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Stein 4.4.1 Suppose f is continuous and of moderate decrease, and f̂(ξ) = 0 for all ξ ∈ R. Show that
f = 0 by completing the following outline:

(1) For each fixed real number t consider the two functions

A(z) =

∫ t

−∞
f(x)e−2πiz(x−t) dx and B(z) = −

∫ ∞

t

f(x)e−2πiz(x−t) dx.

Show that A(ξ) = B(ξ) for all ξ ∈ R.

(2) Prove that the function F equal to A in the closed upper half-plane, and B in the lower half-plane,
is entire and bounded, thus constant. In fact, show that F = 0.

(3) Deduce that ∫ t

−∞
f(x)dx = 0,

for all t, and conclude that f = 0.

Proof (1) For all ξ ∈ R, we have

A(ξ)−B(ξ) =

∫ ∞

−∞
f(x)e−2πiξ(x−t) dx = e2πiξtf̂(ξ) = 0.

(2) The function F is entire by the symmetry principle. Since f is of moderate decrease, we have

|A(z)| ⩽
∫ t

−∞
|f(x)|e2π Im(z)(x−t) dx ⩽

∫ t

−∞

C

1 + x2
dx ⩽ πC whenever Im(z) ⩾ 0,

and similarly

|B(z)| ⩽
∫ ∞

t

|f(x)|e2π Im(z)(x−t) dx ⩽
∫ ∞

t

C

1 + x2
dx ⩽ πC whenever Im(z) < 0.

Thus F is a bounded entire function, which must be constant by Liouville’s theorem. Now, take
z = is for s ⩾ 0 and note that

A(is) =
∫ t

−∞
f(x)e2πs(x−t) dx s→∞

0

by Lebesgue’s dominated convergence theorem. Therefore F = 0.

(3) By (2), F (0) =

∫ t

−∞
f(x)dx = 0 for all t ∈ R, which implies that f = 0.

Stein 4.4.2 If f ∈ Fa with a > 0, then for any positive integer n one has f (n) ∈ Fb whenever 0 < b < a.

Proof Only the second condition in the definition of Fb needs to be checked. For any fixed b, if we take
r = a− b > 0, then

B(x+ iy, r) ⊂ {z ∈ C : |Im(z)| < a} for all x ∈ R and |y| < b.
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By the Cauchy inequalities, ∣∣∣f (n)(x+ iy)
∣∣∣ ⩽ n!

rn
sup

|ζ−(x+iy)|=r

|f(ζ)|.

Since f ∈ Fa, we have
|f(x+ iy)| ⩽ A

1 + x2
for all x ∈ R and |y| < a.

Then, for |y| < b, ∣∣∣f (n)(x+ iy)
∣∣∣ ⩽ n!A

rn
sup

θ∈[0,2π]

1

1 + (x+ r cos θ)2 =
n!A

rn
1

[1 + (|x| − r)2]
.

Finally, note that since

lim
x→∞

1 + x2

1 + (|x| − r)2
= 1,

there exists a constant C > 0 such that

1 + (|x| − r)2 ⩾ C
(
1 + x2

)
, ∀x ∈ R.

Combining all the above estimates, we obtain∣∣∣f (n)(z)
∣∣∣ ⩽ n!A

Crn
1

1 + x2
.

Therefore, we conclude that f (n) ∈ Fb for all 0 < b < a.

Stein 4.4.3 Show, by contour integration, that if a > 0 and ξ ∈ R then

1

π

∫ ∞

−∞

a

a2 + x2
e−2πixξ dx = e−2πa|ξ|,

and check that ∫ ∞

−∞
e−2πa|ξ|e2πiξx dξ =

1

π

a

a2 + x2
.

Proof We may assume that ξ < 0. Consider the integral of f(z) =
a

a2 + z2
e−2πizξ along the upper

semicircle contour as shown below:

Re

Im
γ2

γ1 R−R

ai

By the residue formula,∫
γ1

f(z)dz +
∫
γ2

f(z)dz = 2πi Res(f, ai) = 2πi lim
z→ai

a

z + aie
−2πizξ = πe−2πa|ξ|.
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Since ∣∣∣∣∫
γ2

f(z)dz
∣∣∣∣ ⩽ ∫ π

0

∣∣∣∣ a

a2 +R2e2iθ
e2πRξ sin θ

∣∣∣∣dθ ⩽ πa

R2 − a2
R→+∞

0,

we get ∫
R

a

a2 + x2
e−2πixξ dx = πe−2πa|ξ|.

To check the second identity, we can use Lemma 2.3 to obtain∫ ∞

−∞
e−2πa|ξ|e2πiξx dξ =

∫ 0

−∞
e2πξ(a+ix) dξ +

∫ ∞

0

e2πξ(−a+ix) dξ

=

∫ ∞

0

e−(2πa+2πxi)ξ dξ +
∫ ∞

0

e−(2πa−2πxi)ξ dξ

=
1

2πa+ 2πix +
1

2πa− 2πix
=

1

π

a

a2 + x2
.

Stein 4.4.4 Suppose Q is a polynomial of degree ⩾ 2 with distinct roots, none lying on the real axis.
Calculate ∫ ∞

−∞

e−2πixξ

Q(x)
dx, ξ ∈ R

in terms of the roots of Q. What happens when several roots coincide?

Solution Let U be the set of roots of Q in the upper half-plane, and L be the set of roots of Q in the
lower half-plane.

Assume first ξ ⩽ 0. Choose R large enough so that

⋄ |Q(z)| ⩾ C|z|2 for some constant R and all |z| ⩾ R,

⋄ all the roots of Q are contained in B(0, R).

Now, consider the integral of f(z) = e−2πizξ

Q(z)
along the contour γ = γ1 ∪ γ2 as shown below:

Re

Im
γ2

γ1 R−R

Since ∣∣∣∣∫
γ2

f(z)dz
∣∣∣∣ =

∣∣∣∣∣
∫ π

0

exp
(
−2πiReiθξ

)
Q(Reiθ)

iReiθ dθ
∣∣∣∣∣

⩽
∫ π

0

exp(2πRξ sin θ)

CR2
Rdθ

⩽ π

CR

R→+∞
0,
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we obtain by the residue formula that∫ ∞

−∞

e−2πixξ

Q(x)
dx = lim

R→+∞

∫
γ

f(z)dz = 2πi
∑
z∈U

Res(f, z) = 2πi
∑
z∈U

e−2πizξ

Q′(z)
.

By considering the polynomial Q(−x) and substituting −x for x, we have for ξ ⩾ 0 that∫ ∞

−∞

e−2πixξ

Q(x)
dx = −2πi

∑
z∈L

e−2πizξ

Q′(z)
.

For multiple roots, the idea is the same, but the formula for the residues would be more complicated.

Stein 4.4.6 Prove that
1

π

∞∑
n=−∞

a

a2 + n2
=

∞∑
n=−∞

e−2πa|n|

whenever a > 0. Hence show that the sum equals cothπa.

Proof Let f(z) = 1

π

a

a2 + z2
. Note that

|f(x+ iy)| = a

π

1

|a2 + (x+ iy)2| ⩽
a

π

1

|a2 + x2 − y2|
⩽ a

π

1
3a2

4 + x2

whenever |y| < a
2 . Since

lim
x→∞

1 + x2

3a2

4 + x2
= 1,

there exists a constant C > 0 such that

|f(x+ iy)| ⩽ a

π

C

1 + x2
whenever |y| < a

2
.

This shows that f ∈ F. By the Poisson summation formula, we have

∑
n∈Z

f(n) =
∑
n∈Z

f̂(n)
Exercise 4.4.3 ∑

n∈Z

e−2πa|n|.

Hence the sum equals

−1 + 2

∞∑
n=0

e−2πan = −1 +
2

1− e−2πa
=

1 + e−2πa

1− e−2πa
= cothπa.

Stein 4.4.7 The Poisson summation formula applied to specific examples often provides interesting
identities.

(1) Let τ be fixed with Im(τ) > 0. Apply the Poisson summation formula to

f(z) = (τ + z)−k,
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where k is an integer ⩾ 2, to obtain

∞∑
n=−∞

1

(τ + n)k
=

(−2πi)k
(k − 1)!

∞∑
m=1

mk−1e2πimτ .

(2) Set k = 2 in the above formula to show that if Im(τ) > 0, then

∞∑
n=−∞

1

(τ + n)2
=

π2

sin2(πτ)
. (4.4.7–1)

(3) Can one conclude that the above formula holds true whenever τ is any complex number that is
not an integer?

Proof (1) Let us find the Fourier transform of f :

f̂(ξ) =

∫ ∞

−∞
(τ + x)−ke−2πixξ dx.

¬ For ξ ⩽ 0, we choose the upper semicircle contour.

Re

Im
γ2

γ1 R−R

Since (τ + z)−ke−2πizξ is holomorphic in the upper half-plane, we have∫
γ1

(τ + z)−ke−2πizξ dz +
∫
γ2

(τ + z)−ke−2πizξ dz = 0.

When R → +∞,

∣∣∣∣∫
γ2

(τ + z)−ke−2πizξ dz
∣∣∣∣ =

∣∣∣∣∣
∫ π

0

e−2πiξReiθ
Ri

(τ +Reiθ)k
dθ
∣∣∣∣∣ ⩽

∫ π

0

R
∣∣∣e−2πiξReiθ

∣∣∣
(R− |τ |)k

dθ

⩽ πR2e2πξR sin θ

(R− |τ |)k
ξ⩽0

⩽ πR2

(R− |τ |)k
k⩾2

0.

Hence, when ξ ⩽ 0 we get

f̂(ξ) =

∫
R
(τ + x)−ke−2πixξ dx = 0.
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 For ξ > 0, we choose the lower semicircle contour.

Re

Im

γ2

γ1 R−R

−τ

The residue at −τ is given by

Res
(
(τ + z)−ke−2πizξ,−τ

)
=

1

(k − 1)!

(
e−2πizξ)(k−1)

∣∣∣∣∣
z=−τ

=
(−2πiξ)k−1

(k − 1)!
e2πiτξ.

Thus, we have∫
γ1

(τ + z)−ke−2πizξ dz +
∫
γ2

(τ + z)−ke−2πizξ dz = − (−2πi)kξk−1

(k − 1)!
e2πiτξ.

When R → +∞,

∣∣∣∣∫
γ2

(τ + z)−ke−2πizξ dz
∣∣∣∣ =

∣∣∣∣∣
∫ 0

−π

e−2πiξReiθ
Ri

(τ +Reiθ)k
dθ
∣∣∣∣∣ ⩽

∫ 0

−π

R
∣∣∣e−2πiξReiθ

∣∣∣
(R− |τ |)k

dθ

⩽ πR2e2πξR sin θ

(R− |τ |)k
ξ>0

⩽ πR2

(R− |τ |)k
k⩾2

0.

Hence, when ξ > 0 we get

f̂(ξ) =

∫
R
(τ + x)−ke−2πixξ dx =

(−2πi)kξk−1

(k − 1)!
e2πiτξ.

Given that f ∈ F, the Poisson summation formula gives

∞∑
n=−∞

1

(τ + n)k
=
∑
m∈Z

f̂(m) =
(−2πi)k
(k − 1)!

∞∑
m=1

mk−1e2πimτ .

(2) Setting k = 2 in the formula above, we get

∞∑
n=−∞

1

(τ + n)2
= −4π2

∞∑
m=1

me2πimτ .

To complete the proof, notice that when Im(τ) > 0 we have
∣∣e2πiτ ∣∣ = e−2π Im(τ) < 1, hence

∞∑
m=1

me2πimτ =
1

2πi

∞∑
m=1

∂

∂τ

(
e2πimτ

)
=

1

2πi
∂

∂τ

( ∞∑
m=1

e2πimτ

)
=

1

2πi
∂

∂τ

(
e2πiτ

1− e2πiτ

)
=

e2πiτ

(1− e2πiτ )2
=

1

(eπiτ − e−πiτ )2
=

1

−4 sin2(πτ)
.

(3) Recall from Exercise 3.8.1 that the complex zeros of sin(πτ) are exactly at the integers. Hence, both
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sides of (4.4.7–1) are holomorphic functions of τ in C \ Z. Since they agree for Im(τ) > 0, by the
identity theorem, they must agree for all τ ∈ C \ Z.

Remark Part (3) has already been proved in Exercise 3.8.12.
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