Stein 3.8.8 Prove that
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ifa > |b| and a,b € R.

Proof Without loss of generality, assume b > 0. Let z = ¢! and denote by C the unit circle. Then
dz =izdf, cosf = 3 (2 + 1), and
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Stein 3.8.9 Show that .
/ log(sinmz) dz = —log2.
0

Proof Consider the integral of f(z) = log(sinnz) over the contour v = 3 U2 U3 Uys Uvs U as
illustrated below.
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By Exercise 3.8.1, the function f(z) is holomorphic in the region bounded by -, so

/Wf(z) dz =0.

i(eﬂ't _ —7rt)

(1) On 7, we have sin(rit) = , and then

Re{/ f(z) dz} = Re{/R8 logsin(wit)idt} = /ER Im(log sin(it)) dt
:/fgdt: (R—2).

(2) On s, note that lim zlogsin 7z = 0. If we denote M (¢) = max |zlogsinnz|, then lim M(e) = 0.
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For z = ee'?, we have dz = iz df, and then

f(2)dz| = / z 10g sin Tz 4
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(3) On ~s3, we have
1—e e 4 1
/ f(z)dz:/ logsinmzdxi>/ log sin 7z dz.
73 € 0

(4) On ~y, since lin}(z —1)logsinz = 0, the same argument as in (2) applies. We have
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(5) On ~s, we have sinm(1 +it) = — , and then

Re{/r f(z) dz} = Re{/ﬁRlogsinﬂ(l +it)idt} = —/ER Im(logsinm(1 +it)) dt
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(6) On 74, we have

(7™ +e™) sinmt +i- %(eﬂR — e ") cost.
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sinw(t +1iR) =
Thus, we can write

cos? t
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[(e*™ + 2™ (sin? 7t + cos® 7t) + 2(sin® wt — cos® mt)]

sin7(t +1iR)|* =

™1 + p(R)],
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where lim p(R) = 0. Hence,

R—+o00

2log|sin(t 4+ iR)| = log|sin 7 (t + iR)|? log< 27’R) +log(1l + u(R))
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— 27R — 2log2.
Then we obtain
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Re{ f(z) dz} = Re{/ logsinm(t +iR) dt} = —/ log|sinm(t 4+ iR)| dt
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Finally, combining all the results, we get
e—0t !
0= Re{/f(z) dz} m/ log(sinmz) dz + log 2,
¥y 0
which implies the desired result. O

Stein 3.8.10 Show that if a > 0, then

< logx T
/0 ——dz = %loga.
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Proof Consider the integral of f(z) = ppri over the contour 7 = 71 U 2 U 73 U 4 as shown below.
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By the residue formula, we have

; 2
/ f(z)dz = 2wiRes(f,ia) = 27i lim log = ﬂlog(la) _I loga + T
Y
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The integral over the semicircle v, vanishes as R — oo, since for R > a,

‘/” log(Re')iRe!? d&‘ < /7T R|log(Re")| 4o < 7TR|10gR+17T|
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The integral over the semicircle 4 vanishes as ¢ — 07, since for ¢ € (0, a),
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Thus, letting R — oo and € — 07, we obtain
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where the desired result follows. O



Stein 3.8.14 Prove that all entire functions that are also injective take the form f(z) = az + b with
a,be C,and a # 0.

Proof Assume that f is an injective entire function. Then f is non-constant, and hence unbounded by
Liouville’s theorem. So g(z) := f(21) has either a pole or an essential singularity at z = 0. We shall show
first that the singularity at 0 cannot be an essential singularity. If it were an essential singularity, then the
Casorati-Weierstrass theorem would imply that the set g(D \ {0}) is dense in C. However, g(B(2, 3)) is
an open set by the open mapping theorem. Therefore these two sets intersect, which shows that g and

hence f is not injective.

Therefore, the singularity at 0 must be a pole, implying that f is a polynomial and furthermore that
f is a monomial by its injectivity. Thus, f takes the form f(z) = c¢(z — 29)™. However, for m > 2 such

functions are also non-injective:

f(zo—l—l):c:f(zo—&—e%).

Therefore m = 1 and the result follows. O

Stein 3.8.15 Use the Cauchy inequalities or the maximum modulus principle to solve the following
problems:

(1) Prove that if f is an entire function that satisfies

sup |f(2)] < AR + B
|z|=R

for all R > 0, and for some integer £ > 0 and some constants A, B > 0, then f is a polynomial of
degree < k.

(2) Show that if f is holomorphic in the unit disc, is bounded, and converges uniformly to zero in the
sector < argz < ¢ as |z| — 1, then f = 0.

(3) Letws,--- ,w, be points on the unit circle in the complex plane. Prove that there exists a point z
on the unit circle such that the product of the distances from z to the points w;, 1 < j < n, is at
least 1. Conclude that there exists a point w on the unit circle such that the product of the distances
from w to the points w;, 1 < j < n, is exactly equal to 1.

(4) Show that if the real part of an entire function f is bounded, then f is constant.
Proof (1) By the Cauchy inequalities, we have

‘f(")(())’ < w

Thus, for n > k, we can let R — oo to obtain £ (0) = 0. Hence f is a polynomial of degree < k.
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(2) Choose N € N large enough so that %
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> 27, and consider the function



(4)

Note that if we denote by S the sector < arg z < ¢, then

N k(p—0)
k(o
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Let M be a bound for f on D. Given ¢ > 0, there exists 0 < r < 1 such that
lf(z) <e, r<lzl<l, 8<argz <.

Then we have
lg(2)| < MNe, <]z <1

By the maximum modulus principle, [g(z)| < M~ e on D, and since ¢ > 0 is arbitrary, we conclude
that g(z) = 0 for all z € D. If f is not identically zero, then it has countably many zeros in D, and

so is g, which is a contradiction. Hence, f = 0in D.

Consider the polynomial
p(z)=(z—wy) (2 —wp).

Since p(wy) = 0 (1 < k < n) and |p(0)| = 1, it is non-constant. Then by the maximum modulus
principle, [p(z)| > 1 for some z on the unit circle. Finally, by the intermediate value theorem, there
exists a point w on the unit circle such that [p(w)| = 1.

Re f

Consider the function g(z) = e/(*). Since |g(z)| = ¢%¢¥(*), by our assumption, g is a bounded entire

function. By Liouville’s theorem, g is constant. Thus, f is locally constant, and hence constant. [

Stein 3.8.16 Suppose f and g are holomorphic in a region containing the disc |z| < 1. Suppose that f

has a simple zero at z = 0 and vanishes nowhere else in |z| < 1. Let

fe(2) = f(2) + eg(2).

Show that if ¢ is sufficiently small, then

(M
(2)

fe(#z) has a unique zero in |z| < 1, and

if 2. is this zero, the mapping € — z. is continuous.

Proof (1) Since f is non-vanishing on the unit circle, we can pick ¢ small enough so that |f(z)| >

(2)

leg(2)| and f.(2) # 0 for |z] = 1. By Rouché’s theorem, f and f + eg have the same number of
zeros in |z| < 1. Then f.(z) has a unique zero in |z| < 1.

By (1), there exists gy > 0 small enough, such that f. (%) has a unique zero z. in |z| < land |z | < 1.
Then we can write f.(z) = (z — z:)h(z) for some holomorphic function & which is non-vanishing
in |z| < 1. Note that

2fl(z) ; z zh'(2) o z o
.0 dz = / (z—z€+ h2) )dz-ZmRes(Z_ZE,zE) = 2miz,.
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that the integrand is uniformly continuous in €. Thus, the above integral is continuous in €. That

Since the integrand is continuous in ¢ for |e| < g¢, and the unit circle is compact, we see



is, the mapping € — z. is continuous. O

Stein 3.8.17 Let f be non-constant and holomorphic in an open set containing the closed unit disc.
(1) Show thatif |f(z)| = 1 whenever |z| = 1, then the image of f contains the unit disc.

(2) If | f(2)| > 1 whenever |z| = 1 and there exists a point zy € D such that | f(z9)| < 1, then the image
of f contains the unit disc.

Proof (1) By Exercise 2.6.15, f must vanish at some point in D. For any wy € D, we have
|f(2’)| =1> |U)0|, Vz € 8]]]);

hence by Rouché’s theorem, f(z) — wy has the same number of zeros in D as f(z), which is at least
one. Thus, wy is in the image of f.

(2) In the same spirit as (1), we only need to show that f vanishes at some point in D. If it were not
the case, then 1/f is holomorphic in an open set containing D, and by the maximum modulus
principle, |1/f(z)| < 1 for |z| < 1. This contradicts the assumption that | f(zo)| < 1. O



