Stein 2.6.1 Prove that
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Proof Consider the integral of f(z) = e along the contour v := y; U 72 U 3 as shown below.
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By Jordan’s inequality, we have sinz > — for z € [0, Z]. Hence
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The integral along 3 is
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By Cauchy’s theorem, we have
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Taking the real and imaginary parts, we get the desired result.
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Stein 2.6.2 Show that/
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Proof Consider the integral of f(z) = e along the contour v := v; U2 U3 U 74 as shown below.
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The integral along v, is
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f(z)dz = / Mﬂ%ele do = 1/ exp(iR cosf — Rsin ) dé.
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By Jordan’s inequality, we have sinz > =z for z € [0, Z]. Hence
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Similarly, the integral along ~, is

f(z)dz = —i/ exp(ic cos 8 — e sin ) dé,
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and it follows that
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which tends to zero as ¢ — 0. That is to say, the integral along 4 tends to —i as ¢ — 0. Therefore, we
obtain by Cauchy’s theorem
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Stein 2.6.3 Evaluate the integrals

oo o0
/ e " cosbrdx and / e sinbrdz, a>0
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by integrating e~**, A = \/a2 + b2, over an appropriate sector with angle w, with cosw = <.

Solution Consider the integral of f(z) = e~ along the contour v = v; U y2 U 73 as shown below.



Here w € (0, g) and we assume first that b > 0, so that sinw = %.
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The integral along v, is

f(z)dz = iR/ exp(—ARe" +i0) do = iR/ expli(d — ARsin6) — AR cos 0] d6.
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Since cosz > 1 — =z for z € [0, Z], we have
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which tends to zero as R — +oo for w < 7. The integral along 3 is
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Taking the real and imaginary parts then gives
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Therefore, we obtain
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These hold for b < 0 as well, as one can see from the integrands. O

Stein 2.6.4 Prove that for all £ € C we have e = / e~ g2miat g
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Proof In Example 1 of Section 2.3, we have shown that the above identity holds for £ € R. Now, for
& = a+ biwith a,b € R, we have
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Stein 2.6.5 Suppose f is continuously complex differentiable on €, and 7" C  is a triangle whose
interior is also contained in 2. Apply Green’s theorem to show that

/Tf(z) dz = 0.

This provides a proof of Goursat’s theorem under the additional assumption that f’ is continuous.

Proof Let f(z +1iy) = u(z,y) + iv(z,y) where v and v are real-valued functions. Then
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by the Cauchy-Riemann equations. O

Stein 2.6.6 Let Q be an open subset of C and let T" C ) be a triangle whose interior is also contained
in Q. Suppose that f is a function holomorphic in 2 except possibly at a point w inside T". Prove that if

/T F(z)dz =0,

Proof Let~. be acircle centered at w with radius € contained in 7". Since f is holomorphic in the region

f is bounded near w, then

enclosed by T" and ., we have

/ f(z)dz= [ f(2)d-=.
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By the boundedness of f near w, we have

[ys f(z)dz

Therefore, we obtain the desired result. O

<2me max |f(2)] =2 0.
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Stein 2.6.7 Suppose f: D — C is holomorphic. Show that the diameter d = sup |f(z) — f(w)] of the
z,weD
image of f satisfies

2|f(0)] < d. (2.6.7-1)
Moreover, it can be shown that equality holds precisely when f is linear, f(2) = ag + a1 2.

Proof The Cauchy integral formula gives

1'(0) = % . C(E) d¢, (2.6.7-2)



where C,. is the circle centered at the origin with radius r. Replace ¢ by —( in (2.6.7-2) to get
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Adding (2.6.7-2) and (2.6.7-3) gives
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Letting  — 1 gives (2.6.7-1). It is clear that the equality holds when f is linear.

To show that the equality holds only when f is linear, we let f(z) = Z a,z™ and denote

n=0

mr2
B(O,r

1
Noy= s [ 17N dedy
)
forr € [0,1]. If f/(0) =0, then d = 0 and f is constant. Otherwise, we have
lim N(r) = |f'(0)]° > 0.
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This shows that f is locally injective near the origin, and by the area formula we have
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00 - L f
w2 Jo Jo

mr2

[e.9]

E nanpn—lei(n—l)e
n=1

1 o T 27 )
= Y nmayay, / / prtm=2eln=mlp 4o dp
o Jo

2
r
n,m=1

1 oo T 2m
2 2 2n—1
:7§nla|//p dodp
71'7"2 1 " 0 0

00
— Z n|an|2T2n—2
n=1

2
pdfdp

and
o

N'(r) = Z n(2n — 2)|ay, |*r*" 3
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for all r small enough. If f is not linear, i.e., there exists n > 2 such that a,, # 0, then N’(r) > 0 and N(r)
is strictly increasing in r for r small enough. Hence

N©O) = |/ (0) < N(r) = Area(f(B(0,r))) < mld(r)/2* _ (d(T)> 7 (2.6.7-4)
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where the “<” sign is due to the isodiametric inequality. Meanwhile, by the maximum modulus prin-

ciple, we have
& = sup sup
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f(e’2) = f(2)

z
the supremum of its modulus over |z| = r is a nondecreasing function of r. Taking the supremum over

d(r)

6, we conclude that —= is a nondecreasing function of r. So if the equality holds in (2.6.7-1), then for
r

For any fixed 6, the function is holomorphic in D. By the maximum modulus principle,

small r we have a(r) a)
r
= S =d=2[f),

which contradicts (2.6.7-4). Therefore f must be linear. O



