Stein 5.6.4 Lett¢ > 0 be given and fixed, and define F'(z) by
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Note that the product defines an entire function of z.
(1) Show that |F(z)| < Ae??” hence F has an order of growth < 2

(2) F vanishes exactly when z = —int + m for n > 1 and n, m integers. Thus, if z,, is an enumeration

1 1

of these zeros we have

Proof (1) Given z, fix some integer N such that % < N < % + 1, and write F(z) = F1(2)Fz(2)

where
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For the other estimate, using N < % + 1, we have
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Noticing that

a4+ Blzl + 9|21 < (a+ B)+ (B +7)|2|> whenever a, 5,7 > 0,



we get
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Therefore,
|[F(2)] = |Fi(2)][Fa(2)] < Aecl”
where
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(2) By Proposition 3.1, F' vanishes exactly when —2mnt + 27iz = 2mni for some n > 1 and n, m

integers, i.e., z = —int + m. According to Exercise 9.3.3, the first series diverges:
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It then follows from part (1) and Theorem 2.1 (ii) that F' is of order 2, and hence the second series
converges. O
Stein 5.6.5 Show thatif o > 1, then

Fa(Z) — / e—\t|a627rizt dt

is an entire function of growth order _%;.

Proof Interchanging the order of integration, we have
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for any triangle T'. Then Morera’s theorem implies that F,,(z) is entire. To find the growth order p of
F,(z), we set A = 47 and observe that
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Thus, we have
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for some constant ¢ > 0.

(1) We begin by showing that p < -%3. Using (5.6.5-1) we have
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(2) When z = —iy for y € R, we have
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Hence p > ﬁ O

Stein 5.6.6 Prove Wallis’s product formula

m_2-2 4.4 2m - 2m
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Proof Evaluate the product formula =z H (1 - 2) atz = 1. O
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Stein 5.6.7 Establish the following properties of infinite products.
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(1) Show that if Z lan|? converges, then the product H (1 + ay) converges to a non-zero limit if and
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only if Z a, converges.
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(2) Find an example of a sequence of complex numbers {a,, } such that Z a,, converges but H (1+ay)
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diverges.

(3) Also find an example such that H (1 + ay,) converges and Z ay, diverges.
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Solution (1) If Z |an|° converges, then nlgr;o a, = 0,and

n=1

lim 9 log(1+an) 1

n—o0 a2 2




(2)

By the limit comparison test, the series Z [a, —log(1 + a,)] converges. Hence,
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with by, < (1 + \/ﬁ) (1 - \/ﬁ) =1- ﬁ,we have 1—b, > ﬁ and so Z(l—bk) diverges.
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Note that b, — 1, therefore
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Hence Z —log by, diverges by the limit comparison test, and it follows that
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n=2 k=1
Let
,i n=2k—-1
. v
Cl TR AL S
Eok o kVE '
Then
N N i
Zan—za% 1+ az ZZ — +00,
k=1 k=1 vk k=1 ‘[
while
2N N 1 1 1
g(l-&-an (1+a2) 1;[ 14 ase—1)(1 + agk) —4H( \/E>(1+\/E>(1+k>
N
=4 e ) } O
1};[2 k k 2N

Stein 5.6.8 Prove that for every z the product below converges, and

cn(Z) o) o) = Tl eo() =52

Proof Since



taking the limit as n — oo gives
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Stein 5.6.11 Show thatif f is an entire function of finite order that omits two values, then f is constant.

This result remains true for any entire function and is known as Picard’s little theorem.

Proof If f omits two values a and b, then by Hadamard’s factorization theorem the function f(z) — a
is of the form ¢”(*) where p is a polynomial. It follows that p(z) # log(b— a) for all z € C, and hence p(z)
must be constant by the fundamental theorem of algebra. Therefore, f(z) = ¢’*) 4 a is constant. O

Stein 5.6.12 Suppose f is entire and never vanishes, and that none of the higher derivatives of f ever

az+b

vanish. Prove that if f is also of finite order, then f(z) = ¢ for some constants a and b.

Proof By Hadamard’s factorization theorem, f is of the form ¢?*) where p is a polynomial. By as-
sumption, f'(z) = p’(z)e?*) has no zeros, and hence p’(z) must be constant, i.e., p(z) = az + b for some
constants a and b. Therefore, f(z) = eP*) = >+, O

Stein 5.6.15 Prove that every meromorphic function in C is the quotient of two entire functions. Also,
if {a,, } and {b,,} are two disjoint sequences having no finite limit points, then there exists a meromorphic

function in the whole complex plane that vanishes exactly at {a,,} and has poles exactly at {b,,}.

Proof (1) Let f be a meromorphic function in C with poles at {p, }, counted with multiplicities. By
Weierstrass’s construction, one can find an entire function g such that g(z) = 0 exactly at {p,}.
Then the function h(z) := f(2)g(z) is entire, and f = h/g.

(2) Let F and G be two entire functions such that F(z) = 0 exactly at {a,,} and G(z) = 0 exactly at
{bn}. Then the meromorphic function F'/G has the required properties. O

Stein 5.6.16 Suppose that
NVL

Qn(z) = Z csz
k=1

are given polynomials for n = 1,2, ---. Suppose also that we are given a sequence of distinct complex
numbers {a,} without limit points. Prove that there exists a meromorphic function f(z) whose only
poles are at {a,, }, and so that for each n, the difference

1) - n( =)

is holomorphic near a,,. In other words, f has prescribed poles and principal parts at each of these poles.
This result is due to Mittag-Leffler.

Proof We can add on Q(1/%) by hand, so we may assume each a,, # 0. Since Q"( ) is holomor-
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phic in an open neighborhood of B (O, ), its Taylor series converges uniformly there, so we can find

polynomials P, (z) such that
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Therefore, the function

f(z) = fal2)
n=1

converges uniformly on compact subsets of C \ {a, };~; and, by construction,

f(Z)—Qn(Z_lan)

has a removable singularity at a,. Thus, f has prescribed poles and principal parts at each of these

poles. O



