Laurent Series Expansion

The Laurent series of a complex function f(z) is a representation of that function as a power series which includes terms of negative degree. It may be used to express complex functions in cases where a Taylor series expansion cannot be applied.

The Laurent series expansion is discussed in Problem 3.9.3 of the textbook, which we reformulate as the following theorem.

Theorem 1 If f(z) is holomorphic in the annulus $\mathbb{A}_{r,R}(a) \coloneqq \{z \in \mathbb{C} : r < |z - a| < R\}$, then we can write

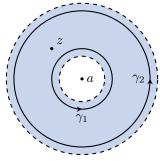
$$f(z) = \sum_{n = -\infty}^{\infty} c_n (z - a)^n,$$
(1)

where

$$c_n = \frac{1}{2\pi \mathbf{i}} \int_{|\zeta - a| = \rho} \frac{f(\zeta)}{(\zeta - a)^{n+1}} \,\mathrm{d}\zeta, \quad r < \rho < R.$$
⁽²⁾

This series expansion (1) is unique, called the **Laurent series expansion** of f(z) in the annulus $\mathbb{A}_{r,R}(a)$.

Proof We note first that the right-hand side of (2) is independent of the choice of ρ . This is a corollary of Theorem 5.1, Chapter 3.



Given any $z \in \mathbb{A}_{r,R}(a)$, we can take two circles $\gamma_1 \colon |\zeta - a| = \rho_1$ and $\gamma_2 \colon |\zeta - a| = \rho_2$ with $\rho_1 < \rho_2$, such that z lies in the annulus between them. By Cauchy's integral formula for annulus,

$$f(z) = \frac{1}{2\pi i} \int_{\gamma_2} \frac{f(\zeta)}{\zeta - z} \, \mathrm{d}\zeta - \frac{1}{2\pi i} \int_{\gamma_1} \frac{f(\zeta)}{\zeta - z} \, \mathrm{d}\zeta. \tag{3}$$

 \diamond When $\zeta \in \gamma_2$, we have

$$\frac{1}{\zeta - z} = \frac{1}{(\zeta - a)\left(1 - \frac{z - a}{\zeta - a}\right)} = \sum_{n=0}^{\infty} \frac{(z - a)^n}{(\zeta - a)^{n+1}},\tag{4}$$

and the right-hand side converges uniformly on γ_2 since $\left|\frac{z-a}{\zeta-a}\right| = \frac{|z-a|}{\rho_2} < 1$.

 \diamond When $\zeta \in \gamma_1$, we have

$$\frac{1}{\zeta - z} = \frac{-1}{(z - a)\left(1 - \frac{\zeta - a}{z - a}\right)} = -\sum_{n=1}^{\infty} \frac{(\zeta - a)^{n-1}}{(z - a)^n},\tag{5}$$

and the right-hand side converges uniformly on γ_1 since $\left|\frac{\zeta - a}{z - a}\right| = \frac{\rho_1}{|z - a|} < 1$.

Substituting (4) and (5) into (3), and interchanging the order of integration and summation, we have

$$\begin{split} f(z) &= \sum_{n=0}^{\infty} \left(\frac{1}{2\pi \mathbf{i}} \int_{\gamma_2} \frac{f(\zeta)}{(\zeta - a)^{n+1}} \, \mathrm{d}\zeta \right) (z - a)^n + \sum_{n=1}^{\infty} \left(\frac{1}{2\pi \mathbf{i}} \int_{\gamma_1} \frac{f(\zeta)}{(\zeta - a)^{-n+1}} \, \mathrm{d}\zeta \right) (z - a)^{-n} \\ &= \sum_{n=-\infty}^{\infty} \left(\frac{1}{2\pi \mathbf{i}} \int_{|\zeta - a| = \rho} \frac{f(\zeta)}{(\zeta - a)^{n+1}} \, \mathrm{d}\zeta \right) (z - a)^n, \quad r < \rho < R. \end{split}$$

To show the uniqueness of the Laurent series expansion, we observe that if f(z) can be expressed as (1), then for $r < \rho < R$,

$$\int_{|z-a|=\rho} \frac{f(z)}{(z-a)^{m+1}} \, \mathrm{d}z = \sum_{n=-\infty}^{\infty} c_n \int_{|z-a|=\rho} (z-a)^{n-m-1} \, \mathrm{d}z = 2\pi \mathrm{i}c_m,\tag{6}$$

which implies that c_m is uniquely determined by f(z). Here we have used the fact that

$$\int_{|z-a|=\rho} (z-a)^{n-m-1} dz = \int_0^{2\pi} \left(\rho e^{i\theta}\right)^{n-m-1} \rho i e^{i\theta} d\theta = i\rho^{n-m} \int_0^{2\pi} e^{i(n-m)\theta} d\theta$$
$$= \begin{cases} 2\pi i, & \text{if } n=m, \\ 0, & \text{if } n \neq m. \end{cases} \square$$

Remark 2 In practice, the integral formula (2) may not offer the most practical method for computing the coefficients c_n for a given function f(z); instead, one often pieces together the Laurent series by combining known Taylor expansions. Because the Laurent expansion of a function is unique whenever it exists, any expression of this form that equals the given function f(z) in some annulus must actually be the Laurent expansion of f(z).

Example 3 Find the Laurent series expansions of the function $f(z) = \frac{z^2 - 2z + 5}{(z-2)(z^2+1)}$ in the annuli $\mathbb{A}_{1,2}(0)$ and $\mathbb{A}_{2,\infty}(0)$.

Solution The partial fraction decomposition of f(z) is $f(z) = \frac{1}{z-2} - \frac{2}{z^2+1}$.

 $\diamond~$ When 1 < |z| < 2 , we have

$$f(z) = -\frac{1}{2}\frac{1}{1-\frac{z}{2}} - \frac{2}{z^2}\frac{1}{1+\frac{1}{z^2}} = -\frac{1}{2}\sum_{n=0}^{\infty} \left(\frac{z}{2}\right)^n - \frac{2}{z^2}\sum_{n=0}^{\infty} \left(-\frac{1}{z^2}\right)^n.$$

 \diamond When |z| > 2, we have

$$f(z) = \frac{1}{z} \frac{1}{1 - \frac{2}{z}} - \frac{2}{z^2} \frac{1}{1 + \frac{1}{z^2}} = \sum_{n=1}^{\infty} \frac{2^{n-1}}{z^n} + 2\sum_{n=1}^{\infty} \frac{(-1)^n}{z^{2n}}.$$

Residue at Infinity

Given a holomorphic function f on an annulus $\mathbb{A}_{R,\infty}(0)$, the residue at infinity of f can be defined in terms of the usual residue as follows:

$$\operatorname{Res}(f,\infty) \coloneqq -\operatorname{Res}\left(\frac{1}{z^2}f\left(\frac{1}{z}\right),0\right)$$

Thus, one can transfer the study of f(z) at infinity to the study of f(1/z) at the origin.

Note that the function f(1/w) is holomorphic in the annulus $\mathbb{A}_{0,1/R}(0)$. Hence for r > R,

$$\frac{1}{2\pi \mathbf{i}} \int_{|z|=r} f(z) \, \mathrm{d}z \xrightarrow{w=1/z}_{\text{reverse orientation}} \frac{1}{2\pi \mathbf{i}} \int_{|w|=1/r} \frac{1}{w^2} f\left(\frac{1}{w}\right) \mathrm{d}w = -\operatorname{Res}(f,\infty).$$

This shows that for holomorphic functions the sum of the residues at the isolated singularities plus the residue at infinity is zero. That is, if *f* is holomorphic in $\mathbb{C} \setminus \{z_1, \dots, z_n\}$, then

$$\sum_{k=1}^{n} \operatorname{Res}(f, z_k) + \operatorname{Res}(f, \infty) = 0.$$
(7)

Moreover, from (6) we find that if $f(z) = \sum_{n=-\infty}^{\infty} c_n z^n$ is the Laurent series expansion of f(z) in the annulus $\mathbb{A}_{R,\infty}(0)$, then

$$\operatorname{Res}(f,\infty) = -c_{-1}.$$

Example 4 Evaluate the integral $I = \int_{|z|=2} \frac{z^5}{1+z^6} dz$.

Solution The Laurent series expansion of $f(z) = \frac{z^5}{1+z^6}$ in the annulus $\mathbb{A}_{1,\infty}(0)$ is

$$f(z) = \frac{z^5}{z^6} \frac{1}{1 + \frac{1}{z^6}} = \frac{1}{z} \sum_{n=0}^{\infty} \left(-\frac{1}{z^6}\right)^n = \sum_{n=0}^{\infty} \frac{(-1)^n}{z^{6n+1}}.$$

Hence $\text{Res}(f, \infty) = -1$, and by (7) we get

$$I = -2\pi i \operatorname{Res}(f, \infty) = 2\pi i.$$

Remark 5 One might first guess that the definition of the residue of f(z) at infinity should just be the residue of f(1/z) at z = 0. However, the reason that we consider instead $-\frac{1}{z^2}f(\frac{1}{z})$ is that one does not take residues of functions, but of *differential forms*, i.e. the residue of f(z) dz at infinity is the residue of $f(\frac{1}{z}) d(\frac{1}{z}) = -\frac{1}{z^2}f(\frac{1}{z}) dz$ at z = 0.

Type I: $\int_{-\infty}^{\infty} f(x) dx$, where f(x) is continuous on \mathbb{R} (Stein 3.8.2, 3.8.6)

Theorem 6 Suppose f(z) is holomorphic in $\mathbb{H} \setminus \{a_1, \dots, a_n\}$ and continuous on \mathbb{R} , where $a_1, \dots, a_n \in \mathbb{H}$ are isolated singularities of f(z) in the upper half-plane \mathbb{H} . If $\lim_{z \to \infty} zf(z) = 0$, then

$$\int_{-\infty}^{\infty} f(x) \, \mathrm{d}x = 2\pi \mathrm{i} \sum_{k=1}^{n} \operatorname{Res}(f, a_k).$$

Corollary 7 If $f(x) = \frac{P(x)}{Q(x)}$, where P(x) and Q(x) are coprime polynomials, Q(x) is non-vanishing in \mathbb{R} , and deg Q – deg $P \ge 2$, then

$$\int_{-\infty}^{\infty} \frac{P(x)}{Q(x)} \, \mathrm{d}x = 2\pi \mathrm{i} \sum_{k=1}^{n} \operatorname{Res}\left(\frac{P(z)}{Q(z)}, a_{k}\right),$$

where a_1, \dots, a_n are all *distinct* roots of Q(z) in \mathbb{H} .

Example 8 Evaluate the integral $I = \int_{-\infty}^{\infty} \frac{\mathrm{d}x}{(x^2+1)^{n+1}}$.

Solution By Corollary 7, we have

$$I = 2\pi i \operatorname{Res}\left(\frac{1}{(z^2+1)^{n+1}}, i\right) = \frac{2\pi i}{n!} \lim_{z \to i} \frac{d^n}{dz^n} \left(\frac{(z-i)^{n+1}}{(z^2+1)^{n+1}}\right)$$
$$= \frac{2\pi i}{n!} \lim_{z \to i} \frac{d^n}{dz^n} \left(\frac{1}{(z+i)^{n+1}}\right) = \frac{\pi(2n)!}{2^{2n}(n!)^2}.$$

Type II: $\int_{-\infty}^{\infty} f(x) \cos \alpha x \, dx$ and $\int_{-\infty}^{\infty} f(x) \sin \alpha x \, dx$ (Stein 3.8.3, 3.8.4)

Theorem 9 Suppose f(z) is holomorphic in $\mathbb{H} \setminus \{a_1, \dots, a_n\}$ and continuous on \mathbb{R} , where $a_1, \dots, a_n \in \mathbb{H}$ are isolated singularities of f(z) in the upper half-plane \mathbb{H} . If $\lim_{z \to \infty} f(z) = 0$, then for any $\alpha > 0$,

$$\int_{-\infty}^{\infty} f(x)e^{\mathrm{i}\alpha x} \,\mathrm{d}x = 2\pi\mathrm{i}\sum_{k=1}^{n} \mathrm{Res}\big(e^{\mathrm{i}\alpha z}f(z), a_k\big).$$

To prove this theorem, we can use the following lemma.

Lemma 10 (Jordan) If $\lim_{z\to\infty} f(z) = 0$, then for any $\alpha > 0$,

$$\lim_{R \to \infty} \int_{\gamma_R} e^{\mathbf{i}\alpha z} f(z) = 0,$$

where γ_R is the semicircular contour in the upper half-plane centered at the origin with radius *R*.

Corollary 11 Under the same conditions as Theorem 9, we have

$$\int_{-\infty}^{\infty} f(x) \cos \alpha x \, \mathrm{d}x = -2\pi \operatorname{Im} \left\{ \sum_{k=1}^{n} \operatorname{Res} \left(e^{\mathrm{i}\alpha z} f(z), a_{k} \right) \right\},$$
$$\int_{-\infty}^{\infty} f(x) \sin \alpha x \, \mathrm{d}x = 2\pi \operatorname{Re} \left\{ \sum_{k=1}^{n} \operatorname{Res} \left(e^{\mathrm{i}\alpha z} f(z), a_{k} \right) \right\}.$$

Example 12 Evaluate the integral $I = \int_{-\infty}^{\infty} \frac{\cos ax}{x^2 + b^2} dx$, where a, b > 0.

Solution Let $f(z) = \frac{1}{z^2 + b^2}$. Since $\lim_{z \to \infty} f(z) = 0$, we can apply Corollary 11 to get

$$I = \int_{-\infty}^{\infty} f(x) \cos ax \, dx = -2\pi \operatorname{Im} \left\{ \operatorname{Res} \left(e^{iaz} f(z), ib \right) \right\}$$
$$= -2\pi \operatorname{Im} \left\{ \frac{e^{-ab}}{2ib} \right\} = \frac{\pi}{b} e^{-ab}.$$

Type III: $\int_{0}^{2\pi} R(\sin \theta, \cos \theta) \, d\theta$ (Stein 3.8.7, 3.8.8) The trick here is to put together some elementary properties of $z = e^{i\theta}$ on the unit circle.

$$\circ e^{-i\theta} = 1/z.$$

$$\circ \cos\theta = \frac{e^{i\theta} + e^{-i\theta}}{2} = \frac{z + 1/z}{2}.$$

$$\circ \sin\theta = \frac{e^{i\theta - e^{-i\theta}}}{2i} = \frac{z - 1/z}{2i}.$$

$$\circ d\theta = \frac{dz}{iz}.$$

Example 13 Evaluate the integral $I = \int_0^{2\pi} \frac{d\theta}{3 + \cos \theta + 2\sin \theta}$.

Solution We have

$$\begin{split} I &= \int\limits_{|z|=1} \frac{1}{3 + \frac{1}{2}(z + 1/z) - i(z - 1/z)} \frac{dz}{iz} \\ &= -2i \int\limits_{|z|=1} \frac{dz}{(1 - 2i)z^2 + 6z + (1 + 2i)} \\ &= -2i(1 + 2i) \int\limits_{|z|=1} \frac{dz}{[z + (1 + 2i)][5z + (1 + 2i)]} \\ &= -2\pi i \cdot \frac{2i(1 + 2i)}{5} \frac{1}{-\frac{1 + 2i}{5} + (1 + 2i)} \\ &= \pi. \end{split}$$

Type IV: $\int_{-\infty}^{\infty} f(x) \, \mathrm{d}x$, where f(x) has singularities on $\mathbb R$ (Stein 2.6.2)

Lemma 14 Suppose that f(z) is continuous in the sector

$$\left\{a + \rho e^{\mathbf{i}\theta} : 0 < \rho \leqslant \rho_0, \, \theta_0 \leqslant \theta \leqslant \theta_0 + \alpha\right\}.$$

If $\lim_{z \to a} (z - a) f(z) = A$, then

$$\lim_{\rho \to 0} \int_{\gamma_{\rho}} f(z) \, \mathrm{d}z = \mathrm{i} A \alpha$$

where γ_{ρ} is the circular arc $\gamma_{\rho}(\theta) = a + \rho e^{i\theta}$, with $\theta_0 \leqslant \theta \leqslant \theta + \alpha$.

Proof Let g(z) = (z - a)f(z) - A. Then $\lim_{z \to a} g(z) = 0$. If we denote

$$M_{\rho} = \sup \{ |g(z)| : z = a + \rho e^{i\theta}, \, \theta_0 \leqslant \theta \leqslant \theta_0 + \alpha \},\$$

then $\lim_{\rho \to 0} M_{\rho} = 0$. Hence, we have

$$\left| \int_{\gamma_{\rho}} \frac{g(z)}{z-a} \, \mathrm{d}z \right| = \left| \int_{\theta_{0}}^{\theta_{0}+\alpha} \frac{g(a+\rho e^{\mathrm{i}\theta})}{\rho e^{\mathrm{i}\theta}} \rho \mathrm{i}e^{\mathrm{i}\theta} \, \mathrm{d}\theta \right| \leqslant M_{\rho} \alpha \xrightarrow{\rho \to 0} 0.$$

It follows that

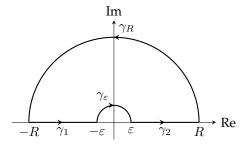
$$\int_{\gamma_{\rho}} f(z) \, \mathrm{d}z = \mathrm{i}A\alpha + \int_{\gamma_{\rho}} \frac{g(z)}{z-a} \, \mathrm{d}z \xrightarrow{\rho \to 0} \mathrm{i}A\alpha.$$

Example 15 Evaluate the integral $I = \int_{-\infty}^{\infty} \frac{\sin^3 x}{x^3} dx$.

Solution Rewrite the integral as

$$I = \int_{-\infty}^{\infty} \left(\frac{e^{ix} - e^{-ix}}{2i}\right)^3 \frac{dx}{x^3}$$
$$= \int_{-\infty}^{\infty} \frac{e^{3ix} - 3e^{ix} + 3e^{-ix} - e^{-3ix}}{-8ix^3} dx$$
$$= \int_{-\infty}^{\infty} \frac{3\sin x - \sin 3x}{4x^3} dx.$$

Now, consider the integral of $f(z) \coloneqq \frac{3e^{iz} - e^{3iz}}{4z^3}$ over the contour $\gamma \coloneqq \gamma_1 \cup \gamma_{\varphi} \cup \gamma_2 \cup \gamma_R$ shown below.



By Lemma 10, the integral along γ_R vanishes as $R \to \infty$. Since f(z) is holomorphic in the region enclosed

by γ , we have

$$I = \operatorname{Im}\left\{\lim_{\varepsilon \to 0, R \to \infty} \int_{\gamma_1 \cup \gamma_2} f(z) \, \mathrm{d}z\right\} = -\operatorname{Im}\left\{\lim_{\varepsilon \to 0} \int_{\gamma_\varepsilon} f(z) \, \mathrm{d}z\right\}.$$

Since

$$\lim_{z \to 0} zf(z) = \lim_{z \to 0} \frac{3e^{iz} - e^{3iz}}{4z^2} = \lim_{z \to 0} \frac{3\frac{(iz)^2}{2} - \frac{(3iz)^2}{2}}{4z^2} = \frac{3}{4}$$

applying Lemma 14 (with attention to the contour's orientation), we obtain

Ι

$$\lim_{\varepsilon \to 0} \int_{\gamma_{\varepsilon}} f(z) \, \mathrm{d}z = -\frac{3\pi \mathrm{i}}{4}$$

Therefore,

$$= -\operatorname{Im}\left\{-\frac{3\pi i}{4}\right\} = \frac{3\pi}{4}.$$

Koebe Quarter Theorem

Stein 3.9.1 Consider a holomorphic map on the unit disc $f : \mathbb{D} \to \mathbb{C}$ which satisfies f(0) = 0. By the open mapping theorem, the image $f(\mathbb{D})$ contains a small disc centered at the origin. We then ask: does there exist r > 0 such that for all $f : \mathbb{D} \to \mathbb{C}$ with f(0) = 0, we have $D_r(0) \subset f(\mathbb{D})$?

- (1) Show that with no further restrictions on f, no such r exists. It suffices to find a sequence of functions $\{f_n\}$ holomorphic in \mathbb{D} such that $\frac{1}{n} \notin f_n(\mathbb{D})$. Compute $f'_n(0)$, and discuss.
- (2) Assume in addition that *f* also satisfies f'(0) = 1. Show that despite this new assumption, there exists no r > 0 satisfying the desired condition.

The **Koebe–Bieberbach theorem** states that if in addition to f(0) = 0 and f'(0) = 1 we also assume that f is injective, then such an r exists and the best possible value is $r = \frac{1}{4}$.

- (3) As a first step, show that if $h(z) = \frac{1}{z} + c_0 + c_1 z + c_2 z^2 + \cdots$ is analytic and injective for 0 < |z| < 1, then $\sum_{n=1}^{\infty} n|c_n|^2 \leq 1$.
- (4) If $f(z) = z + a_2 z^2 + \cdots$ satisfies the hypotheses of the theorem, show that there exists another function *g* satisfying the hypotheses of the theorem such that $g^2(z) = f(z^2)$.
- (5) With the notation of the previous part, show that $|a_2| \leq 2$, and that equality holds if and only if

$$f(z) = rac{z}{\left(1 - e^{i\theta}z\right)^2}$$
 for some $\theta \in \mathbb{R}$.

- (6) If $h(z) = \frac{1}{z} + c_0 + c_1 z + c_2 z^2 + \cdots$ is injective on \mathbb{D} and avoids the values z_1 and z_2 , show that $|z_1 z_2| \leq 4$.
- (7) Complete the proof of the theorem.

Proof (1) Take $f_n(z) = \frac{z}{n}$. Then $\frac{1}{n} \notin f(\mathbb{D})$ and $f'_n(0) = \frac{1}{n}$.

(2) Take $f_{\varepsilon}(z) = \varepsilon \left(e^{\frac{z}{\varepsilon}} - 1 \right)$ for $\varepsilon > 0$. Then $f'_{\varepsilon}(0) = 1$ but $-\frac{1}{n} \notin f_{\varepsilon}(\mathbb{D})$.

(3) The choice of c_0 is irrelevant. So assume $c_0 = 0$. Neither the hypothesis nor the conclusion is affected if we replace h(z) by $\lambda h(\lambda z)$ ($|\lambda| = 1$). So we may assume that c_1 is real.

Put $U_r = \{z \in \mathbb{C} : |z| < r\}$, $C_r = \{z \in \mathbb{C} : |z| = r\}$, and $V_r = \{z \in \mathbb{C} : r < |z| < 1\}$, for 0 < r < 1. Then $h(U_r)$ is a neighborhood of ∞ (by the open mapping theorem, applied to 1/h); the sets $h(U_r)$, $h(C_r)$, and $h(V_r)$ are disjoint, since h is injective. Write

$$h(z) = \frac{1}{z} + c_1 z + \varphi(z), \quad z \in \mathbb{D},$$
(8)

h = u + iv, and

$$A = \frac{1}{r} + c_1 r, \quad B = \frac{1}{r} - c_1 r.$$
(9)

For $z = re^{i\theta}$, we then obtain

$$u = A\cos\theta + \operatorname{Re}\varphi \quad \text{and} \quad v = -B\sin\theta + \operatorname{Im}\varphi.$$
 (10)

Divide (10) by *A* and *B*, respectively, square, and add:

$$\frac{u^2}{A^2} + \frac{v^2}{B^2} = 1 + \frac{2\cos\theta}{A}\operatorname{Re}\varphi + \left(\frac{\operatorname{Re}\varphi}{A}\right)^2 - \frac{2\sin\theta}{B}\operatorname{Im}\varphi + \left(\frac{\operatorname{Im}\varphi}{B}\right)^2$$

By (8), φ has a zero of order at least 2 at the origin. If we keep account of (9), it follows that there exists $\eta > 0$ such that, for all sufficiently small r,

$$\frac{u^2}{A^2} + \frac{v^2}{B^2} < 1 + \eta r^3, \quad z = r e^{i\theta}.$$

This says that $h(C_r)$ is in the interior of the ellipse E_r , whose semiaxes are $A\sqrt{1+\eta r^3}$ and $B\sqrt{1+\eta r^3}$, and which therefore bounds an area

$$\pi AB(1+\eta r^3) = \pi \left(\frac{1}{r} + c_1 r\right) \left(\frac{1}{r} - c_1 r\right) (1+\eta r^3) \leqslant \frac{\pi}{r^2} (1+\eta r^3).$$
(11)

Since $h(C_r)$ is in the interior of E_r , we have $E_r \subset h(U_r)$; hence $h(V_r)$ is in the interior of E_r , so the area of $h(V_r)$ is no larger than (11). Therefore by the area formula we have

$$\frac{\pi}{r^{2}}(1+\eta r^{3}) \ge \iint_{V_{r}} |h'(z)|^{2} dx dy
= \int_{r}^{1} \int_{0}^{2\pi} \left| -\rho^{-2}e^{-2i\theta} + \sum_{n=1}^{\infty} nc_{n}\rho^{n-1}e^{i(n-1)\theta} \right|^{2} \rho d\theta d\rho
= \int_{r}^{1} \int_{0}^{2\pi} \left\{ \rho^{-3} - \sum_{n=1}^{\infty} nc_{n}\rho^{n-2}e^{i(n+1)\theta} - \sum_{m=1}^{\infty} m\overline{c_{m}}\rho^{m-2}e^{-i(+1)\theta}
+ \sum_{n,m=1}^{\infty} nmc_{n}\overline{c_{m}}\rho^{n+m-1}e^{i(n-m)\theta} \right\} d\theta d\rho
= 2\pi \int_{r}^{1} \left(\rho^{-3} + \sum_{n=1}^{\infty} n^{2}|c_{n}|^{2}\rho^{2n-1} \right) d\rho
= \pi \left\{ r^{-2} - 1 + \sum_{n=1}^{\infty} n|c_{n}|^{2}(1-r^{2n}) \right\}.$$
(12)

If we divide (12) by π and then subtract r^{-2} from both sides, we obtain

$$\sum_{n=1}^{N} n |c_n|^2 (1 - r^{2n}) \leqslant 1 + \eta r \tag{13}$$

for all sufficiently small r and for all positive integers N. Let $r \to 0$ in (13), then let $N \to \infty$. This gives the desired result.

(4) Write $f(z) = z\varphi(z)$. Then φ is holomorphic in \mathbb{D} , $\varphi(0) = 1$, and φ has no zero in \mathbb{D} , since f has no zero in $\mathbb{D} - \{0\}$ by its injectivity. Hence there exists h holomorphic in \mathbb{D} with h(0) = 1, $h^2(z) = \varphi(z)$. Put

$$g(z) = zh(z^2), \quad z \in \mathbb{D}.$$
(14)

Then $g^2(z) = z^2 h^2(z^2) = z^2 \varphi(z^2) = f(z^2)$. It is clear that g(0) = 0 and g'(0) = 1. We have to show that g is injective.

Suppose *z* and *w* are points in \mathbb{D} such that g(z) = g(w). Since *f* is injective, the identity $g^2(z) = f(z^2)$ implies that $z^2 = w^2$. So either z = w (which is what we want to prove) or z = -w. In the latter case, (14) shows that g(z) = g(-w) = -g(w); it follows that g(z) = g(w) = 0, and since *g* has no zero in $\mathbb{D} - \{0\}$, we have z = w = 0.

(5) Let *g* be the function constructed in part (4), so that *g* is injective, g(0) = 0, and g'(0) = 1. Since

$$g^{2}(z) = f(z^{2}) = z^{2}(1 + a_{2}z^{2} + \cdots),$$

we get

$$g(z) = z \left(1 + \frac{1}{2}a_2 z^2 + \cdots \right).$$

If we take $G \coloneqq 1/g$, then

$$G(z) = \frac{1}{z} \left(1 - \frac{1}{2}a_2 z^2 + \cdots \right) = \frac{1}{z} + c_0 + c_1 z + c_2 z^2 + \cdots .$$

The result in part (3) applies to G, and this will give

$$\left|-\frac{1}{2}a_2\right|^2 = |c_1|^2 \leqslant \sum_{n=1}^{\infty} n|c_n|^2 \leqslant 1,$$

that is, $|a_2| \leq 2$. The equality holds if and only if $c_k = 0$ for all $k \ge 2$, that is,

$$G(z) = \frac{1}{z} - \frac{a_2}{2}z,$$

and this is equivalent to

$$f(z^2) = g^2(z) = \left(\frac{1}{\frac{1}{z} - \frac{a_2}{2}z}\right)^2 = \frac{z^2}{\left(1 - \frac{a_2}{2}z^2\right)^2}$$

Since $|a_2| = 2$, this is again equivalent to

$$f(z) = rac{z}{\left(1 - e^{\mathrm{i}\theta}z\right)^2}$$
 for some $\theta \in \mathbb{R}$.

(6) Since $z_1 \notin h(\mathbb{D})$, the function $\frac{1}{h(z)-z_1}$ is holomorphic in \mathbb{D} (the origin is a removable singularity), and

$$\frac{1}{h(z) - z_1} = \frac{z}{1 + (c_0 - z_1)z + c_1 z^2 + c_2 z^3} = z - (c_0 - z_1)z^2 + \cdots$$

Hence, $\frac{1}{h(z)-z_1}$ satisfies the hypotheses of the theorem, and by part (5) we have $|c_0 - z_1| \leq 2$. Similarly, $|c_0 - z_2| \leq 2$. Therefore,

$$|z_1 - z_2| \leq |c_0 - z_1| + |c_0 - z_2| \leq 4.$$

(7) Suppose $w \notin f(\mathbb{D})$. Then the function $h(z) \coloneqq \frac{1}{f(z)}$ satisfies the hypotheses of (3) and (6). Since h(z) avoids the values 0 and $\frac{1}{w}$, by part (6) we have $\left|\frac{1}{w}\right| \leq 4$, that is, $|w| \geq \frac{1}{4}$. This shows that $D_{1/4}(0) \subset f(\mathbb{D})$.

Remark 16 The Koebe 1/4 theorem is named after Paul Koebe, who conjectured the result in 1907. The theorem was proved by Ludwig Bieberbach in 1916. The example of the Koebe function

$$\frac{z}{(1-z)^2} = \sum_{n=1}^{\infty} nz^n$$

shows that the constant 1/4 in the theorem cannot be improved (increased).