
1

Stein 3.8.11 Show that if |a| < 1, then∫ 2π

0

log
∣∣1− aeiθ

∣∣dθ = 0.

Then, prove that the above result remains true if we assume only that |a| ⩽ 1.

Proof (1) If |a| < 1, let us consider the function f(z) = 1−az, which vanishes nowhere in the closed
unit disc. By Theorem 6.2, there exists a holomorphic function g in a disc of radius greater than 1

such that f(z) = eg(z). Then |f | = eRe(g), and therefore log |f | = Re(g). By Corollary 7.3, we have∫ 2π

0

log
∣∣1− aeiθ

∣∣dθ = 2π log|f(0)| = 0.

(2) For a = eiφ, we have∫ 2π

0

log
∣∣1− aeiθ

∣∣dθ =

∫ 2π

0

log
∣∣∣1− ei(θ+φ)

∣∣∣dθ =

∫ 2π

0

log
∣∣1− eiθ

∣∣dθ
=

1

2

∫ 2π

0

log(2− 2 cos θ)dθ =

∫ 2π

0

log
(
2 sin θ

2

)
dθ

x= θ
2π

2π

(
log 2 +

∫ 1

0

log(sinπx)dx
)

Exercise 3.8.9
0.

Stein 3.8.12 Suppose u is not an integer. Prove that

∞∑
n=−∞

1

(u+ n)2
=

π2

(sinπu)2

by integrating
f(z) =

π cotπz
(u+ z)2

over the circle |z| = RN = N + 1
2 (N integral, N ⩾ |u|), adding the residues of f inside the circle, and

letting N tend to infinity.

Proof The function f(z) =
π cotπz
(u+ z)2

has simple poles at z = n for n ∈ Z, and a pole of order 2 at
z = −u. The corresponding residues are given by

Res(f, n) = lim
z→n

(z − n)f(z) = lim
z→n

π cosπz
(u+ z)2(sinπz)′

=
1

(u+ n)2
,

Res(f,−u) = lim
z→−u

d
dz (z + u)2f(z) = π lim

z→−u

d
dz cotπz = − π2

(sinπu)2
.

By the residue formula, we have

IN :=

∫
|z|=RN

f(z)dz =

N∑
n=−N

1

(u+ n)2
− π2

(sinπu)2
.

It remains to show that IN → 0 as N → ∞. It suffices to show that cotπz is bounded when |z| = RN ,
independent of N . Suppose z = x+ iy.
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(1) Consider first the case y > 0. We use the expression

cotπz =
cosπz
sinπz

= ie
2πiz + 1

e2πiz − 1
. (3.8.12–1)

⋄ If 0 < y ⩽ 1, then

RN − |x| ⩽ RN −
√
R2

N − 1 =
1

RN +
√

R2
N − 1

N→∞
0.

Hence, for N sufficiently large, we have

|cos 2π(x−RN )| < 1

2
,

and therefore ∣∣∣e2πi(x+iy) − 1
∣∣∣ ⩾ Re

(
1− e2πi(x+iy)

)
= 1− e−2πy cos(2πx)
= 1 + e−2πy cos 2π(x−RN )

> 1− 1

2
=

1

2
.

⋄ If y > 1, then ∣∣∣e2πi(x+iy) − 1
∣∣∣ ⩾ 1− e−2πy ⩾ 1− e−2π.

These estimates, along with the fact that∣∣∣e2πi(x+iy) + 1
∣∣∣ ⩽ e−2πy + 1 < 2,

imply that (3.8.12–1) is bounded for y > 0, independent of N .

(2) When y = 0, that is, |x| = N + 1
2 , we have

cotπz = cotπ
(
N + 1

2

)
= 0.

(3) When y < 0, we rewrite the expression for cotπz as

cotπz = i1 + e−2πiz

1− e−2πiz ,

which reduces to case (1) above.

Thus, we conclude that cotπz is bounded when |z| = RN , independent of N , and the result follows.

Stein 3.8.19 Prove the maximum principle for harmonic functions, that is:

(1) If u is a non-constant real-valued harmonic function in a regionΩ, then u cannot attain amaximum
(or a minimum) in Ω.
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(2) Suppose thatΩ is a region with compact closureΩ. If u is harmonic inΩ and continuous inΩ, then

sup
z∈Ω

|u(z)| ⩽ sup
z∈Ω−Ω

|u(z)|.

Proof (1) Assume that u attains amaximum at z0 ∈ Ω. Let f be holomorphic near z0 with u = Re(f).
Since f is non-constant, it is an open map. However, we can find an open neighborhood U of z0 in
Ω such that f(U) is contained in the left half-plane {z ∈ C : Re(z) ⩽ u(z0)}. This contradicts the
fact that f is an open map.

(2) Since u is continuous in the compact set Ω, it attains its maximum at some point z0 ∈ Ω. If u is
constant, then the result is trivial. Otherwise, by (1) we have z0 ∈ Ω− Ω. That is,

sup
z∈Ω

|u(z)| ⩽ sup
z∈Ω

|u(z)| = sup
z∈Ω−Ω

|u(z)|.

Stein Page 98 In Theorem 6.1 (iii) of Chapter 3, do we have F (r) = ln r for all r ∈ Ω ∩ R>0?
Solution This doesn’t hold in general. For example, if we let Ω be the region illustrated in the figure
below, then F (2)− F (1) = ln 2 + 2πi.

Re

Im

1

2

Ω
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