Prove that a holomorphic map $f: U \to V$ is a local bijection on U if and only if $f'(z) \neq 0$ for all $z \in U$.

Proof The "only if" part is guaranteed by Proposition 1.1. Suppose $f'(z_0) \neq 0$ and let $w_0 = f(z_0)$. Then we can find r > 0 such that $f(z) \neq w_0$ whenever $0 < |z - z_0| \leq r$. Define

$$m \coloneqq \min_{|z-z_0|=r} |f(z) - w_0| > 0.$$

Then for $z_0 \in \partial \mathbb{B}(z_0, r)$ and $w \in \mathbb{B}(w_0, m)$, we have

$$|[f(z) - w] - [f(z) - w_0]| = |w - w_0| < m \le |f(z) - w_0|.$$

Now, Rouché's theorem implies that f(z) - w and $f(z) - w_0$ have the same number of zeros in $\mathbb{B}(z_0, r)$, which is exactly one. This shows that $f: \mathbb{B}(z_0, r) \to \mathbb{B}(w_0, m)$ is a bijection.

Remark In fact, the inverse function theorem applies when $f'(z_0) \neq 0$.

Stein 8.5.5 Prove that $f(z) = -\frac{1}{2}(z + \frac{1}{z})$ is a conformal map from the half-disc $\{z = x + iy : |z| < 1, y > 0\}$ to the upper half-plane.

Proof Since

$$f(x+\mathrm{i}y) = -\frac{1}{2}\left(x+\mathrm{i}y+\frac{1}{x+\mathrm{i}y}\right) = -\frac{x}{2}\left(1+\frac{1}{x^2+y^2}\right) - \frac{\mathrm{i}y}{2}\left(1-\frac{1}{x^2+y^2}\right),$$

it is clear that f maps the upper half-disc into the upper half-plane. Note that the equation f(z) = wreduces to the quadratic equation $z^2 + 2wz + 1 = 0$, which has two distinct roots z_1 and z_2 in $\mathbb{C} \setminus \mathbb{R}$ whenever $w \in \mathbb{H}$. By Vieta's formulas, $z_1 + z_2 = -2w$ and $z_1z_1 = 1$. Hence, exactly one of the roots z_1 or z_2 lies in the upper half-disc. This shows that

$$f \colon \{z = x + \mathrm{i}y : |z| < 1, \, y > 0\} \to \mathbb{H}$$

is a bijective holomorphic function.

Stein 8.5.9 Prove that the function *u* defined by

$$u(x,y) = \operatorname{Re}\left(rac{\mathrm{i}+z}{\mathrm{i}-z}
ight)$$
 and $u(0,1) = 0$

is harmonic in the unit disc and vanishes on its boundary. Note that u is not bounded in \mathbb{D} .

Proof Since $\frac{i+z}{i-z}$ is holomorphic in \mathbb{D} , it follows by Exercise 1.4.11 that u is harmonic in \mathbb{D} . The boundary values can be determined using Thales's theorem in geometry, which states that the angle subtended by a diameter is always a right angle, and thus has a cosine value of zero.

Stein 8.5.10 Let $F \colon \mathbb{H} \to \mathbb{C}$ be a holomorphic function that satisfies

$$|F(z)| \leq 1$$
 and $F(\mathbf{i}) = 0$.

Prove that

$$|F(z)| \leq \left| \frac{z-i}{z+i} \right|$$
 for all $z \in \mathbb{H}$.

Proof Consider the map $G: \mathbb{D} \to \mathbb{H}, w \mapsto i\frac{1-w}{1+w}$, as given in Theorem 1.2. The composition $F \circ G: \mathbb{D} \to \mathbb{C}$ satisfies

$$|F \circ G(w)| \leq 1$$
 and $F \circ G(0) = 0$.

By the Schwarz lemma, we have

$$|F \circ G(w)| = \left|F\left(i\frac{1-w}{1+w}\right)\right| \leqslant |w|.$$

Substituting $w = \frac{\mathbf{i} - z}{\mathbf{i} + z}$ gives the desired inequality.

Stein 8.5.11 Show that if $f : \mathbb{B}(0, R) \to \mathbb{C}$ is holomorphic, with $|f(z)| \leq M$ for some M > 0, then

$$\left|\frac{f(z) - f(0)}{M^2 - \overline{f(0)}f(z)}\right| \leqslant \frac{|z|}{MR}.$$

Proof Without loss of generality, we can assume that f is not constant. Then the maximum modulus principle implies that |f(z)| < M for all $z \in \mathbb{B}(0, R)$. Now, consider the map $g: \mathbb{D} \to \mathbb{D}, z \mapsto \frac{f(Rz)}{M}$. It suffices to show that

$$\left|\frac{g(0) - g(z)}{1 - \overline{g(0)}g(z)}\right| \leqslant |z|$$

which is implemented by the Schwarz lemma, since the left-hand side is the composition of g with the Blaschke factor $\psi_{g(0)}$.

Stein 8.5.12 A complex number $w \in \mathbb{D}$ is a **fixed point** for the map $f : \mathbb{D} \to \mathbb{D}$ if f(w) = w.

- (1) Prove that if $f: \mathbb{D} \to \mathbb{D}$ is analytic and has two distinct fixed points, then f is the identity, that is, f(z) = z for all $z \in \mathbb{D}$.
- (2) Must every holomorphic function $f : \mathbb{D} \to \mathbb{D}$ have a fixed point?
- **Proof** (1) Suppose z_1 and z_2 are two distinct fixed points of f in \mathbb{D} . Consider the Blaschke factor $\psi_{z_1}(z) = \frac{z_1 z}{1 \overline{z_1}z}$. Then the composition $g \coloneqq \psi_{z_1} \circ f \circ \psi_{z_1}^{-1} \colon \mathbb{D} \to \mathbb{D}$ has two distinct fixed points 0 and $\psi_{z_1}(z_2)$ in \mathbb{D} . By the Schwarz lemma, $g = \mathrm{Id}_{\mathbb{D}}$, which implies $f = \mathrm{Id}_{\mathbb{D}}$.
- (2) The composition f as illustrated in the following diagram is an automorphism of \mathbb{D} which has no

fixed points:

$$\begin{array}{c} \mathbb{D} \xrightarrow{z \mapsto i\frac{1-z}{1+z}} \mathbb{H} \\ f_{\downarrow}^{\downarrow} & \qquad \downarrow z \mapsto z+1 \\ \mathbb{D} \xleftarrow{z \mapsto \frac{i-z}{i+z}} \mathbb{H} \end{array}$$

Stein 8.5.13 The **pseudo-hyperbolic distance** between two points $z, w \in \mathbb{D}$ is defined by

$$\rho(z,w) = \left| \frac{z-w}{1-\overline{w}z} \right|.$$

(1) Prove that if $f \colon \mathbb{D} \to \mathbb{D}$ is holomorphic, then

$$\rho(f(z), f(w)) \leq \rho(z, w) \quad \text{for all } z, w \in \mathbb{D}.$$

Moreover, prove that if f is an automorphism of \mathbb{D} then f preserves the pseudo-hyperbolic distance

$$\rho(f(z), f(w)) = \rho(z, w) \text{ for all } z, w \in \mathbb{D}.$$

(2) Prove that

$$\frac{|f'(z)|}{1-|f(z)|^2} \leqslant \frac{1}{1-|z|^2} \quad \text{for all } z \in \mathbb{D}.$$

This result is called the Schwarz–Pick lemma. See Problem 8.6.3 for an important application of this lemma.

Proof (1) Consider the Blaschke factor $\psi_{\alpha}(z) = \frac{z - \alpha}{1 - \overline{\alpha}z}$ for $\alpha \in \mathbb{B}(0, 1)$. Then it suffices to prove that

$$|\psi_{f(w)} \circ f(z)| \leq |\psi_w(z)|,$$

which is equivalent to

$$\left|\psi_{f(w)}\circ f\circ\psi_{w}^{-1}(z)\right|\leqslant\left|z\right|$$

This is a direct consequence of the Schwarz lemma. If $f \in Aut(\mathbb{D})$, then we also have

$$\rho(f^{-1}(z), f^{-1}(w)) \leqslant \rho(z, w),$$

so that the equality holds for all $z, w \in \mathbb{D}$.

(2) By (1) we have

$$\left|\frac{f(z) - f(w)}{z - w}\right| \leqslant \left|\frac{1 - \overline{f(w)}f(z)}{1 - \overline{w}z}\right|,$$

and by letting $w \rightarrow z$ we obtain the desired inequality.

Stein 8.5.14 Prove that all conformal mappings from the upper half-plane \mathbb{H} to the unit disc \mathbb{D} take the form

$$e^{\mathrm{i} heta}rac{z-eta}{z-\overline{eta}},\quad heta\in\mathbb{R} ext{ and }eta\in\mathbb{H}.$$

Proof By Theorem 1.2, the map $g(z) = i\frac{1-z}{1+z}$ is a conformal map from \mathbb{D} to \mathbb{H} . Now, given any con-

formal mapping $f \colon \mathbb{H} \to \mathbb{D}$, by Theorem 2.2, the composition $f \circ g \in \operatorname{Aut}(\mathbb{D})$ takes the form

$$f(g(z)) = e^{i\gamma} \frac{\alpha - z}{1 - \overline{\alpha}z},$$

where $\theta \in \mathbb{R}$ and $\alpha \in \mathbb{D}$. This shows that

$$f(z) = \frac{1+\alpha}{1-\overline{\alpha}} e^{i\gamma} \frac{z-i\frac{1-\alpha}{1+\alpha}}{z-\overline{i}\frac{1-\alpha}{1+\alpha}} = e^{i\theta} \frac{z-\beta}{z-\overline{\beta}}$$

for some $\theta \in \mathbb{R}$ and $\beta = i \frac{1-\alpha}{1+\alpha} \in \mathbb{H}$, since $\left| \frac{1+\alpha}{1-\overline{\alpha}} \right| = 1$.