Stein 2.6.9 Let Ω be a bounded connected open subset of \mathbb{C} , and $\varphi \colon \Omega \to \Omega$ a holomorphic function. Prove that if there exists a point $z_0 \in \Omega$ such that

$$\varphi(z_0) = z_0$$
 and $\varphi'(z_0) = 1$

then φ is linear.

Proof By considering the function $\varphi(z + z_0) - z_0$ on $\Omega - z_0$, we can assume without loss of generality that $z_0 = 0$. Suppose to the contrary that φ is not linear. Then there exists $n \ge 2$ with $a_n \ne 0$, such that

$$\varphi(z) = z + a_n z^n + O(z^{n+1})$$

near 0. It follows by induction that if we set $\varphi_k = \varphi \circ \cdots \circ \varphi$ (where φ appears k times), then

$$\varphi_k(z) = z + ka_n z^n + O(z^{n+1})$$

near 0. Since $\varphi_k(\Omega) \subset \Omega$ and Ω is bounded, there exists M > 0 such that $|\varphi_k| \leq M$ on Ω for all k. Choose an open ball $\mathbb{B}(0, r)$ such that its closure is contained in Ω . By Cauchy's inequalities, one has

$$n!k|a_n| = \left|\varphi_k^{(n)}(z)\right| \leqslant \frac{n!M}{r^n},$$

that is,

$$|a_n| \leqslant \frac{M}{kr^n}$$

for any $k \ge 1$. Then by letting $k \to \infty$, we get $a_n = 0$, a contradiction.

Stein 2.6.11 Let *f* be a holomorphic function on the disc D_{R_0} centered at the origin and of radius R_0 .

(1) Prove that whenever $0 < R < R_0$ and |z| < R, then

$$f(z) = \frac{1}{2\pi} \int_0^{2\pi} f\left(Re^{i\varphi}\right) \operatorname{Re}\left(\frac{Re^{i\varphi} + z}{Re^{i\varphi} - z}\right) \mathrm{d}\varphi.$$

(2) Show that

$$\operatorname{Re}\left(\frac{Re^{\mathrm{i}\gamma}+r}{Re^{\mathrm{i}\gamma}-r}\right) = \frac{R^2 - r^2}{R^2 - 2Rr\cos\gamma + r^2}$$

Proof (1) Let $\zeta = Re^{i\varphi}$. Then $d\zeta = i\zeta d\varphi$ and it suffices to show that

$$f(z) = \frac{1}{2\pi i} \int_{|\zeta|=R} f(\zeta) \operatorname{Re}\left(\frac{\zeta+z}{\zeta-z}\right) \frac{d\zeta}{\zeta}.$$
(2.6.11-1)

When |z| < R, the function $\frac{f(\zeta)}{\zeta - \frac{R^2}{\overline{z}}}$ is a holomorphic function of ζ on D_R . Hence,

$$\int_{|\zeta|=R} \frac{f(\zeta)}{\zeta - \frac{R^2}{\bar{z}}} \, \mathrm{d}\zeta = 0.$$

林晓烁 2025-03-20

Therefore, by the Cauchy integral formula, we have

$$\begin{split} f(z) &= \frac{1}{2\pi \mathbf{i}} \int\limits_{|\zeta|=R} \frac{f(\zeta)}{\zeta - z} \, \mathrm{d}\zeta \\ &= \frac{1}{2\pi \mathbf{i}} \int\limits_{|\zeta|=R} f(\zeta) \left(\frac{1}{\zeta - z} + \frac{1}{\frac{\zeta \bar{\zeta}}{\bar{z}} - \zeta} \right) \, \mathrm{d}\zeta \\ &= \frac{1}{2\pi \mathbf{i}} \int\limits_{|\zeta|=R} f(\zeta) \left(\frac{1}{\zeta - z} + \frac{\bar{z}}{\zeta (\bar{\zeta} - \bar{z})} \right) \, \mathrm{d}\zeta \\ &= \frac{1}{2\pi \mathbf{i}} \int\limits_{|\zeta|=R} f(\zeta) \frac{\zeta \bar{\zeta} - z \bar{z}}{\zeta (\zeta - z) (\bar{\zeta} - \bar{z})} \, \mathrm{d}\zeta. \end{split}$$

The identity (2.6.11-1) is then proved by noting that

$$\operatorname{Re}\left(\frac{\zeta+z}{\zeta-z}\right) = \frac{1}{2}\left(\frac{\zeta+z}{\zeta-z} + \frac{\bar{\zeta}+\bar{z}}{\bar{\zeta}-\bar{z}}\right)$$
$$= \frac{1}{2}\frac{\zeta\bar{\zeta}-\zeta\bar{z}+z\bar{\zeta}-z\bar{z}+\zeta\bar{\zeta}-z\bar{\zeta}+\zeta\bar{z}-z\bar{z}}{(\zeta-z)(\bar{\zeta}-\bar{z})}$$
(2.6.11–2)
$$= \frac{\zeta\bar{\zeta}-z\bar{z}}{(\zeta-z)(\bar{\zeta}-\bar{z})}.$$

(2) Setting $\zeta = Re^{i\gamma}$ and z = r in (2.6.11–2) gives

$$\operatorname{Re}\left(\frac{Re^{\mathrm{i}\gamma}+r}{Re^{\mathrm{i}\gamma}-r}\right) = \frac{R^2-r^2}{R^2-2Rr\cos\gamma+r^2}.$$

Stein 2.6.13 Suppose *f* is an analytic function defined everywhere in \mathbb{C} and such that for each $z_0 \in \mathbb{C}$ at least one coefficient in the expansion

$$f(z) = \sum_{n=0}^{\infty} c_n (z - z_0)^r$$

is equal to 0. Prove that f is a polynomial.

Proof From the hypothesis, we see that

$$\mathbb{C} = \bigcup_{n=0}^{\infty} \Big\{ z \in \mathbb{C} : f^{(n)}(z) = 0 \Big\}.$$

Since \mathbb{C} is uncountable, there exists $n \ge 0$ such that the set $Z_n := \left\{ z \in \mathbb{C} : f^{(n)}(z) = 0 \right\}$ is uncountable. This implies that Z_n has an accumulation point and so $f^{(n)}$ is identically zero by the identity theorem. Therefore, f is a polynomial.

Stein 2.6.15 Suppose *f* is a non-vanishing continuous function on $\overline{\mathbb{D}}$ that is holomorphic in \mathbb{D} . Prove that if

$$|f(z)| = 1$$
 whenever $|z| = 1$,

then f is constant.

Proof Consider the function

$$g(z) \coloneqq \begin{cases} f(z), & \text{ if } |z| < 1, \\ \frac{1}{\overline{f(1/\bar{z})}}, & \text{ if } |z| \geqslant 1. \end{cases}$$

It is direct to check that g is continuous on \mathbb{C} . Since f(z) is holomorphic and non-vanishing in \mathbb{D} , the function $\frac{1}{f(1/z)}$ is holomorphic whenever |z| > 1. If $|z_0| > 1$, then the power series expansion of $\frac{1}{f(1/z)}$ near $\overline{z_0}$ gives

$$\frac{1}{f(1/z)} = \sum_{n=0}^{\infty} a_n (z - \overline{z_0})^n.$$

Then

$$\frac{1}{\overline{f(1/\overline{z})}} = \sum_{n=0}^{\infty} \overline{a_n} (z - z_0)^n.$$

Therefore, g(z) is holomorphic when |z| > 1. Now, one can proceed as in the proof of Theorem 5.5 and apply Morera's theorem to show that g is holomorphic in \mathbb{C} . Thus, g is entire and bounded, so by Liouville's theorem, g (and hence f) is constant.

Stein 2.7.3 Morera's theorem states that if *f* is continuous in \mathbb{C} , and $\int_T f(z) dz = 0$ for all triangles *T*, then *f* is holomorphic in \mathbb{C} . Naturally, we may ask if the conclusion still holds if we replace triangles by other sets.

(1) Suppose that f is continuous on \mathbb{C} , and

$$\int_C f(z) \, \mathrm{d}z = 0$$

for every circle C. Prove that f is holomorphic.

(2) More generally, let Γ be any toy contour, and \mathcal{F} the collection of all translates and dilates of Γ . Show that if *f* is continuous on \mathbb{C} , and

$$\int_{\gamma} f(z) \, \mathrm{d}z = 0 \quad \text{for all } \gamma \in \mathcal{F}$$

then *f* is holomorphic. In particular, Morera's theorem holds under the weaker assumption that $\int_{\infty} f(z) dz = 0$ for all equilateral triangles.

Proof Consider the molifier $\varphi_{\varepsilon}(z) \coloneqq \varepsilon^{-2} \varphi(\frac{z}{\varepsilon})$, where

$$\varphi \colon \mathbb{C} \simeq \mathbb{R}^2 \to \mathbb{R}, \quad z \mapsto \begin{cases} c \exp\left(-\frac{1}{(|z|^2 - 1/4)^2}\right), & |z| < \frac{1}{2}, \\ 0, & |z| \geqslant \frac{1}{2}. \end{cases}$$

Here c > 0 is a suitable normalizing constant. Then the convolution

$$f_{\varepsilon}(z) \coloneqq f * \varphi_{\varepsilon}(z) = \int_{\mathbb{R}^2} f(z-w) \varphi_{\varepsilon}(w) \, \mathrm{d} w \in \mathfrak{C}^{\infty}(\mathbb{R}^2),$$

林晓烁 2025-03-20

and f_{ε} converges uniformly to f on any compact subset of \mathbb{C} as $\varepsilon \to 0$. Thus, by Theorem 5.2, it suffices to show that f_{ε} is holomorphic in each case. So we may assume that f is smooth.

(1) Since f is twice real differentiable, we can write

$$f(z) = f(z_0) + a(z - z_0) + b(\overline{z - z_0}) + O(|z - z_0|^2)$$

for all $z \in \mathbb{B}(z_0, \varepsilon)$, with some $\varepsilon > 0$. By the assumption, we have

$$\begin{split} 0 &= \int\limits_{|z-z_0|=\varepsilon} f(z) \, \mathrm{d}z \\ &= \int\limits_{|z-z_0|=\varepsilon} \left[f(z_0) + a(z-z_0) + b(\overline{z-z_0}) + O\left(|z-z_0|^2\right) \right] \mathrm{d}z \\ &= \int\limits_{|z-z_0|=\varepsilon} \left[b(\overline{z-z_0}) + O\left(|z-z_0|^2\right) \right] \mathrm{d}z \\ &= \int_0^{2\pi} b\varepsilon e^{-\mathrm{i}\theta} \mathrm{i}\varepsilon e^{\mathrm{i}\theta} \, \mathrm{d}\theta + O\left(\varepsilon^3\right) \\ &= 2\pi \mathrm{i}b\varepsilon^2 + O\left(\varepsilon^3\right), \end{split}$$

which implies b = 0. Therefore, $\frac{\partial f}{\partial \bar{z}} = 0$ and f is holomorphic.

(2) Since f = u + iv is C^1 , for any open ball $\mathbb{B}(z_0, r)$, we have

$$0 = \int_{|z-z_0|=r} f(z) \, \mathrm{d}z = \int_{|z-z_0|=r} (u \, \mathrm{d}x - v \, \mathrm{d}y) + \mathbf{i} \int_{|z-z_0|=r} (u \, \mathrm{d}y + v \, \mathrm{d}x).$$

With this and the Green's theorem, we obtain

$$0 = -\int_{|z-z_0|=r} (u \, \mathrm{d}x - v \, \mathrm{d}y) = \iint_{\mathbb{B}(z_0,r)} \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}\right) \mathrm{d}x \, \mathrm{d}y,$$

$$0 = \int_{|z-z_0|=r} (u \, \mathrm{d}y + v \, \mathrm{d}x) = \iint_{\mathbb{B}(z_0,r)} \left(\frac{\partial u}{\partial x} - \frac{\partial v}{\partial y}\right) \mathrm{d}x \, \mathrm{d}y.$$

Dividing the above equations by πr^2 and letting $r \to 0$ gives

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$
 and $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$.

This shows that the real and imaginary parts of f satisfy the Cauchy–Riemann equations, so f is holomorphic.

Stein 2.7.4 Prove the converse to Runge's theorem: if K is a compact set whose complement is not connected, then there exists a function f holomorphic in a neighborhood of K which cannot be approximated uniformly by polynomials on K.

Proof Pick a point z_0 in a bounded component of K^c , and let $f(z) = \frac{1}{z-z_0}$. Then there is some M > 0 such that $|z - z_0| < M$ for all $z \in K$. If f can be approximated uniformly by polynomials on K, then we

can find a polynomial p such that

$$|f(z) - p(z)| < \frac{1}{M}$$

for all $z \in K$. This implies that

$$|(z - z_0)p(z) - 1| < \frac{|z - z_0|}{M} < 1$$

for all $z \in K$. Since $(z - z_0)p(z) - 1$ is entire, and the bounded component containing z_0 is enclosed by K by the Jordan curve theorem, we have

$$|(z - z_0)p(z) - 1| < 1 \tag{2.7.4-1}$$

for all *z* in the union of *K* and the bounded component containing z_0 by the maximum modulus principle. Now, taking $z = z_0$ in (2.7.4–1) leads to a contradiction.