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Selected Exercises from the Textbook

Stein 1.4.13 Suppose that f is holomorphic in an open set Ω. Prove that in any one of the following
cases:

(1) Re(f) is constant;

(2) Im(f) is constant;

(3) |f | is constant;

one can conclude that f is constant.

Proof Suppose that f = u+ iv where u and v are real-valued functions.

(1) If Re(f) is constant, then ∂u

∂x
=

∂u

∂y
≡ 0 and by theCauchy–Riemann equationwe get ∂v

∂x
=

∂v

∂y
≡ 0.

Hence f is constant.

(2) Apply (1) to the holomorphic function if .

(3) Suppose |f(z)| ≡ C > 0. Since ∂f̄

∂z
= 0 by the Cauchy–Riemann equation, we have

0 =
∂

∂z

(
f(z)f(z)

)
=

∂f

∂z
f(z) + f(z)

∂f̄

∂z
=

∂f

∂z
f(z).

By our assumption, f(z) is always non-zero, where ∂f

∂z
≡ 0 follows.

Stein 2.6.7 Suppose f : D → C is holomorphic. Show that the diameter d = sup
z,w∈D

|f(z)− f(w)| of the

image of f satisfies
2|f ′(0)| ⩽ d. (2.6.7–1)

Moreover, it can be shown that equality holds precisely when f is linear, f(z) = a0 + a1z.

Proof The Cauchy integral formula gives

f ′(0) =
1

2πi

∫
Cr

f(ζ)

ζ2
dζ, (2.6.7–2)

where Cr is the circle centered at the origin with radius r. Replace ζ by −ζ in (2.6.7–2) to get

f ′(0) = − 1

2πi

∫
Cr

f(−ζ)

ζ2
dζ. (2.6.7–3)

Adding (2.6.7–2) and (2.6.7–3) gives

|2f ′(0)| =
∣∣∣∣ 1

2πi

∫
Cr

f(ζ)− f(−ζ)

ζ2
dζ

∣∣∣∣ ⩽ 1

2π

∫
Cr

∣∣∣∣f(ζ)− f(−ζ)

ζ2

∣∣∣∣dζ
⩽ d

2π

∫
Cr

dζ
r2

=
d

r
.

Letting r → 1 gives (2.6.7–1). It is clear that the equality holds when f is linear.
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To show that the equality holds only when f is linear, we let f(z) =
∞∑

n=0

anz
n and denote

N(r) :=
1

πr2

∫
B(0,r)

|f ′(z)|2 dxdy

for r ∈ [0, 1]. If f ′(0) = 0, then d = 0 and f is constant. Otherwise, we have

lim
r→0+

N(r) = |f ′(0)|2 > 0.

This shows that f is locally injective near the origin, and by the area formula we have

Area(f(B(0, r)))
πr2

= N(r) =
1

πr2

∫ r

0

∫ 2π

0

∣∣∣∣∣
∞∑

n=1

nanρ
n−1ei(n−1)θ

∣∣∣∣∣
2

ρdθ dρ

=
1

πr2

∞∑
n,m=1

nmanam

∫ r

0

∫ 2π

0

ρn+m−2ei(n−m)θρdθ dρ

=
1

πr2

∞∑
n=1

n2|an|2
∫ r

0

∫ 2π

0

ρ2n−1 dθ dρ

=

∞∑
n=1

n|an|2r2n−2

and
N ′(r) =

∞∑
n=2

n(2n− 2)|an|2r2n−3

for all r small enough. If f is not linear, i.e., there exists n ⩾ 2 such that an ̸= 0, thenN ′(r) > 0 andN(r)

is strictly increasing in r for r small enough. Hence

|f ′(0)|2 = N(0) < N(r) =
Area(f(B(0, r)))

πr2
⩽ π[d(r)/2]2

πr2
=

(
d(r)

2r

)2

, (2.6.7–4)

where the “⩽” sign is due to the isodiametric inequality, and

d(r) := sup
z,w∈B(0,r)

|f(z)− f(w)|.

Meanwhile, by the maximum modulus principle, we have

d(r)

r
= sup

θ∈[0,2π]

sup
|z|=r

∣∣∣∣∣f
(
eiθz

)
− f(z)

z

∣∣∣∣∣.
For any fixed θ, the function

f
(
eiθz

)
− f(z)

z
is holomorphic in D. By the maximum modulus principle,

the supremum of its modulus over |z| = r is a nondecreasing function of r. Taking the supremum over
θ, we conclude that d(r)

r
is a nondecreasing function of r. So if the equality holds in (2.6.7–1), then for

small r we have
d(r)

r
⩽ d(1)

1
= d = 2|f ′(0)|,

which contradicts (2.6.7–4). Therefore f must be linear.
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Stein 2.6.14 Suppose that f is holomorphic in an open set containing the closed unit disc, except for a
pole at z0 on the unit circle. Show that if

∞∑
n=0

anz
n

denotes the power series expansion of f in the open unit disc, then

lim
n→∞

an
an+1

= z0.

Proof We may assume z0 = 1 for otherwise we can take w = z
z0

and consider the function

g(w) := f(z) =

∞∑
n=0

an(z0w)
n =

∞∑
n=0

(anz
n
0 )w

n.

Since z0 = 1 is the only pole of f in this open set, we can write

f(z) = g(z) +
b−m

(z − 1)m
+ · · ·+ b−1

z − 1
+ g(z),

where g is holomorphic in this open set and b−m ̸= 0. Suppose that in this open set

g(z) =

∞∑
n=0

cnz
n.

Then lim
n→∞

cn = 0. Whenever |z| < 1, one has

∞∑
n=0

anz
n =

∞∑
n=0

cnz
n +

m∑
n=1

b−n

(z − 1)n
. (2.6.14–1)

Note that

1

(z − 1)n
=

(−1)n−1

(n− 1)!

(
d
dz

)n−1
1

z − 1
=

(−1)n

(n− 1)!

(
d
dz

)n−1 ∞∑
k=0

zk

=
(−1)n

(n− 1)!

∞∑
k=n−1

k(k − 1) · · · (k − n+ 2)zk−n+1

=
(−1)n

(n− 1)!

∞∑
s=0

(s+ n− 1)!

s!
zs,

which converges absolutely for every compact subset of D, so we can rearrange the series and use
(2.6.14–1) to get

∞∑
n=0

anz
n =

∞∑
n=0

cnz
n +

m∑
n=1

(−1)nb−n

(n− 1)!

∞∑
s=0

(s+ n− 1)!

s!
zs

=

∞∑
n=0

cnz
n +

∞∑
s=0

m∑
n=1

(−1)nb−n

(n− 1)!

(s+ n− 1)!

s!︸ ︷︷ ︸
polynomial in s

zs

=

∞∑
s=0

[cs + P (s)]zs,
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where P is a polynomial of degree m− 1 since b−m ̸= 0. Hence we have an = cn + P (n) for each n ⩾ 0

and it follows from lim
n→∞

cn = 0 that

lim
n→∞

an
an+1

= lim
n→∞

cn + P (n)

cn+1 + P (n+ 1)
= lim

n→∞

P (n)

P (n+ 1)
= 1.

Stein 2.7.1 Here are some examples of analytic functions on the unit disc that cannot be extended
analytically past the unit circle. The following definition is needed. Let f be a function defined in the unit
discD, with boundary circleC. A pointw onC is said to be regular for f if there is an open neighborhood
U of w and an analytic function g on U , so that f = g on D ∩ U . A function f defined on D cannot be
continued analytically past the unit circle if no point of C is regular for f .

(1) Let

f(z) =

∞∑
n=0

z2
n for |z| < 1.

Notice that the radius of convergence of the above series is 1. Show that f cannot be continued
analytically past the unit disc.

(2) Fix 0 < α < ∞. Show that the analytic function f defined by

f(z) =

∞∑
n=0

2−nαz2
n for |z| < 1

extends continuously to the unit circle, but cannot be analytically continued past the unit circle.

Proof (1) Note that if z0 ∈ C is a regular point of f , then there exists an open neighborhood U of z0
in C in which all the points are regular for f . Hence, by the denseness of the set

∞⋃
n=1

{
z ∈ C : z2

n

= 1
}

in C, it suffices to show that all points in this set are irregular for f .

⋄ The point 1 is irregular for f , since lim
x→1−

f(x) = +∞.

⋄ Note that
f(z) = z + f

(
z2
)
= z + z2 + f

(
z4
)
= z + z2 + z4 + f

(
z8
)
= · · · ,

so the roots of
z2 = 1, z4 = 1, z8 = 1, · · ·

are all irregular for f by the last point.

(2) Since for z ∈ C we have

|f(z)| ⩽
∞∑

n=0

z−nα =
1

1− 2−α
< ∞,

the function f extends to the unit circle. Fix any z0 ∈ C. For any ε > 0, we chooseN ∈ N such that
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∞∑
n=N+1

2−nα < ε. Then

|f(z)− f(z0)| ⩽
N∑

n=0

2−nα
∣∣∣z2n − z2

n

0

∣∣∣+ ∞∑
n=N+1

2−nα
∣∣∣z2n − z2

n

0

∣∣∣
<

N∑
n=0

2−nα
∣∣∣z2n − z2

n

0

∣∣∣+ 2ε → 2ε as z → z0.

Since ε > 0 is arbitrary, f extends continuously to C.

We refer to Theorem 3.1 in Chapter 4, Book I of this series for the following result:

If 0 < α < 1, then the function

fα(x) =

∞∑
n=0

2−nαei2
nx

is nowhere differentiable.

And Problem 8 of Chapter 5 in Book I gives a refinement of the above result, which states that
fα(x) is nowhere differentiable even in the case α = 1. Now, for α ∈ (1, 2], consider the function

zf ′(z) =

∞∑
n=0

2−n(α−1)z2
n

.

Since 0 < α− 1 ⩽ 1, the function zf ′(z) is not differentiable at any point on the unit circle. There-
fore, f cannot be analytically continued past the unit circle.

The Cauchy–Pompeiu Formula

A corrected version of Cauchy’s integral formula is the Cauchy–Pompeiu formula, and holds for
smooth functions as well, as it is based on Stokes’ theorem. LetD be a disk in C and suppose that f is a
complex-valued C∞ function in an open neighborhood of D, then

f(z) =
1

2πi

∫
∂D

f(ζ)dζ
ζ − z

− 1

π

∫
D

∂f

∂ζ̄
(ζ)

dx ∧ dy
ζ − z

for z ∈ D. This reduces to the Cauchy integral formula when ∂f = 0.
To prove this, you may need the following analogue of Goursat’s theorem:∫

∂D

f(z)dz = 2i
∫
D

∂f

∂z̄
(z)dx ∧ dy.
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Universal Entire Functions

Our interest herewill be inwhat has come to be called hypercylic operators on the spaceH(C) of entire
functions of one complex variable. This subject has its origins in 1929 with the paperDémonstration d’un
théorème elémentaire sur les fonctions entiéres by G. D. Birkhoff, in which he proved that there is f ∈ H(C)
such that the set of all translates {f(z), f(1 + z), · · · , f(n + z), · · · } is dense in H(C). About 25 years
later, G.MacLane proved in Sequences of derivatives and normal families an analogous result for derivatives:
There is an entire function f such that the set of all derivatives

{
f, f ′, · · · , f (n), · · ·

}
is dense in H(C).

Recall that an operator T : X → X is said to be hypercylic if there is some vector x ∈ X such that
{x, Tx, · · · , Tnx, · · · } is dense in X . These two results can be restated in terms of hypercyclic operators
onH(C), by simply noting that Birkhoff’s result means that the translation operator

T : H(C) → H(C), T (h)(z) := h(1 + z)

is hypercyclic. Likewise, MacLane’s result just says that the differentiation operator is hypercyclic.

Theorem 1 There is a function f ∈ H(C) with the following property: For every g ∈ H(C) and every
R, ε > 0, there is n ∈ N such that |f(z + n)− g(z)| < ε for every z ∈ C with |z| ⩽ R.

Proof Let (Pj)j be a dense sequence of polynomials in H(C). To simplify the argument, we assume
that each Pj occurs infinitely often in this sequence. Let (Dj)j be a sequence of disjoint closed discs,
each of radius j, such that the centers (cj)j form an increasing sequence on the positive real axis. Let Ej

be a sequence of closed discs, each centered at the origin, such that Dj ⊂ Ej and Dj+1 ∩ Ej = ∅.

Define Q1 = P1. By Runge’s theorem, there is a polynomial Q2 such that ∥Q2∥E1 < 1
2 and

|Q2(z)− [P2(z − c2)−Q1(z)]| <
1

2
, ∀z ∈ D2.

Next, choose a polynomial Q3 such that ∥Q3∥E2
< 1

22 and

|Q3(z)− [P3(z − c3)−Q1(z)−Q2(z)]| <
1

22
, ∀z ∈ D3.

In general, let Qn be a polynomial such that ∥Qn∥En−1 < 1
2n−1 and∣∣∣∣∣Qn(z)−

[
Pn(z − cn)−

n−1∑
i=1

Qi(z)

]∣∣∣∣∣ < 1

2n−1
, ∀z ∈ Dn.

We claim that the function f(z) =

∞∑
n=1

Qn(z) has the desired property. It is easy to see that f is entire,

and so it remains to show that if g ∈ H(C), R > 0, and ε > 0 are arbitrary, then for some j,

|f(z + cj)− g(z)| < ε, |z| ⩽ R.

In fact, it is enough to demonstrate this for g = P = Pk for some k. Since there are infinitely many k for
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which P = Pk, we can choose k large enough so that∥∥∥∥∥f −
k∑

i=1

Qi

∥∥∥∥∥
Ek

=

∥∥∥∥∥
∞∑

i=k+1

Qi

∥∥∥∥∥
Ek

⩽
∞∑

i=k+1

∥Qi∥Ei−1 ⩽
∞∑

i=k+1

1

2i−1
<

ε

2
,

and also ∣∣∣∣∣
k∑

i=1

Qi(z)− P (z − ck)

∣∣∣∣∣ =
∣∣∣∣∣Qk(z)−

[
P (z − ck)−

k−1∑
i=1

Qi(z)

]∣∣∣∣∣ < 1

2k−1
<

ε

2
, ∀z ∈ Dk.

Then, by the triangle inequality, we obtain

|f(z)− P (z − ck)| <
ε

2
, ∀z ∈ Dk.

The result follows by a change of variables.

In the same spirit, one can show that there is an entire function whose collection of derivatives is
dense in H(C).

Theorem 2 There is an entire function f such that the set
{
f (n) : n ∈ N

}
is dense in H(C).

Remark 3 Godefroy and Shapiro generalized the above results in Operators with dense, invariant, cyclic
vector manifolds to show that every continuous linear operator L : H(C) → H(C) which commutes with
translations and which is not a multiple of the identity is hypercyclic.
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