Stein 2.6.9 Let Q) be a bounded connected open subset of C, and ¢: 2 — € a holomorphic function.
Prove that if there exists a point 2y € §2 such that

©(z0) =20 and ¢'(29) =1
then ¢ is linear.

Proof By considering the function ¢(z + zp) — 2o on Q — 2z, we can assume without loss of generality
that zp = 0. Suppose to the contrary that ¢ is not linear. Then there exists n > 2 with a,, # 0, such that

p(z) = 2+ a,z" + 0(z")
near 0. It follows by induction that if we set ¢, = @ o --- 0 ¢ (Where ¢ appears k times), then
or(z) =z + ka,z" + O(Z"H)

near 0. Since ¢ (Q) C 2 and Q is bounded, there exists M > 0 such that |px| < M on 2 for all k. Choose

an open ball B(0, r) such that its closure is contained in Q. By Cauchy’s inequalities, one has

" \M
nlklan| = |o{" (2)| < =,
,rn
that is,
au] < o
an| X 7 -
krm
for any k£ > 1. Then by letting £ — oo, we get a,, = 0, a contradiction. O

Stein 2.6.11 Let f be a holomorphic function on the disc D, centered at the origin and of radius Rj.

(1) Prove that whenever 0 < R < Ry and |z| < R, then
1 [ , Re% + z
= — 1p _—
f(2) o /0 f(Re?) Re(ReW’ — z) de.

(2) Show that

Re Re +7r\ R% — 2
Relv —r )  R2—2Rrcosy+r?’

Proof (1) Let( = Re'®. Then d¢ = i¢ dy and it suffices to show that

¢+2z)d¢ _
= 5o / f(¢ ( ) c (2.6.11-1)
[¢I=R
When |z| < R, the function f(% is a holomorphic function of { on Dr. Hence,
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f(©)
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I¢|=R =

d¢ = 0.



Therefore, by the Cauchy integral formula, we have
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The identity (2.6.11-1) is then proved by noting that

C+z\ _ 1(¢+z (+z
we(52) =5 (5 )
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_ Cf — 2z
(C=2)(C-2)
(2) Setting ¢ = Re!” and z = r in (2.6.11-2) gives
Re Re +rY\ R? — 12
Re" —r ) R2—2Rrcosy+r?’ O

Stein 2.6.13 Suppose f is an analytic function defined everywhere in C and such that for each zy € C
at least one coefficient in the expansion

oo

f(2) =) calz —20)"

n=0

is equal to 0. Prove that f is a polynomial.

Proof From the hypothesis, we see that

C= 7@0{2 eC: fM(z)= 0}.

Since C is uncountable, there exists n > 0 such that the set Z,, {z eC: fM(z) = O} is uncountable.

This implies that Z,, has an accumulation point and so (™) is 1dentically zero by the identity theorem.
Therefore, f is a polynomial. O

Stein 2.6.15 Suppose f is a non-vanishing continuous function on D that is holomorphic in D. Prove
that if

|f(z)] =1 whenever |z| =1,



then f is constant.

Proof Consider the function
f(2), if [z <1,

f(1/z)
It is direct to check that g is continuous on C. Since f(z) is holomorphic and non-vanishing in D, the
1
function is holomorphic whenever |z| > 1. If |z9| > 1, then the power series expansion of
near zp gives
1 oo
—_— = an(z —7Z9)".
Flijz) ~ 2 =)
Then
1 o0
— = > an(z—2)"
f(1/z) n;)

Therefore, g(z) is holomorphic when |z| > 1. Now, one can proceed as in the proof of Theorem 5.5
and apply Morera’s theorem to show that g is holomorphic in C. Thus, g is entire and bounded, so by
Liouville’s theorem, g (and hence f) is constant. O

Stein 2.7.3 Morera’s theorem states that if f is continuous in C, and / f(2)dz = 0 for all triangles T,

T
then f is holomorphic in C. Naturally, we may ask if the conclusion still holds if we replace triangles by
other sets.

(1) Suppose that f is continuous on C, and

/Cf(z)dz:O

for every circle C. Prove that f is holomorphic.

(2) More generally, let I' be any toy contour, and F the collection of all translates and dilates of I'.
Show that if f is continuous on C, and

/f(z)dzzO forally € F
gl

then f is holomorphic. In particular, Morera’s theorem holds under the weaker assumption that

/ f(2)dz = 0 for all equilateral triangles.
T

Proof Consider the molifier ¢.(z) := e~ ¢(%), where

1
cexp| ——=——), |2l < i,
p:CoRE SR, 2 p((M%JMP) 2
0, 2] >

Here ¢ > 0 is a suitable normalizing constant. Then the convolution

fe(z) = fr(2) = /R2 f(z —w)pe(w)dw € € (RQ),



and f. converges uniformly to f on any compact subset of C as ¢ — 0. Thus, by Theorem 5.2, it suffices
to show that f. is holomorphic in each case. So we may assume that f is smooth.

(1) Since f is twice real differentiable, we can write
f(2) = f(20) + a(z — 20) + b(z — z0) + O(|z — 20[?)

for all z € B(2, ¢), with some € > 0. By the assumption, we have

0= / f(z)dz

|z—z0|=¢

- / [£(20) + a(z = 20) +b(z = %) + O(|z — #|*)] d=
|z—z0|=¢

= / [b(z=20) + O(|z — 20|*)] d=
|z—z0|=¢

2
= / bee Vicel? df + Ofe )
0
= 2ribe® + O(?),
o of . ,
which implies b = 0. Therefore, 25 = 0 and f is holomorphic.

(2) Since f = u + iv is €', for any open ball B(z, ), we have

/ f(z)dz = / (udz —vdy) +i / (udy + vdx).

|z—z0|=r |z—z0|=r |z—z0|=r

With this and the Green’s theorem, we obtain

0=-— / (udx —vdy) = // <8u+>dazdy,

|z—z0|=r

0= / (udy +vde) = //(au>dxdy
Jdr Oy
|z—zo|=r B(zo0,r)

Dividing the above equations by 7r? and letting » — 0 gives

ou_ov 0w o
or Oy oy Oz’
This shows that the real and imaginary parts of f satisfy the Cauchy—Riemann equations, so f is

holomorphic. O

Stein 2.7.4 Prove the converse to Runge’s theorem: if K is a compact set whose complement is not
connected, then there exists a function f holomorphic in a neighborhood of K which cannot be approx-
imated uniformly by polynomials on K.

Proof Pick a point z in a bounded component of K¢, and let f(z) = =
such that |z — zg| < M forall z € K. If f can be approximated uniformly by polynomials on K, then we



can find a polynomial p such that
1
()= p()] <+

for all z € K. This implies that
|z — 20|

M

for all z € K. Since (z — 2z9)p(z) — 1 is entire, and the bounded component containing z is enclosed by

(z = 20)p(2) — 1| < <1

K by the Jordan curve theorem, we have
[(z = z0)p(2) — 1] <1 (2.7.4-1)

for all z in the union of K and the bounded component containing z, by the maximum modulus princi-

ple. Now, taking z = 2z in (2.7.4-1) leads to a contradiction. O



