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Stein 3.8.8 Prove that ∫ 2π

0

dθ
a+ b cos θ =

2π√
a2 − b2

if a > |b| and a, b ∈ R.

Proof Without loss of generality, assume b > 0. Let z = eiθ and denote by C the unit circle. Then
dz = iz dθ, cos θ = 1

2

(
z + 1

z

)
, and

∫ 2π

0

dθ
a+ b cos θ =

∫
C

dz
iz
[
a+ b

2

(
z + 1

z

)]
=

2

bi

∫
C

dz
z2 + 2a

b z + 1

=
4π

b
Res
(

1

z2 + 2a
b z + 1

,−a

b
+

√(a
b

)2
− 1

)

=
4π

b
lim

z→− a
b +

√
( a

b )
2−1

1

z + a
b +

√(
a
b

)2 − 1

=
2π√

a2 − b2
.

Stein 3.8.9 Show that ∫ 1

0

log(sinπx)dx = − log 2.

Proof Consider the integral of f(z) = log(sinπz) over the contour γ = γ1 ∪ γ2 ∪ γ3 ∪ γ4 ∪ γ5 ∪ γ6 as
illustrated below.

Re

Im

γ1

γ2

γ3

γ4

γ5

γ6
iR

iε

ε 1− ε

1 + iε

1 + iR

By Exercise 3.8.1, the function f(z) is holomorphic in the region bounded by γ, so∫
γ

f(z)dz = 0.

(1) On γ1, we have sin(πit) = i(eπt − e−πt)

2
, and then

Re
{∫

γ1

f(z)dz
}

= Re
{∫ ε

R

log sin(πit)i dt
}

=

∫ R

ε

Im(log sin(πit))dt

=

∫ R

ε

π

2
dt = π

2
(R− ε).

(2) On γ2, note that lim
z→0

z log sinπz = 0. If we denoteM(ε) = max
z∈γ2(ε)

|z log sinπz|, then lim
ε→0+

M(ε) = 0.
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For z = εeiθ, we have dz = iz dθ, and then∣∣∣∣∣∣
∫
γ2

f(z)dz

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∫
γ2

z log sinπz
z

dz

∣∣∣∣∣∣ ⩽
∫ π

2

0

M(ε)dθ =
π

2
M(ε)

ε→0+

0.

(3) On γ3, we have ∫
γ3

f(z)dz =

∫ 1−ε

ε

log sinπxdx ε→0+
∫ 1

0

log sinπxdx.

(4) On γ4, since lim
z→1

(z − 1) log sinπz = 0, the same argument as in (2) applies. We have

∣∣∣∣∫
γ4

f(z)dz
∣∣∣∣ ε→0+

0.

(5) On γ5, we have sinπ(1 + it) = − i(eπt − e−πt)

2
, and then

Re
{∫

γ5

f(z)dz
}

= Re
{∫ R

ε

log sinπ(1 + it)i dt
}

= −
∫ R

ε

Im(log sinπ(1 + it))dt

= −
∫ R

ε

−π

2
dt = π

2
(R− ε).

(6) On γ6, we have

sinπ(t+ iR) =
1

2

(
e−πR + eπR

)
sinπt+ i · 1

2

(
eπR − e−πR

)
cosπt.

Thus, we can write

|sinπ(t+ iR)|2 =
1

4

(
e−πR + eπR

)2 sin2 πt+
1

4

(
eπR − e−πR

)2 cos2 πt
=

1

4

[(
e2πR + e−2πR

)(
sin2 πt+ cos2 πt

)
+ 2
(
sin2 πt− cos2 πt

)]
=

1

4
e2πR[1 + µ(R)],

where lim
R→+∞

µ(R) = 0. Hence,

2 log|sinπ(t+ iR)| = log|sinπ(t+ iR)|2 = log
(
1

4
e2πR

)
+ log(1 + µ(R))

R→+∞
2πR− 2 log 2.

Then we obtain

Re
{∫

γ6

f(z)dz
}

= Re
{∫ 0

1

log sinπ(t+ iR)dt
}

= −
∫ 1

0

log|sinπ(t+ iR)|dt

R→+∞
−1

2
(2πR− 2 log 2) = log 2− πR.

林晓烁 2025-03-27



3

Finally, combining all the results, we get

0 = Re
{∫

γ

f(z)dz
}

R→+∞
ε→0+

∫ 1

0

log(sinπx)dx+ log 2,

which implies the desired result.

Stein 3.8.10 Show that if a > 0, then∫ ∞

0

logx
x2 + a2

dx =
π

2a
log a.

Proof Consider the integral of f(z) = log z
z2 + a2

over the contour γ = γ1 ∪ γ2 ∪ γ3 ∪ γ4 as shown below.

Re

Im
γ2

γ1γ3

γ4

R−R −ε ε

ia

By the residue formula, we have∫
γ

f(z)dz = 2πi Res(f, ia) = 2πi lim
z→ia

log z
z + ia =

π log(ia)
a

=
π

a
log a+

π2

2a
i.

The integral over the semicircle γ2 vanishes as R → ∞, since for R > a,

∣∣∣∣∫
γ2

f(z)dz
∣∣∣∣ =

∣∣∣∣∣
∫ π

0

log
(
Reiθ

)
iReiθ

R2e2iθ + a2
dθ
∣∣∣∣∣ ⩽

∫ π

0

R
∣∣log(Reiθ

)∣∣
R2 − a2

dθ ⩽ πR|logR+ iπ|
R2 − a2

.

The integral over the semicircle γ4 vanishes as ε → 0+, since for ε ∈ (0, a),

∣∣∣∣∫
γ4

f(z)dz
∣∣∣∣ =

∣∣∣∣∣
∫ 0

π

log
(
εeiθ

)
iεeiθ

ε2e2iθ + a2
dθ
∣∣∣∣∣ ⩽

∫ π

0

ε
∣∣log(εeiθ)∣∣
a2 − ε2

dθ ⩽ πε|log ε+ iπ|
a2 − ε2

.

Note that ∫ 0

−∞

logx
x2 + a2

dx =

∫ ∞

0

logx
x2 + a2

dx+ iπ
∫ ∞

0

dx
x2 + a2

=

∫ ∞

0

logx
x2 + a2

dx+
π2

2a
i.

Thus, letting R → ∞ and ε → 0+, we obtain

2

∫ ∞

0

logx
x2 + a2

dx+
π2

2a
i = π

a
log a+

π2

2a
i,

where the desired result follows.
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Stein 3.8.14 Prove that all entire functions that are also injective take the form f(z) = az + b with
a, b ∈ C, and a 6= 0.

Proof Assume that f is an injective entire function. Then f is non-constant, and hence unbounded by
Liouville’s theorem. So g(z) := f

(
1
z

)
has either a pole or an essential singularity at z = 0. We shall show

first that the singularity at 0 cannot be an essential singularity. If it were an essential singularity, then the
Casorati–Weierstrass theorem would imply that the set g(D \ {0}) is dense in C. However, g

(
B
(
2, 1

2

))
is

an open set by the open mapping theorem. Therefore these two sets intersect, which shows that g and
hence f is not injective.

Therefore, the singularity at 0must be a pole, implying that f is a polynomial and furthermore that
f is a monomial by its injectivity. Thus, f takes the form f(z) = c(z − z0)

m. However, for m ⩾ 2 such
functions are also non-injective:

f(z0 + 1) = c = f
(
z0 + e

2πi
m

)
.

Thereforem = 1 and the result follows.

Stein 3.8.15 Use the Cauchy inequalities or the maximum modulus principle to solve the following
problems:

(1) Prove that if f is an entire function that satisfies

sup
|z|=R

|f(z)| ⩽ ARk +B

for all R > 0, and for some integer k ⩾ 0 and some constants A,B > 0, then f is a polynomial of
degree ⩽ k.

(2) Show that if f is holomorphic in the unit disc, is bounded, and converges uniformly to zero in the
sector θ < arg z < φ as |z| → 1, then f = 0.

(3) Let w1, · · · , wn be points on the unit circle in the complex plane. Prove that there exists a point z
on the unit circle such that the product of the distances from z to the points wj , 1 ⩽ j ⩽ n, is at
least 1. Conclude that there exists a pointw on the unit circle such that the product of the distances
from w to the points wj , 1 ⩽ j ⩽ n, is exactly equal to 1.

(4) Show that if the real part of an entire function f is bounded, then f is constant.

Proof (1) By the Cauchy inequalities, we have

∣∣∣f (n)(0)
∣∣∣ ⩽ n!

(
ARk +B

)
Rn

.

Thus, for n > k, we can let R → ∞ to obtain f (n)(0) = 0. Hence f is a polynomial of degree ⩽ k.

(2) Choose N ∈ N large enough so that N(φ−θ)
2 > 2π, and consider the function

g(z) := f(z)f
(
ei

φ−θ
2 z
)
f
(
ei

2(φ−θ)
2 z

)
· · · f

(
ei

N(φ−θ)
2 z

)
.
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Note that if we denote by S the sector θ < arg z < φ, then

N⋃
k=0

ei
k(φ−θ)

2 S ⊃ D.

Let M be a bound for f on D. Given ε > 0, there exists 0 < r < 1 such that

|f(z)| < ε, r < |z| < 1, θ < arg z < φ.

Then we have
|g(z)| < MNε, r < |z| < 1.

By the maximummodulus principle, |g(z)| < MNε on D, and since ε > 0 is arbitrary, we conclude
that g(z) = 0 for all z ∈ D. If f is not identically zero, then it has countably many zeros in D, and
so is g, which is a contradiction. Hence, f = 0 in D.

(3) Consider the polynomial
p(z) = (z − w1) · · · (z − wn).

Since p(wk) = 0 (1 ⩽ k ⩽ n) and |p(0)| = 1, it is non-constant. Then by the maximum modulus
principle, |p(z)| > 1 for some z on the unit circle. Finally, by the intermediate value theorem, there
exists a point w on the unit circle such that |p(w)| = 1.

(4) Consider the function g(z) = ef(z). Since |g(z)| = eRe f(z), by our assumption, g is a bounded entire
function. By Liouville’s theorem, g is constant. Thus, f is locally constant, and hence constant.

Stein 3.8.16 Suppose f and g are holomorphic in a region containing the disc |z| ⩽ 1. Suppose that f
has a simple zero at z = 0 and vanishes nowhere else in |z| ⩽ 1. Let

fε(z) = f(z) + εg(z).

Show that if ε is sufficiently small, then

(1) fε(z) has a unique zero in |z| ⩽ 1, and

(2) if zε is this zero, the mapping ε 7→ zε is continuous.

Proof (1) Since f is non-vanishing on the unit circle, we can pick ε small enough so that |f(z)| >
|εg(z)| and fε(z) 6= 0 for |z| = 1. By Rouché’s theorem, f and f + εg have the same number of
zeros in |z| < 1. Then fε(z) has a unique zero in |z| ⩽ 1.

(2) By (1), there exists ε0 > 0 small enough, such that fε(z) has a unique zero zε in |z| ⩽ 1 and |zε| < 1.
Then we can write fε(z) = (z − zε)h(z) for some holomorphic function h which is non-vanishing
in |z| ⩽ 1. Note that∫

|z|=1

zf ′
ε(z)

fε(z)
dz =

∫
|z|=1

(
z

z − zε
+

zh′(z)

h(z)

)
dz = 2πi Res

(
z

z − zε
, zε

)
= 2πizε.

Since the integrand zf ′
ε(z)

fε(z)
is continuous in ε for |ε| < ε0, and the unit circle is compact, we see

that the integrand is uniformly continuous in ε. Thus, the above integral is continuous in ε. That
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is, the mapping ε 7→ zε is continuous.

Stein 3.8.17 Let f be non-constant and holomorphic in an open set containing the closed unit disc.

(1) Show that if |f(z)| = 1 whenever |z| = 1, then the image of f contains the unit disc.

(2) If |f(z)| ⩾ 1whenever |z| = 1 and there exists a point z0 ∈ D such that |f(z0)| < 1, then the image
of f contains the unit disc.

Proof (1) By Exercise 2.6.15, f must vanish at some point in D. For any w0 ∈ D, we have

|f(z)| = 1 > |w0|, ∀z ∈ ∂D,

hence by Rouché’s theorem, f(z)−w0 has the same number of zeros in D as f(z), which is at least
one. Thus, w0 is in the image of f .

(2) In the same spirit as (1), we only need to show that f vanishes at some point in D. If it were not
the case, then 1/f is holomorphic in an open set containing D, and by the maximum modulus
principle, |1/f(z)| ⩽ 1 for |z| ⩽ 1. This contradicts the assumption that |f(z0)| < 1.
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