Laurent Series Expansion

The Laurent series of a complex function f(z) is a representation of that function as a power series
which includes terms of negative degree. It may be used to express complex functions in cases where a
Taylor series expansion cannot be applied.

The Laurent series expansion is discussed in Problem 3.9.3 of the textbook, which we reformulate
as the following theorem.

Theorem 1 If f(z) is holomorphic in the annulus A, g(a) = {z € C: r < |z — a| < R}, then we can

write -

f)= Y elz—a)", (1)
where ) 0)

[(—al=p

This series expansion (1) is unique, called the Laurent series expansion of f(z) in the annulus A, r(a).

Proof We note first that the right-hand side of (2) is independent of the choice of p. This is a corollary
of Theorem 5.1, Chapter 3.

Given any z € A, g(a), we can take two circles v, : | — a| = p1 and v2: | — a| = p2 with p; < po,
such that z lies in the annulus between them. By Cauchy’s integral formula for annulus,

_ L HQ i/ f©)
f(z) = 27 [/2 (—=z d¢ 27i )y, (— 2 dc. (3)
o When ¢ € 75, we have
1 1 = (z—a)"
= =y ) (4)
— —a — q\n+1
(—=z (C—a)(l—zfa) = (C—a)"t
. . . N ek B
and the right-hand side converges uniformly on v, since —alT <L
- 2
¢ When ¢ € 7, we have
I -1 _ _i (¢C—a)™ ! (5)
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and the right-hand side converges uniformly on ~; since
z—a

Substituting (4) and (5) into (3), and interchanging the order of integration and summation, we have

n=0

oo

2 % / (Cf(ac))anC (z—a)", r<p<R

n=—oo
[¢—al=p

To show the uniqueness of the Laurent series expansion, we observe that if f(z) can be expressed
as (1), thenforr < p < R,

/ (foj))mﬂ dz = i Cn / (z —a)""™ "t dz = 2ricy, (6)

n=—oo

|z—al=p |z—a|=p

which implies that ¢,, is uniquely determined by f(z). Here we have used the fact that

2 2m
/ (z—a)" " dz = / (pe®)" ™™ piel® df = ip" ™ / (in=m0 gg
0 0

lz—al=p

27, ifn=m,

0, if n # m.

Remark 2 In practice, the integral formula (2) may not offer the most practical method for computing
the coefficients ¢, for a given function f(z); instead, one often pieces together the Laurent series by
combining known Taylor expansions. Because the Laurent expansion of a function is unique whenever
it exists, any expression of this form that equals the given function f(z) in some annulus must actually
be the Laurent expansion of f(z).
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Example 3 Find the Laurent series expansions of the function f(z) = _FoeEds in the annuli
(z—2)(22+1)
ALQ (0) and AQ,OO(O).

Solution The partial fraction decomposition of f(z) is f(z) = ——=

o When 1 < |z| < 2, we have




Residue at Infinity

Given a holomorphic function f on an annulus A g (0), the residue at infinity of f can be defined
in terms of the usual residue as follows:

Res(f, 00) = _Res<zl2f<i),o).

Thus, one can transfer the study of f(z) at infinity to the study of f(1/z) at the origin.
Note that the function f(1/w) is holomorphic in the annulus A ;,(0). Hence for r > R,

w= 1/z 1 1 1 du — R
271-1 f “reverse orientation 277-1 ﬁ E w=- es(f ’ OO)
[z|=r |lw|=1/r

This shows that for holomorphic functions the sum of the residues at the isolated singularities plus the

residue at infinity is zero. That is, if f is holomorphicin C\ {z1,--- , z,}, then
ZRes(ﬁ zr) + Res(f,00) = 0. (7)
k=1

Moreover, from (6) we find that if f(z Z cpz" is the Laurent series expansion of f(z) in the

n=—oo

annulus Ag «(0), then
Res(f,00) = —c_1.

5
Example 4 Evaluate the integral I = / ﬁ dz

Solution Tha Laurent series expansion of f(z) = —— in the annulus A; «(0) is
z

21 1 & 1\" & (-1
f(Z)ZZeH;B:ZZ(—Ze) =Y omt

n=0

Hence Res(f,00) = —1, and by (7) we get

I = —2riRes(f, 00) = 2mi. m

Remark 5 One might first guess that the definition of the residue of f(z) at infinity should just be the
residue of f(1/z) at z = 0. However, the reason that we consider instead — 2% f () is that one does not
take residues of functions, but of differential forms, i.e. the residue of f(z)dz at infinity is the residue of

fA)dt)=-%f(i)dzatz=0.



Definite Integrals Using Residues

Type I: / | f(x)dz, where f(z) is continuous on R (Stein 3.8.2, 3.8.6)

Theorem 6 Suppose f(z) is holomorphic in H\ {a1, - - ,a,} and continuous on R, where ai,--- ,a, €
H are isolated singularities of f(z) in the upper half-plane H. If h_}m z2f(z) = 0, then

/OO f(z)dx = QWiZRes(f, ag)-
- k=1

Corollary 7 If f(z) = gg;, where P(z) and Q(x) are coprime polynomials, Q(x) is non-vanishing in
R, and deg () — deg P > 2, then

/_Z ggg dx = 27ri§:1Res<gEz;7ak>,

where aq, - - - , a, are all distinct roots of Q(z) in H.
) o dz
Example 8 Evaluate the integral I = —T
—o0 ($2 + 1)

Solution By Corollary 7, we have

, 1 , 2mi . d™ [ (2 —i)nH
I:27T1Res ﬁ’l :ﬁglg}d n ﬁ
(211 nl =oiden \ (22 1 1)
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nl esiden \ (z + 1)1 ) T 22 (nl)2

Type Il: / f(z)cos axdz and / f(z)sin ax dz (Stein 3.8.3, 3.8.4)

Theorem 9 Suppose f(z) is holomorphic in H\ {a1, - - , a, } and continuous on R, where a;,- - ,a, €
H are isolated singularities of f(z) in the upper half-plane H. If lim f(z) = 0, then for any o > 0,
Z—00

/OO f(z)e** dz = 27rizn: Res (e f(2), ar).
—° k=1

To prove this theorem, we can use the following lemma.

Lemma 10 (Jordan) If lim f(z) =0, then for any @ > 0,
zZ—00

lim e f(z) =0,
R—o0 R

where g is the semicircular contour in the upper half-plane centered at the origin with radius R.



Corollary 11 Under the same conditions as Theorem 9, we have
/ f(x)cosaxrdr = —ZWIm{ZReS(eiO‘Zf(z),ak)},
- k=1
/ f(z)sinazdr = 27TR€{ZR€S(€iaZf(Z)7Gk>}.
e k=1

COs ax

Example 12 Evaluate the integral I = / PR dz, where a, b > 0.
oo &

Solution Let f(z) = ——. Since lim f(z) = 0, we can apply Corollary 11 to get

22 + b zZ—00
I= / f(z) cos ax dz = —2m Im{Res (e'** f(2),ib) }

e—ab 0
=2 = e,
71'11‘11{ 510 } e

2w
Type lll: / R(sin®, cos ) df (Stein 3.8.7, 3.8.8)

0 '
The trick here is to put together some elementary properties of z = ¢!’ on the unit circle.

oe ¥ =1/z

el 4e 0 241/z2

9 = =
o Cos 5 5
o sind elf—e" z2—1/z
sinf = = .
2i 2i
d
o df = &

iz’
dé
3+ cosf+2sinf’

2m
Example 13 Evaluate the integral I = /
0

Solution We have

1 dz
/ Fiz+1/2) —i(z—1/z2) iz

Z
-2
1/ (1 —2i)22 4+ 62+ (1 + 2i)

_ . dz

= 21(1+21)| l[ [z + (14 21)][52 + (1 + 2i)]
B . 2i(1 4 2i) 1

=2 —— — L2 4 (14 2i)



Type IV: /X f(x)dz, where f(x) has singularities on R (Stein 2.6.2)
Lemma 14 éuppose that f(z) is continuous in the sector

{a+pe?:0<p<po, b0 <0< 0+ a}.
If lim(z — a)f(z) = A, then

z—a

lim/ f(z)dz =ida,
p=0 Yo

where 7, is the circular arc v,(6) = a + peie, with ) <0 <0+ a.

Proof Letg(z) = (z—a)f(z) — A. Then lim g(z) = 0. If we denote
zZ—a

M, =sup{|g(z)| : 2 = a+ pe?, 6y < < 0o + a},

then lim M, = 0. Hence, we have
p—0

0
/ %dz— < Mya 550
i

0o+
/ ’ M piet? do
fo

o pe!
It follows that
0
/ f(z)dz:iAoz—l—/ 9) d: 75 ida.
e Ye z—-a O
< sindx
Example 15 Evaluate the integral I = / 3 dx.

Solution Rewrite the integral as

> *da
$3
/ i 36“ + 36—1z _ 6—317;

dx

—8ix3

> 3smx — sm3x

————dux.

— 00

3 iz _ 3iz
Now;, consider the integral of f(z) := % over the contour vy := v Uy, U2 Uvr shown below.
z
Im
TR
Ye
-R N - € Y2 R Re

By Lemma 10, the integral along v vanishes as R — oo. Since f(z) is holomorphic in the region enclosed



by v, we have
1 Im{eﬁohr}glﬁoo / f(z) dz} = Im{lli?%/ f(2) dz}.
Y1Uv2 T
Since G (i
. . 3eiz _ iz ) 312T _ 3122 3
lim =) = i * =t S <

applying Lemma 14 (with attention to the contour’s orientation), we obtain

. . 3mi
Ly
Therefore,
3mi 3
Ilm{4}4- 0

Koebe Quarter Theorem

Stein 3.9.1 Consider a holomorphic map on the unit disc f: D — C which satisfies f(0) = 0. By the
open mapping theorem, the image f(ID) contains a small disc centered at the origin. We then ask: does
there exist r > 0 such that for all f: D — C with f(0) = 0, we have D,.(0) C f(D)?

(1) Show that with no further restrictions on f, no such r exists. It suffices to find a sequence of
functions { f, } holomorphic in D such that 1 ¢ f,,(D). Compute f,(0), and discuss.

(2) Assume in addition that f also satisfies f'(0) = 1. Show that despite this new assumption, there
exists no > 0 satisfying the desired condition.

The Koebe-Bieberbach theorem states that if in addition to f(0) = 0 and f’(0) = 1 we also assume that

[ is injective, then such an r exists and the best possible value is r = 1.
(3) Asa first step, show thatif h(z) = L + ¢y +c12+c22? +- - - is analytic and injective for 0 < |z| < 1,

z
oo
then Z nlea|? < 1.
n=1

(4) If f(2) = 2 + az2® + - - - satisfies the hypotheses of the theorem, show that there exists another
function g satisfying the hypotheses of the theorem such that g*(z) = f(2?).

(5) With the notation of the previous part, show that |az| < 2, and that equality holds if and only if

z
z) = ———— forsome § € R.
/() (1— 6192)2

(6) If h(z) = % +ceo+ 1z 4+ s injective on D and avoids the values z; and z3, show that
‘Zl — ZQ| < 4.
(7) Complete the proof of the theorem.
Proof (1) Take f,(2) = 2. Then + ¢ f(D) and f},(0) = +.

(2) Take f.(z) =¢e(e* — 1) fore > 0. Then f/(0) = 1 but -1 ¢ f.(D).



(3) The choice of ¢ is irrelevant. So assume ¢y = 0. Neither the hypothesis nor the conclusion is
affected if we replace h(z) by Ah(Az) (J]A| = 1). So we may assume that ¢, is real.

PutU,={z€C:|z|<r},C.={z€C:|z|=r},and V., ={z € C:r < |z] < 1}, for0 < r < 1.
Then h(U,) is a neighborhood of co (by the open mapping theorem, applied to 1/h); the sets h(U,),
h(C;), and h(V,.) are disjoint, since h is injective. Write

1
h(z) = ;—i—clz—i-gp(z), zeD, (8)
h =wu+iv,and ) )
A=~-+cr, B=-—cr. (9)
r T
For z = re'?, we then obtain
u=Acosf +Rey and v=—Bsinf+Imey. (10)

Divide (10) by A and B, respectively, square, and add:

2 2 2cosf Rep\? 2sinf Imop\ >

A2 B? A A B

By (8), ¢ has a zero of order at least 2 at the origin. If we keep account of (9), it follows that there

exists 77 > 0 such that, for all sufficiently small r,

2 2
u U _ i0
A2 <1—|—777’ z=re".

This says that h(C, ) is in the interior of the ellipse E,, whose semiaxes are Av/1 + nr3 and By/1 + nr3,
and which therefore bounds an area

7AB(1 + ) = w<i + m) <i - c1r> (L4r%) < S (1+m). (11)

Since h(C,) is in the interior of F,, we have E,. C h(U,.); hence h(V}) is in the interior of F,, so the
area of h(V;) is no larger than (11). Therefore by the area formula we have

1+77r / ' (2)|* dz dy

ar

2 0 0o
/ / { ch pn 2 1(n+1)9 Z mqpm—Qe—i(—i-l)Q

m=1

2

-2 —219+chnp 1€n 1)6 pdep

(12)
+ Z nmcncmp"er_lei("_m)g}d@dp
n,m=1
:27r/ (p +Zn2|c |2p?n— 1)
n=1

n=1

—’/T{’I"2 -1+ in|on|2(1 - 7"2”)}.



(4)

(5)

If we divide (12) by 7 and then subtract 72 from both sides, we obtain

N
Z n|cn|2(1 — 7”2") <1l+4nr (13)

n=1
for all sufficiently small r and for all positive integers N. Let » — 0 in (13), then let N — oo. This

gives the desired result.

Write f(z) = z¢(z). Then ¢ is holomorphic in D, ¢(0) = 1, and ¢ has no zero in D, since f has no
zeroin D—{0} by its injectivity. Hence there exists h holomorphic in D with h(0) = 1, h*(z) = ¢(z).
Put

g(z) = zh(2%), ze€D. (14)

Then ¢°(z) = 2°h*(2*) = 2%p(2®) = f(2*). Itis clear that g(0) = 0 and ¢'(0) = 1. We have to show
that g is injective.

Suppose z and w are points in D such that g(z) = g(w). Since f is injective, the identity ¢*(z) =
f(z?) implies that 2*> = w®. So either z = w (which is what we want to prove) or z = —w. In the
latter case, (14) shows that g(z) = g(—w) = —g(w); it follows that g(z) = g(w) = 0, and since g
has no zeroin D — {0}, we have z = w = 0.

Let g be the function constructed in part (4), so that g is injective, g(0) = 0, and ¢'(0) = 1. Since
P(2)=f(2*) =21+ az®+--),
we get
1
g(z) = z(1+ 5(1222 +>

If we take G := 1/g, then

1 1 1
G(z):<1—2a222+-~-> =—4cotcztet+.
z z

The result in part (3) applies to G, and this will give

Since |as| = 2, this is again equivalent to

f(z)= — % forsomedcR.

(1—ei0z)?



10

(6) Since z; ¢ h(D), the function h(z)ﬁ is holomorphic in D (the origin is a removable singularity),

and
1 z

= == - — 2
h(z) — 21 14 (co—21)z+c122 + 23 z—(co—21)2" +

Hence, m satisfies the hypotheses of the theorem, and by part (5) we have |cp — 21| < 2.
Similarly, |cy — 22| < 2. Therefore,

|21 —Zg| < |CO —2’1‘ + |C() —2'2| < 4.

(7) Suppose w ¢ f(D). Then the function h(z) = ﬁ satisfies the hypotheses of (3) and (6). Since
h(z) avoids the values 0 and 1, by part (6) we have |1| < 4, that is, |w| > 1. This shows that

D1/4(0) C f(D). O

Remark 16 The Koebe 1/4 theorem is named after Paul Koebe, who conjectured the result in 1907. The
theorem was proved by Ludwig Bieberbach in 1916. The example of the Koebe function

(1-2)? - ann

n=1

shows that the constant 1/4 in the theorem cannot be improved (increased).



