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Laurent Series Expansion

The Laurent series of a complex function f(z) is a representation of that function as a power series
which includes terms of negative degree. It may be used to express complex functions in cases where a
Taylor series expansion cannot be applied.

The Laurent series expansion is discussed in Problem 3.9.3 of the textbook, which we reformulate
as the following theorem.

Theorem 1 If f(z) is holomorphic in the annulus Ar,R(a) := {z ∈ C : r < |z − a| < R}, then we can
write

f(z) =

∞∑
n=−∞

cn(z − a)n, (1)

where
cn =

1

2πi

∫
|ζ−a|=ρ

f(ζ)

(ζ − a)n+1
dζ, r < ρ < R. (2)

This series expansion (1) is unique, called the Laurent series expansion of f(z) in the annulus Ar,R(a).

Proof We note first that the right-hand side of (2) is independent of the choice of ρ. This is a corollary
of Theorem 5.1, Chapter 3.

a

z

γ1

γ2

Given any z ∈ Ar,R(a), we can take two circles γ1 : |ζ − a| = ρ1 and γ2 : |ζ − a| = ρ2 with ρ1 < ρ2,
such that z lies in the annulus between them. By Cauchy’s integral formula for annulus,

f(z) =
1

2πi

∫
γ2

f(ζ)

ζ − z
dζ − 1

2πi

∫
γ1

f(ζ)

ζ − z
dζ. (3)

⋄ When ζ ∈ γ2, we have

1

ζ − z
=

1

(ζ − a)
(
1− z−a

ζ−a

) =

∞∑
n=0

(z − a)n

(ζ − a)n+1
, (4)

and the right-hand side converges uniformly on γ2 since
∣∣∣∣z − a

ζ − a

∣∣∣∣ = |z − a|
ρ2

< 1.

⋄ When ζ ∈ γ1, we have

1

ζ − z
=

−1

(z − a)
(
1− ζ−a

z−a

) = −
∞∑

n=1

(ζ − a)n−1

(z − a)n
, (5)
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and the right-hand side converges uniformly on γ1 since
∣∣∣∣ζ − a

z − a

∣∣∣∣ = ρ1
|z − a|

< 1.

Substituting (4) and (5) into (3), and interchanging the order of integration and summation, we have

f(z) =

∞∑
n=0

(
1

2πi

∫
γ2

f(ζ)

(ζ − a)n+1
dζ
)
(z − a)n +

∞∑
n=1

(
1

2πi

∫
γ1

f(ζ)

(ζ − a)−n+1
dζ
)
(z − a)−n

=

∞∑
n=−∞

 1

2πi

∫
|ζ−a|=ρ

f(ζ)

(ζ − a)n+1
dζ

(z − a)n, r < ρ < R.

To show the uniqueness of the Laurent series expansion, we observe that if f(z) can be expressed
as (1), then for r < ρ < R,

∫
|z−a|=ρ

f(z)

(z − a)m+1
dz =

∞∑
n=−∞

cn

∫
|z−a|=ρ

(z − a)n−m−1 dz = 2πicm, (6)

which implies that cm is uniquely determined by f(z). Here we have used the fact that∫
|z−a|=ρ

(z − a)n−m−1 dz =

∫ 2π

0

(
ρeiθ

)n−m−1
ρieiθ dθ = iρn−m

∫ 2π

0

ei(n−m)θ dθ

=

2πi, if n = m,

0, if n ̸= m.

Remark 2 In practice, the integral formula (2) may not offer the most practical method for computing
the coefficients cn for a given function f(z); instead, one often pieces together the Laurent series by
combining known Taylor expansions. Because the Laurent expansion of a function is unique whenever
it exists, any expression of this form that equals the given function f(z) in some annulus must actually
be the Laurent expansion of f(z).

Example 3 Find the Laurent series expansions of the function f(z) =
z2 − 2z + 5

(z − 2)(z2 + 1)
in the annuli

A1,2(0) and A2,∞(0).

Solution The partial fraction decomposition of f(z) is f(z) = 1

z − 2
− 2

z2 + 1
.

⋄ When 1 < |z| < 2, we have

f(z) = −1

2

1

1− z
2

− 2

z2
1

1 + 1
z2

= −1

2

∞∑
n=0

(z
2

)n
− 2

z2

∞∑
n=0

(
− 1

z2

)n

.

⋄ When |z| > 2, we have

f(z) =
1

z

1

1− 2
z

− 2

z2
1

1 + 1
z2

=

∞∑
n=1

2n−1

zn
+ 2

∞∑
n=1

(−1)n

z2n
.
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Residue at Infinity

Given a holomorphic function f on an annulus AR,∞(0), the residue at infinity of f can be defined
in terms of the usual residue as follows:

Res(f,∞) := −Res
(

1

z2
f

(
1

z

)
, 0

)
.

Thus, one can transfer the study of f(z) at infinity to the study of f(1/z) at the origin.
Note that the function f(1/w) is holomorphic in the annulus A0,1/R(0). Hence for r > R,

1

2πi

∫
|z|=r

f(z)dz reverse orientation

w=1/z 1

2πi

∫
|w|=1/r

1

w2
f

(
1

w

)
dw = −Res(f,∞).

This shows that for holomorphic functions the sum of the residues at the isolated singularities plus the
residue at infinity is zero. That is, if f is holomorphic in C \ {z1, · · · , zn}, then

n∑
k=1

Res(f, zk) + Res(f,∞) = 0. (7)

Moreover, from (6) we find that if f(z) =

∞∑
n=−∞

cnz
n is the Laurent series expansion of f(z) in the

annulus AR,∞(0), then
Res(f,∞) = −c−1.

Example 4 Evaluate the integral I =

∫
|z|=2

z5

1 + z6
dz.

Solution Tha Laurent series expansion of f(z) = z5

1 + z6
in the annulus A1,∞(0) is

f(z) =
z5

z6
1

1 + 1
z6

=
1

z

∞∑
n=0

(
− 1

z6

)n

=

∞∑
n=0

(−1)n

z6n+1
.

Hence Res(f,∞) = −1, and by (7) we get

I = −2πi Res(f,∞) = 2πi.

Remark 5 One might first guess that the definition of the residue of f(z) at infinity should just be the
residue of f(1/z) at z = 0. However, the reason that we consider instead − 1

z2 f
(
1
z

)
is that one does not

take residues of functions, but of differential forms, i.e. the residue of f(z)dz at infinity is the residue of
f
(
1
z

)
d
(
1
z

)
= − 1

z2 f
(
1
z

)
dz at z = 0.
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Definite Integrals Using Residues

Type I:

∫ ∞

−∞
f(x)dx, where f(x) is continuous on R (Stein 3.8.2, 3.8.6)

Theorem 6 Suppose f(z) is holomorphic inH \ {a1, · · · , an} and continuous on R, where a1, · · · , an ∈
H are isolated singularities of f(z) in the upper half-plane H. If lim

z→∞
zf(z) = 0, then

∫ ∞

−∞
f(x)dx = 2πi

n∑
k=1

Res(f, ak).

Corollary 7 If f(x) = P (x)

Q(x)
, where P (x) and Q(x) are coprime polynomials, Q(x) is non-vanishing in

R, and degQ− degP ⩾ 2, then

∫ ∞

−∞

P (x)

Q(x)
dx = 2πi

n∑
k=1

Res
(
P (z)

Q(z)
, ak

)
,

where a1, · · · , an are all distinct roots of Q(z) in H.

Example 8 Evaluate the integral I =

∫ ∞

−∞

dx
(x2 + 1)

n+1 .

Solution By Corollary 7, we have

I = 2πi Res
(

1

(z2 + 1)
n+1 , i

)
=

2πi
n!

lim
z→i

dn

dzn

(
(z − i)n+1

(z2 + 1)
n+1

)

=
2πi
n!

lim
z→i

dn

dzn
(

1

(z + i)n+1

)
=

π(2n)!

22n(n!)2
.

Type II:

∫ ∞

−∞
f(x) cosαxdx and

∫ ∞

−∞
f(x) sinαxdx (Stein 3.8.3, 3.8.4)

Theorem 9 Suppose f(z) is holomorphic inH \ {a1, · · · , an} and continuous on R, where a1, · · · , an ∈
H are isolated singularities of f(z) in the upper half-plane H. If lim

z→∞
f(z) = 0, then for any α > 0,

∫ ∞

−∞
f(x)eiαx dx = 2πi

n∑
k=1

Res
(
eiαzf(z), ak

)
.

To prove this theorem, we can use the following lemma.

Lemma 10 (Jordan) If lim
z→∞

f(z) = 0, then for any α > 0,

lim
R→∞

∫
γR

eiαzf(z) = 0,

where γR is the semicircular contour in the upper half-plane centered at the origin with radius R.
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Corollary 11 Under the same conditions as Theorem 9, we have

∫ ∞

−∞
f(x) cosαxdx = −2π Im

{
n∑

k=1

Res
(
eiαzf(z), ak

)}
,

∫ ∞

−∞
f(x) sinαxdx = 2π Re

{
n∑

k=1

Res
(
eiαzf(z), ak

)}
.

Example 12 Evaluate the integral I =

∫ ∞

−∞

cos ax
x2 + b2

dx, where a, b > 0.

Solution Let f(z) = 1

z2 + b2
. Since lim

z→∞
f(z) = 0, we can apply Corollary 11 to get

I =

∫ ∞

−∞
f(x) cos axdx = −2π Im

{
Res
(
eiazf(z), ib

)}
= −2π Im

{
e−ab

2ib

}
=

π

b
e−ab.

Type III:

∫ 2π

0

R(sin θ, cos θ)dθ (Stein 3.8.7, 3.8.8)

The trick here is to put together some elementary properties of z = eiθ on the unit circle.

⋄ e−iθ = 1/z.

⋄ cos θ =
eiθ + e−iθ

2
=

z + 1/z

2
.

⋄ sin θ =
eiθ−e−iθ

2i =
z − 1/z

2i .

⋄ dθ =
dz
iz .

Example 13 Evaluate the integral I =

∫ 2π

0

dθ
3 + cos θ + 2 sin θ

.

Solution We have

I =

∫
|z|=1

1

3 + 1
2 (z + 1/z)− i(z − 1/z)

dz
iz

= −2i
∫

|z|=1

dz
(1− 2i)z2 + 6z + (1 + 2i)

= −2i(1 + 2i)
∫

|z|=1

dz
[z + (1 + 2i)][5z + (1 + 2i)]

= −2πi · 2i(1 + 2i)
5

1

− 1+2i
5 + (1 + 2i)

= π.
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Type IV:

∫ ∞

−∞
f(x)dx, where f(x) has singularities on R (Stein 2.6.2)

Lemma 14 Suppose that f(z) is continuous in the sector

{
a+ ρeiθ : 0 < ρ ⩽ ρ0, θ0 ⩽ θ ⩽ θ0 + α

}
.

If lim
z→a

(z − a)f(z) = A, then

lim
ρ→0

∫
γρ

f(z)dz = iAα,

where γρ is the circular arc γρ(θ) = a+ ρeiθ, with θ0 ⩽ θ ⩽ θ + α.

Proof Let g(z) = (z − a)f(z)−A. Then lim
z→a

g(z) = 0. If we denote

Mρ = sup
{
|g(z)| : z = a+ ρeiθ, θ0 ⩽ θ ⩽ θ0 + α

}
,

then lim
ρ→0

Mρ = 0. Hence, we have

∣∣∣∣∣
∫
γρ

g(z)

z − a
dz
∣∣∣∣∣ =

∣∣∣∣∣
∫ θ0+α

θ0

g
(
a+ ρeiθ

)
ρeiθ

ρieiθ dθ
∣∣∣∣∣ ⩽ Mρα

ρ→0
0.

It follows that ∫
γρ

f(z)dz = iAα+

∫
γρ

g(z)

z − a
dz

ρ→0
iAα.

Example 15 Evaluate the integral I =

∫ ∞

−∞

sin3 x

x3
dx.

Solution Rewrite the integral as

I =

∫ ∞

−∞

(
eix − e−ix

2i

)3dx
x3

=

∫ ∞

−∞

e3ix − 3eix + 3e−ix − e−3ix

−8ix3
dx

=

∫ ∞

−∞

3 sinx− sin 3x

4x3
dx.

Now, consider the integral of f(z) := 3eiz − e3iz

4z3
over the contour γ := γ1 ∪ γφ ∪ γ2 ∪ γR shown below.

Re

Im
γR

γ2γ1

γε

R−R −ε ε

ByLemma 10, the integral along γR vanishes asR → ∞. Since f(z) is holomorphic in the region enclosed
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by γ, we have

I = Im

 lim
ε→0, R→∞

∫
γ1∪γ2

f(z)dz

 = − Im
{
lim
ε→0

∫
γε

f(z)dz
}
.

Since

lim
z→0

zf(z) = lim
z→0

3eiz − e3iz

4z2
= lim

z→0

3 (iz)2
2 − (3iz)2

2

4z2
=

3

4
,

applying Lemma 14 (with attention to the contour’s orientation), we obtain

lim
ε→0

∫
γε

f(z)dz = −3πi
4

.

Therefore,
I = − Im

{
−3πi

4

}
=

3π

4
.

Koebe Quarter Theorem

Stein 3.9.1 Consider a holomorphic map on the unit disc f : D → C which satisfies f(0) = 0. By the
open mapping theorem, the image f(D) contains a small disc centered at the origin. We then ask: does
there exist r > 0 such that for all f : D → C with f(0) = 0, we have Dr(0) ⊂ f(D)?

(1) Show that with no further restrictions on f , no such r exists. It suffices to find a sequence of
functions {fn} holomorphic in D such that 1

n /∈ fn(D). Compute f ′
n(0), and discuss.

(2) Assume in addition that f also satisfies f ′(0) = 1. Show that despite this new assumption, there
exists no r > 0 satisfying the desired condition.

TheKoebe–Bieberbach theorem states that if in addition to f(0) = 0 and f ′(0) = 1we also assume that
f is injective, then such an r exists and the best possible value is r = 1

4 .

(3) As a first step, show that if h(z) = 1
z + c0 + c1z+ c2z

2 + · · · is analytic and injective for 0 < |z| < 1,

then
∞∑

n=1

n|cn|2 ⩽ 1.

(4) If f(z) = z + a2z
2 + · · · satisfies the hypotheses of the theorem, show that there exists another

function g satisfying the hypotheses of the theorem such that g2(z) = f
(
z2
)
.

(5) With the notation of the previous part, show that |a2| ⩽ 2, and that equality holds if and only if

f(z) =
z

(1− eiθz)
2 for some θ ∈ R.

(6) If h(z) = 1
z + c0 + c1z + c2z

2 + · · · is injective on D and avoids the values z1 and z2, show that
|z1 − z2| ⩽ 4.

(7) Complete the proof of the theorem.

Proof (1) Take fn(z) = z
n . Then

1
n /∈ f(D) and f ′

n(0) =
1
n .

(2) Take fε(z) = ε
(
e

z
ε − 1

)
for ε > 0. Then f ′

ε(0) = 1 but − 1
n /∈ fε(D).
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(3) The choice of c0 is irrelevant. So assume c0 = 0. Neither the hypothesis nor the conclusion is
affected if we replace h(z) by λh(λz) (|λ| = 1). So we may assume that c1 is real.

Put Ur = {z ∈ C : |z| < r}, Cr = {z ∈ C : |z| = r}, and Vr = {z ∈ C : r < |z| < 1}, for 0 < r < 1.
Then h(Ur) is a neighborhood of∞ (by the openmapping theorem, applied to 1/h); the sets h(Ur),
h(Cr), and h(Vr) are disjoint, since h is injective. Write

h(z) =
1

z
+ c1z + φ(z), z ∈ D, (8)

h = u+ iv, and
A =

1

r
+ c1r, B =

1

r
− c1r. (9)

For z = reiθ, we then obtain

u = A cos θ + Reφ and v = −B sin θ + Imφ. (10)

Divide (10) by A and B, respectively, square, and add:

u2

A2
+

v2

B2
= 1 +

2 cos θ
A

Reφ+

(
Reφ
A

)2

− 2 sin θ

B
Imφ+

(
Imφ

B

)2

.

By (8), φ has a zero of order at least 2 at the origin. If we keep account of (9), it follows that there
exists η > 0 such that, for all sufficiently small r,

u2

A2
+

v2

B2
< 1 + ηr3, z = reiθ.

This says thath(Cr) is in the interior of the ellipseEr, whose semiaxes areA
√
1 + ηr3 andB

√
1 + ηr3,

and which therefore bounds an area

πAB
(
1 + ηr3

)
= π

(
1

r
+ c1r

)(
1

r
− c1r

)(
1 + ηr3

)
⩽ π

r2
(
1 + ηr3

)
. (11)

Since h(Cr) is in the interior of Er, we have Er ⊂ h(Ur); hence h(Vr) is in the interior of Er, so the
area of h(Vr) is no larger than (11). Therefore by the area formula we have

π

r2
(
1 + ηr3

)
⩾
∫∫

Vr

|h′(z)|2 dxdy

=

∫ 1

r

∫ 2π

0

∣∣∣∣∣−ρ−2e−2iθ +
∞∑

n=1

ncnρ
n−1ei(n−1)θ

∣∣∣∣∣
2

ρdθ dρ

=

∫ 1

r

∫ 2π

0

{
ρ−3 −

∞∑
n=1

ncnρ
n−2ei(n+1)θ −

∞∑
m=1

mcmρm−2e−i(+1)θ

+

∞∑
n,m=1

nmcncmρn+m−1ei(n−m)θ

}
dθ dρ

=2π

∫ 1

r

(
ρ−3 +

∞∑
n=1

n2|cn|2ρ2n−1

)
dρ

=π

{
r−2 − 1 +

∞∑
n=1

n|cn|2
(
1− r2n

)}
.

(12)
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If we divide (12) by π and then subtract r−2 from both sides, we obtain

N∑
n=1

n|cn|2
(
1− r2n

)
⩽ 1 + ηr (13)

for all sufficiently small r and for all positive integers N . Let r → 0 in (13), then let N → ∞. This
gives the desired result.

(4) Write f(z) = zφ(z). Then φ is holomorphic in D, φ(0) = 1, and φ has no zero in D, since f has no
zero inD−{0} by its injectivity. Hence there exists h holomorphic inDwith h(0) = 1, h2(z) = φ(z).
Put

g(z) = zh
(
z2
)
, z ∈ D. (14)

Then g2(z) = z2h2
(
z2
)
= z2φ

(
z2
)
= f

(
z2
)
. It is clear that g(0) = 0 and g′(0) = 1. We have to show

that g is injective.

Suppose z and w are points in D such that g(z) = g(w). Since f is injective, the identity g2(z) =

f
(
z2
)
implies that z2 = w2. So either z = w (which is what we want to prove) or z = −w. In the

latter case, (14) shows that g(z) = g(−w) = −g(w); it follows that g(z) = g(w) = 0, and since g

has no zero in D− {0}, we have z = w = 0.

(5) Let g be the function constructed in part (4), so that g is injective, g(0) = 0, and g′(0) = 1. Since

g2(z) = f
(
z2
)
= z2

(
1 + a2z

2 + · · ·
)
,

we get

g(z) = z

(
1 +

1

2
a2z

2 + · · ·
)
.

If we take G := 1/g, then

G(z) =
1

z

(
1− 1

2
a2z

2 + · · ·
)

=
1

z
+ c0 + c1z + c2z

2 + · · · .

The result in part (3) applies to G, and this will give∣∣∣∣−1

2
a2

∣∣∣∣2 = |c1|2 ⩽
∞∑

n=1

n|cn|2 ⩽ 1,

that is, |a2| ⩽ 2. The equality holds if and only if ck = 0 for all k ⩾ 2, that is,

G(z) =
1

z
− a2

2
z,

and this is equivalent to

f
(
z2
)
= g2(z) =

(
1

1
z − a2

2 z

)2

=
z2(

1− a2

2 z2
)2 .

Since |a2| = 2, this is again equivalent to

f(z) =
z

(1− eiθz)
2 for some θ ∈ R.
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(6) Since z1 /∈ h(D), the function 1
h(z)−z1

is holomorphic in D (the origin is a removable singularity),
and

1

h(z)− z1
=

z

1 + (c0 − z1)z + c1z2 + c2z3
= z − (c0 − z1)z

2 + · · · .

Hence, 1
h(z)−z1

satisfies the hypotheses of the theorem, and by part (5) we have |c0 − z1| ⩽ 2.
Similarly, |c0 − z2| ⩽ 2. Therefore,

|z1 − z2| ⩽ |c0 − z1|+ |c0 − z2| ⩽ 4.

(7) Suppose w /∈ f(D). Then the function h(z) := 1
f(z) satisfies the hypotheses of (3) and (6). Since

h(z) avoids the values 0 and 1
w , by part (6) we have

∣∣ 1
w

∣∣ ⩽ 4, that is, |w| ⩾ 1
4 . This shows that

D1/4(0) ⊂ f(D).

Remark 16 The Koebe 1/4 theorem is named after Paul Koebe, who conjectured the result in 1907. The
theorem was proved by Ludwig Bieberbach in 1916. The example of the Koebe function

z

(1− z)2
=

∞∑
n=1

nzn

shows that the constant 1/4 in the theorem cannot be improved (increased).
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