Stein 3.8.1 Using Euler’s formula

eiwz _ efiwz
sinrz = ——
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show that the complex zeros of sin 7wz are exactly at the integers, and that they are each of order 1.
Calculate the residue of '— atz=n € Z.
Proof By Euler’s formula,
; _ itz __ _—imz 2Tz __ Im(z) = 07
sinTz =0 <= €™ =e¢ = =1 = = 2€Z.

6217rRe(z) = 1.
To check the order of the zero at z = n € Z is 1, it suffices to note that

(sinmz)’|,=p = mCOS T2, = (—1)"7 # 0.
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Since n is a simple pole of we have
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Stein 3.8.2 Evaluate the integral
/ < da
oo L+t

Where are the poles of 1757

Solution The (simple) poles of f(z) = H% are at the fourth roots of —1, which are the complex num-
bers wy = T (k= 1,3,5,7). The corresponding residues are
Z— W 1 Wk

Res(f, ws) :zlirf}k = k=1,35,7.

Let us consider the contour v = 7; U 7, as shown below.
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By the residue formula, we have

/f(z) dz = 2ri[Res(f,w1) + Res(f, ws)] = —%i(m +wg) =
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The integral over the semicircle v, vanishes as R — oo, since for R > 1,
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Therefore, we obtain

< dzx T
—— = lim / f(z)dz = —.
/—oo 1+ x4 R—o0 " \/E
Stein 3.8.3 Show that - .
cosx e
/ ——dz=n7 , foralla > 0.
oo T2+ a? a
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Proof Consider the integral of f(z) = i over the contour v = =1 U 2 as shown below.
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By the residue theorem, we have

/7 £(2)

dz = 27wiRes(f, ai) = 271 im (z — ai) f(2) = 271 lim
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The integral over the semicircle v, vanishes as R — oo, since for R > a,
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The proof is complete by letting R — oo and

Stein 3.8.4 Show that

taking the real part of the integral.

- .
/ % dz =me™®, foralla > 0.
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Proof Consider the integral of f(z) = P over the contour v = 77 U 2 as shown below.
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By the residue theorem, we have

/7 e

dz = 2miRes(f, ai) = 271 lim (z — ai) f(z) = 271 lim

iz
ze .
=ime” %

z—ai z—ai 2 + ai



The integral over the semicircle v, vanishes as R — oo, since for R > a,
T {R2e210 exp(iReig) B R2¢—Rsin6 48
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/0 R2e210 1 g2 = /o R2 — g2

< 422R2 2 /g e F0dy = mR(1 - ) _e_R).
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The proof is complete by letting R — oo and taking the imaginary part of the integral. O

Stein 3.8.5 Use contour integration to show that

oo 67271'1:125 T 5
= dr=— —27[¢]
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for all ¢ real.
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Proof We may assume ¢ < 0, and consider the integral of f(z) = 572)2 over the contour v = v, U~y
+z
as shown below.
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By the residue theorem, we have
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Lf(z) dz = 2miRes(f,1) = 27ilim e [(z=1)°f(2)] = 2rilim @(eerii)? = g(1 — 27€)e? e,

The integral over the semicircle v, vanishes as R — oo, since for R > 1,
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The proof is complete by letting R — co. O
Stein 3.8.6 Show that
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Proof Consider the integral of f(z) = ————— over the contour v = y; U 72 as shown below.
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The point i is a pole of order n + 1, and the residue at this pole is given by
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Res(f.0) = Jplim G (= =0 G) = Gy I s Gt
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The integral over the semicircle v, vanishes as R — oo, since for R > 1,
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Therefore, by the residue formula, we get

° dx 1-3-5---(2n—1)
T 9riRes(f,i) = ..
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Stein 3.8.7 Prove that
/27T de 2ma
= —, whenever a > 1.
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Proof Letz = ¢ and denote by C the unit circle. Then dz =iz d#, cos 6 = 1(z + 1), and
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Stein 3.8.13 Suppose f(z) is holomorphic in a punctured disc D, (z9) — {z0}. Suppose also that
()] < Alz — 2 71

for some € > 0, and all z near zy. Show that the singularity of f at z; is removable.

Proof Consider the function g(z) = (z — z0) f(z). We have

l9(2)] < Alz — 20

for all z near zp. By Riemann’s theorem on removable singularities, the singularity of g at 2, is removable.
Now, g is a holomorphic function with zj its zero. Thus, we can write g(z) = (z — z9)h(z) for some
holomorphic function A in the disc D,.(zp). This implies that f(z) = h(z) is holomorphic in the disc
D, (z0), and hence the singularity of f at z, is removable. O

Stein Page 83 Show that

/ % ozt sinTa 2sinh 2maé
e dz = —
cosh 7wz + cosma sinh 27¢

— 00

whenever 0 < a < 1and £ € R.

sinma

Proof Let f(z) = e 2™*¢ . To identify the poles of f(z), we note that

coshmz + cos Ta

eﬂ'Z +€—ﬂ2 9
coshmz +cosma=0 < — +cosma=0 < e + (2cosma)e™ +1=0
< ™ = —cosTa tisinTa = —eTT = TFHY) =

< z=02n+1Fa)i forneZ.
When 0 < a < 1, we have

(cosh7z + cos ma)’| = 7wsinh[x(2n + 1 F a)i] # 0.

z=(2n+1Fa)i

Thus, the poles of f(z) are simple. Now, let us consider the integral of f(z) over the contour vy = y; U
~v2 U~z U~4 as shown below.
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Note that (1 £ a)i are the only two poles of f(z) in the region enclosed by the contour 7. The correspond-



ing residues are given by

e—?ﬂ’i(l—a)if sin Ta
1—-a)i)= 1 — (1 —a)i =
Res(f,(1—a)i) = lim '[z—(1-a)if(z) = a0
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misin(ra) 7

and
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We dispense with the integrals of f on the vertical sides by showing that they go to zero as R tends to
infinity. Indeed, if z = R + iy with 0 <y < 2, then

’6—27”2{’ — 627ry§ < e47r|f|’

and
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which show that the integral over v, goes to 0 as R — co. A similar argument applies to 4. Finally, we
see that if I denotes the integral we wish to calculate, then the integral of f over 3 evaluates to

—R .
/ 6727ri(x+2i)§ sin 7'.FCL dr = —647T§I.
R cosh(z + 2i) + cosma
In the limit as R tends to infinity, the residue formula gives
I— ™ =9 [e2”<1—“>5 - e2”(1+“>5} — —4¢*™€ sinh 27at,
and since 1 — *™ = —>™¢ (2™ — ¢72™¢) = —2¢2™¢ ginh 27¢, we find that

I —4e?™¢ sinh 2ra¢  2sinh 2maf
- —2e2™€ginh2r¢  sinh2wé O




