hig ™ (M3 R) x Hig ™ (M3 R) — Hog ™ (M3 R), - ([a], [8]) = [ A B
Since 2n + 1 is odd, we have

P([a], [8]) = (=1) "DV P([], [a]) = —P(16], [a])-

Assume Hin™' (M;R) ~ R™ for some m, and note that Hjz?(M;R) ~ H3g(M;R) ~ R by Poincaré
duality and the connectedness of M. Then, P simply defines an antisymmetric bilinear form ¢ : R™ x
R™ — R. Hence we can represent ¢ by a non-singular skew-symmetric matrix A € M, x» (R). Then

det(A) = det(—AT) = (—1)" det(A)
implies that m is even since det(A) # 0, and we conclude that x (1) is even. O
Exercise 55 Complete the following two questions on mapping degree.
(1) Let f : T" — T" be the map f (&', ,e") = (e®1%1 ... %) Compute deg(f).
(2) Prove that there does not exist a map S? x S* — CP? with odd degree.

Proof (1) The wedge product
[w] = [db1 A--- A db,,],

where 04, - - - , 6, are angular coordinates on T", is a generator of Hj(T";R) = H*(T™;R). The
map f induces a pullback f* on differential forms:

FAOL A AdO,) = d(k101) A d(knby) = (k1 k) dO1 A A dB,.
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So f*w] = k1 - kyw] and deg(f) = k1 - - - k.

(2) Recall the cohomologies of CP? and S? x S?:

H?(CP*Z) = Zlo], H*(CP*Z)=Z[[o]Ua]],
H?*(S* x §*;Z) = Z[riou] @ Z[msas], H*(S? x §*Z) = Z[[rfoq] U [mha0]],

where o] and [a] are both generators of H?(S?;Z), and m; and 5 are the standard projections.

Let f : S* x S* — CP? and suppose

f*[Oé] :kl[ﬂ'fal]-‘rkg[ﬂ';]ag, ki, ko € 7.

Then
(o] Uula]) = (f*[a]) U (f*[a])
= (ki[riou] + ka[m3a0]) U (ki [m]on] + ka[m3a0])
= ki (Jea] U [ou]) + k375 (Jore] U [va]) + 2k ko[ an] U [m5 o]
T T
= 2]431]6'2[7’(?0[1] U [W;OZQ].
So deg(f) = 2k1k, is even. O

Homework 8

Exercise 56 Complete the following questions on Hodge-Laplace operator.

(1) Let M be a connected closed manifold and f : M — R be a smooth function. Fix a volume form €2
on M. Prove that Af = 0 or A(f2) = 0 if and only if f is a constant function.

(2) Under the same hypothesis of (1) above. Prove that | f€Q = 0if and only if there exists a smooth
M
function g : M — R such that Ag = f.

Proof (1) The “if” part in either case is trivial. For the “only if” part, since M is connected, f is
constant if and only it is locally constant. Let us pick for every p € M a local coordinate chart
(U, ¢) around p such that p(U) = R", where n = dim M, and compute A in terms of the local
coordinates x1, - - - ,x,. For a differential k-form of the shape F'dz; A --- A dz. Beginning with
the action of dd, we obtain

dé(Fday A--- Aday)
=(—1)"FDHd xd * (Fday A--- Aday)
=(—1)"F=DHd % d(F dagsr A--- Aday)

: n(k 1+1Zd*<

OF —
n(k 1+1Z (k 1)(n—k)+i— 1d(axldx1/\/\dxl/\/\dxk>

i N1 A A dwn>
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k 9 -
:Z (aFdxl/\dxl/\ Adz; A Adag

- 2F -
k—1

O2F P& gy OF —
:—E dacl/\ Adxk+§ § (—1)* _16”8%dxl/\-~-/\dxi/\--~/\dxk/\dxj.
i=1 j=k+1 v

The simplification of the sign in the second to last equality uses that n(k — 1) + (k — 1)(n — k) =
(k —1)(2n — k) which is even since k(k — 1) is always even. Meanwhile,

dd(Fdzy A--- Adxy)
=(—1)" s dx (dF Adzy A--- Aday,)

“~ OF
=(—1)"F AL d ( Z P dzy A~ Adag A dxj)

j=k+1 7

n

i 4 OF —
:(_1) k+k+1*d< Z (_1)] k 1%d$k+1/\"'/\d$j/\"'/\dxn)

j=k+1 J

> ()™ « <( 1)k 12 2 dzgys A--- Adz,
j=k+1

koog2p .

—|—Z dxiAdxk+1A--~/\dxj/\-~-/\dxn>

i1 8%18.%]
=(— 1)nk+k 14+k(n—k) Z 7dm1/\ A day
Jj= k-',—l J
k n 82F
_ 1 \nk+i+(i—1)(n—k)+(k—i)(n—k—1)+n—j - 4
+;j:z:k+1( o ]8xi8xj dog A Adag A Adag A dag.

Now nk+k —1+k(n—k) = -1+ k(2n+ 1 — k) is always odd. Meanwhile nk + j + (i — 1)(n —
Ey+(k—i)n—k—-1)+n—j=nk+1)+(n—Fk)(k—1)—(k—1)=2kn—k(k—1) —k —ihas
the same parity as i + k. So we obtain

0d(Fdxy A--- Aday)

n 2 k n 2 o
= Z 87de1/\~--/\dxk—|—z Z (—1)iFF oF -day Ao Ada A Adag Adag.

Therefore, we have

0*F
Ox?

(2

A(Fday A Adag) = =) day A -+ A day. (56-1)
i=1

o Take k = 0. Then
AF =0 < En 32—F—0
B i

By Liouville’s theorem, any bounded harmonic function on R" is constant. So A f = 0 implies
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that f is (locally) constant.

o Take k = n. Then

—~ 9°F —~ O°F
A(Fdxy A---Ndxy,) =0 deiﬁ/\'“/\d%k:() — ZWZO'
i=1 i =1 3

Thus again f is (locally) constant.

(2) By the Hodge decomposition theorem, we can write f = Ag + h for some g € Q°(M) and h €
HO(M). By (1) we know that H° (M) consists of constant functions on M, so h is in fact a constant.
Since Ag is orthogonal to H°(M), we have

AgQ) = 0.
M

Therefore,

fQ:0<:)/(Ag+h)Q:O<:> hVol(M)=0 < h=0 <= f=Ag.
M

M O

Exercise 57 A contact 1-form on M? is a 1-form o € Q' (M) such that da A a is nowhere vanishing (i.e.,
a volume form). Complete the following questions.

(1) Prove that the hyperplane field D? defined by
D?(p) == Kera(p) = {v € T,M : a,,(v) = 0}

for any p € M is not integrable anywhere (called completely non-integrable). Such a completely
non-integrable D? is called a contact structure on M?>.

(2) Following the terminology in (1) right above, for T* = (R/Z)? in coordinates (x,y, z), prove that
D? defined as follows,

0 0 0
2 e
D = SpanR<az , cos(27rz)—ax sm(27rz)ay>

is a contact structure on T2,

(3) Draw a closed curve y in T? such that everywhere its tangent vector lies in D?. Note that this does
not contradict the Frobenius integrability theorem!

Proof (1) Forany X,Y € D?, we have
da(X,Y) = X(a(Y)) = Y(a(X)) —a([X,Y]) =0-0— a([X,Y]).

So if D? is integrable at some point p € M, then by the Frobenius integrability theorem, [X,Y], €
D? and then da(X,Y), = 0. This implies that daw A o vanishes at p, which is a contradiction.
Therefore, D? is completely non-integrable.

(2) Let a = sin(2rz)dz + cos(27mz)dy € Q'(T?) (it is invariant under the action of Z* on R® by
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translations, so it descends to a 1-form on T?%). Then
da = =27 cos(2mz) da A dz + 27 sin(27z) dy A dz,

and
da A o = [27 cos®(2m2) + 2msin®(272)] dz A dy A dz = 2rda A dy A dz,

which is a volume form on T?. So « is a contact 1-form on T*. Obviously Ker a(p) > D?(p) for any
p = (7,y,2) € T>. And since dimKera(p) = 3 — 1 = dim D?(p), they must be equal. Hence by

(1), D? is completely non-integrable and thus a contact structure on T?.

(3) The red “line” v(t) = (3, 3.,t) fort € [0,1] is a closed curve in T? whose tangent vector at each
point (3,1, 2) € ([0,1]) is .

AR

0

r O

Exercise 58 Use Sard’s theorem and stereographic projection to prove that the n-sphere S™ (for n > 2)
is simply connected. (Recall that a smooth manifold X is simply connected if it is connected and any

smooth map S' — X can be continuously deformed to a constant map.)

Proof Let f : S' — S™ be a smooth map. Sard’s theorem implies that there is a point p € S such
that p is a regular value of f. Let ¢ : S" \ {p} — R" be the stereographic projection from p. If there
isan x € S' such that p = f(z), then df, : T,S' — T,S™ is a map from a 1-dimensional vector space
to an n-dimensional vector space. This cannot be surjective for dimension reasons. Hence p ¢ Im f.
Thenoo f : S' — R" is null-homotopic since R" is contractible. That is, Im f is contractible and f is

null-homotopic. Therefore, S” (n > 2) is simply connected. O
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Optional Exercises

Exercise 59 Prove that if n is odd, then RP" is orientable.

Proof Recall the atlas {(U;, ;) : 0 < ¢ < n}, where U; = {[zo, 21, -+ ,zn] € RP" 1 2; # 0} and

x Tio1 X x
@i:Ui%RTZ [x07$1,"',$n]H(0,"'7 7(17 1“’1.”’”).
To show the transition maps have positive Jacobian determinant, it suffices to consider 0 < 7 < j < n,
since if ¢ = j, the transition map is the identity map which has determinant 1, and if ¢ > j, the transition

is the inverse (so the determinant will still have the same sign). Now the transition maps are given by

t ti 1 ¢ ti—1 tj t
oo Oty )= (A 2 Al L Wl )
(SDJ ©,; )( 1 ) n) tjv atja tjv tj ’ ) tj ) tj ) ) tj
. . . . 1 . i t;
Clearly, this ordering is not pretty; the factor 7, seems out of place, and we have a jump in G , J;]Tl . So,
it would be nice to permute the columns (j —1) — (i +1) 4+ 1 = j — ¢ — 1 times so that we get the mapping
tq ti1 1 tjq t,
fij(tlv"'atn):(t_a"'7 Jt_ at_a‘]t—"__v"'vtr_b>'
g it b J

In other words, (pj o ;') = oo f,;, where o is a permutation that makes j — i — 1 many column swaps.
Thus,

det(Jac(p; o ;') (1)) = (—1)7 7" det(Jac(fi;)(t)).

We start by calculating the Jacobian matrix for f;;:

= LG-1xG-1)

Jac(fi;)(t) = &

% Lin—j)x(n—3)

We compute

det(Jac(p; o ;) (1))
:(—1)3‘_"_1 det(Jac(fi;)(t))
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T—nxG-1)

. s lj—1
o 1 j—1 1 1 n—j J
=(=1)771 (t) <—t2> (t) det 1
J j J

ti+1
S L=y (n—g)
ty
—1)i—¢
:7( th)rl detl, «,
j
(=1
- n+1l -
t;

Unfortunately, these charts are not the oriented ones. Consider ¢; = (—1)iapi. Then, the transition map
is

_ e t; (—1) ¢ tiiq t t
1 1 i 141 j—1 Utj41 n
(¢jo¢z )( 1 ) rb) ( ) (t]’ atjv tj ) tj ) ] ) )

Hence,

det(Jac(¢; o, ') (1)) = (—1)™(—1)" det(Jac(p; o @; ') (1))

Thus, for odd values of n, this determinant is positive, and hence for odd n, RP" is orientable, and the
1);’s provide an oriented atlas. O

Exercise 60 Let M™, N" be smooth manifolds. Prove that M x N is orientable if and only if M and N
are orientable.

Proof (<) Suppose M, N are both orientable, and let {(U;, ;) : i € I} and {(V},%;) : j € J} be ori-
ented atlases for M and N, respectively. Then the atlas {(U; x Vj,p; x ;) :i € 1,j € J} is an
oriented atlas for M x N, because

detfac( (15, * ¥5,) © (¢ay X Pas) ') = detlac((v, 0 05,) X (5 © 05))
— det ]aC(i/)Bl o (p(;l) 0 .
0 ]ac(wﬁz © Pay )
= detJac(1p, o p5) detJac(vs, o pal)
> 0.

(=) Note that any open submanifold of an orientable manifold is orientable. So if we pick an open
subset V' C N homeomorphic to R", then M xV ~ M xR" is orientable. By induction, it suffices to
show thatif M xR is orientable, then M is orientable. Choose an open cover {U,, : o € A} of M such
that there are homeomorphisms ¢, : Uy — R™. Then {U, x R, 0o = o x Id : Uy x R — R™ !}
is an atlas for M x R. If needed, we can modify each 1, by changing the sign of the first component



61

into R™ " to make it compatible with a fixed orientation in M x R. This changes correspondingly
the ¢,. Thus

Jac(g 0 0, ")

detJac(yp oy ') = det( 0

0
1) = detJac(pp o, ') > 0.
Therefore {(U,, o) : @ € A} is a positive atlas of M, and M is orientable. O

Exercise 61 Prove that the inversion condition is redundant in the definition of a Lie group. That is, if
G is a group with the property that the multiplication map ¢ : G x G — G is smooth, then the inverse
map ¢ : G — G is smooth.

Proof Consider the map
F:GxG—GxG, (g,h) v (g,9h).

Then F is smooth, since 4 is smooth. It is straightforward to check that the differential of F' at a point
(g9,h) € G x G is given by

(dF)(gJL) : TgG X ThG — TgG X TghG, (X, Y) — (X, (dRh)g(X) + (dLg)h(Y)),

where Ry, : G — G is right multiplication by h and L, : G — G is left multiplication by g.

The map L, : G — G has a smooth inverse L,-1, so it is a diffeomorphism. Thus, (dL,); is an
isomorphism and hence (dF') g, ) is surjective. Since the domain and range have the same dimension,
(dF)(g,n is an isomorphism. This shows that I is a local diffeomorphism. But F is bijective, so F'is a

diffeomorphism. In particular, its inverse
F1:GxG—=GxG, (g,h)— (g,g_lh)

is smooth, and hence the following composition is smooth:

—1
g (g,0) = (9,97 = g7" O

Exercise 62 The dual bundle of a vector bundle 7 : E — M is the vector bundle 7* : E* — M whose
fibers are the dual spaces to the fibers of E. Prove that if g,5(x) € GL(n,R) are the transition maps for
E, then the transition maps for E* are (gaﬁ(x)_l)T.

Proof Fixz € U, NUgandlet? € (R™)". Then for any u € R,
(9as (@)l gap(z)u) = (22) 7 (@, 0), (2a7) (x,u)) = (C,u).
Thus for every v € R", we have

(925 (@),0) = (£,905(@) 10} = ((9ap(2) ™) t,0).

Therefore, g, 5(z) = (gaﬁ(x)il)T' -

Exercise 63 Every vector bundle admits a connection.

Proof Assume w: E — M is a vector bundle and {(U,, ®,)} is a system of local trivializations. Since
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M is paracompact, we can replace {U, } with a locally finite refinement and choose a smooth partition
of unity {p,}. With the trivialization ®,, : 7~*(U,) — U, x R¥, any section s over U, can be identified
with a smooth map s, : U, — RE. Then define V* by V&s = Dxs, (the directional derivative of s,
along X) for any X € I'(T'M). Now we can define a connection V in E by

V=> paV®

Because the set of supports of the p,’s is locally finite, the sum on the right-hand side has only finitely
many nonzero terms in a neighborhood of each point, so it defines a smooth vector field on M. It is
immediate from this definition that VxY is linear over R in Y and linear over €*°(M) in X. For the

product rule, by direct computation,
Vx(fY) =Y paVi (1Y)
=D _ra[(X)Y + fVKY]
= (XYY pat D paVXY
=(Xf)Y + fVxY. O
Exercise 64 Prove thatif ¢ : G — H is a Lie group homomorphism, then (dy)(e) : g¢ — gu is a Lie

algebra homomorphism.

Proof Since (dy)(e) is a linear map, it suffices to show that (dy)(e) preserves the Lie bracket. This
follows from the naturality of Lie brackets (see the proposition below) that

[(dp)(e)(v), (dp)(e)(w)] = (dp)(e)([v,w]), Vv, w € gg-

(GTM 218, Proposition 8.30) Let ' : M — N be a smooth map between manifolds with or without boundary,
and let X1, Xo € I(TM) and Y1,Y, € T(TN) be vector fields such that X, is F-related to'Y; for i = 1,2. Then
[X1, X2 is F-related to [Y1, Ya). O

Exercise 65 If 7, (M) is a finite group, then Hjy (M;R) = 0.

Proof Choose w € Q'(M) with dw = 0 and fix any base point z in M. For any loop v in M based at
rg, we have [y]) = e in 7, (M, zo) for some n € Z \ {0}, since |7, (M)| < co. Hence, there exists a path
homotopy F : [0, 1] x [0,1] — M such that

F(0,t) =y*---xv(t) and F(1,t) = v4,(t) = x0, the constant loop at zg.
———

n

By Stokes’ theorem (for manifolds with corners), we have

0:/ F*dw:/ d(F*w):/ ('ywo)*w—/ (fy*-u*'y)*w:O—n/w.
[0,1]x[0,1] [0,1]x[0,1] [0,1] [0,1] ﬁz—’ v

Hence / w = 0 holds for any loop ~ based at x, and so w is exact. Therefore Hz(M;R) = 0. O
¥



