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Stein 7.3.5 Consider the following function

ζ̃(s) = 1− 1

2s
+

1

3s
− · · · =

∞∑
n=1

(−1)n+1

ns
.

(1) Prove that the series defining ζ̃(s) converges for Re(s) > 0 and defines a holomorphic function in
that half-plane.

(2) Show that for s > 1 one has ζ̃(s) =
(
1− 21−s

)
ζ(s).

(3) Conclude, since ζ̃ is given as an alternating series, that ζ has no zeros on the segment 0 < s < 1.
Extend this last assertion to s = 0 by using the functional equation.

Proof (1) Since the partial sums
N∑

n=1

(−1)n are bounded, Exercise 7.3.1 applies.

(2) When s > 1, since ζ(s) and ζ̃(s) are absolutely convergent (as infinite series), we have

ζ(s)− ζ̃(s) =

∞∑
n=1

[
1

ns
− (−1)n+1

ns

]
=

∞∑
n=1

2

(2n)s
= 21−sζ(s).

(3) Note that at s = 1, the simple pole of ζ(s) cancels with the zero of 1 − 21−s, so both sides of the
identity in (2) are holomorphic functions on Re(s) > 0 that agree on Re(s) > 1. Thus this identity
holds on the whole half-plane Re(s) > 0. Focusing on 0 < s < 1, we have

1

(2n− 1)s
− 1

(2n)s
> 0 for all n ∈ N.

Hence, the alternating series ζ̃(s) is strictly positive when 0 < s < 1, and ζ(s) ̸= 0 on the segment
0 < s < 1 by the identity in (2). Finally, the functional equation ξ(s) = ξ(1− s), or equivalently,

π− s
2Γ

(
s
2

)
ζ(s) = π− 1−s

2 Γ
(
1−s
2

)
ζ(1− s),

in Theorem 2.3 of Chapter 6, shows that ζ(0) ̸= 0 since the simple pole of ζ(1− s) at s = 0 cancels
with the simple zero of 1/Γ

(
s
2

)
. This concludes that ζ(s) ̸= 0 on the segment 0 < s < 1.

Remark We have shown that ζ(0) = − 1
2 in Homework 11.

Stein 7.3.6 Show that for every c > 0

lim
N→∞

1

2πi

∫ c+iN

c−iN
as

ds
s

=


1, if a > 1,

1
2 , if a = 1,

0, if 0 ⩽ a < 1.

This integral is taken over the vertical segment from c− iN to c+ iN .

Proof Let f(s) = as

s
be the integrand.
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(1) For 0 ⩽ a < 1, choose the rectangular contour γ = γ1 ∪ γ2 ∪ γ3 ∪ γ4 as illustrated below.

Re

Im

γ1

γ2

γ3

γ4

c+ iN

c− iN

c+
√
N + iN

c+
√
N − iN

c

Since f(s) is holomorphic on C \ {0}, we have
∫
γ

f(s)ds = 0. For the integral along γ2, one has

∣∣∣∣∫
γ2

f(s)ds
∣∣∣∣ ⩽ √

N · a
c

N

N→∞
0.

By the same argument we have ∣∣∣∣∫
γ4

f(s)ds
∣∣∣∣ ⩽ √

N · a
c

N

N→∞
0.

For the integral along γ3, we have

∣∣∣∣∫
γ3

f(s)ds
∣∣∣∣ ⩽ 2N · a

c+
√
N

c+
√
N

0⩽a<1

N→∞
0.

Therefore, letting N → ∞ gives

lim
N→∞

1

2πi

∫ c+iN

c−iN
as

ds
s

= 0 when 0 ⩽ a < 1.

(2) For a > 1, choose the rectangular contour γ = γ1 ∪ γ2 ∪ γ3 ∪ γ4 as illustrated below.

Re

Im

γ1

γ2

γ3

γ4

c+ iN

c− iN

c−
√
N + iN

c−
√
N − iN

c0
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The residue of f(s) at s = 0 is 1, hence by the residue formula we have∫
γ

f(s)ds = 2πi Res(f, 0) = 2πi.

For the integral along γ2, one has∣∣∣∣∫
γ2

f(s)ds
∣∣∣∣ ⩽ √

N · a
c

N

N→∞
0.

By the same argument we have ∣∣∣∣∫
γ4

f(s)ds
∣∣∣∣ ⩽ √

N · a
c

N

N→∞
0.

For the integral along γ3, we have

∣∣∣∣∫
γ3

f(s)ds
∣∣∣∣ ⩽ 2N · a

c−
√
N

√
N − c

a>1

N→∞
0.

Therefore, letting N → ∞ gives

lim
N→∞

1

2πi

∫ c+iN

c−iN
as

ds
s

= 1 when a > 1.

(3) For a = 1, we compute directly

lim
N→∞

1

2πi

∫ c+iN

c−iN

ds
s

=
1

2πi lim
N→∞

i[arg(c+ iN)− arg(c− iN)] =
π

2π
=

1

2
.

Here we choose the principal branch of the logarithm in the slit plane C \ (−∞, 0].

Remark For a ∈ (0, 1) ∪ (1,∞), we can also use Lemma 2.4 in Chapter 7 to write

1− 1/a

2πi

∫ c+i∞

c−i∞
as

ds
s

=
1

2πi

∫ c+i∞

c−i∞
as

ds
s

− 1

2πi

∫ c+i∞

c−i∞
as−1ds

s

=
1

2πi

∫ c+i∞

c−i∞
as

ds
s

− 1

2πi

∫ c+i∞

c−i∞
as

ds
s+ 1

=
1

2πi

∫ c+i∞

c−i∞
as

ds
s(s+ 1)

=

0, if 0 < a < 1,

1− 1/a, if a > 1,

whence the result follows.

Stein 7.4.2 One of the “explicit formulas” in the theory of primes is as follows: if ψ1 is the integrated
Tchebychev function considered in Section 2, then

ψ1(x) =
x2

2
−

∑
ρ

xρ+1

ρ(ρ+ 1)
− E(x)
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where the sum is taken over all zeros ρ of the zeta function in the critical strip. The error term is given
by

E(x) = c1x+ c0 +

∞∑
k=1

x1−2k

2k(2k − 1)
,

where
c1 =

ζ ′(0)

ζ(0)
and c0 = −ζ

′(−1)

ζ(−1)
.

Proof By Proposition 2.3 in Chapter 7 we have

ψ1(x) =
1

2πi

∫ c+i∞

c−i∞

xs+1

s(s+ 1)

(
−ζ

′(s)

ζ(s)

)
ds for all c > 1.

Now fix c = 2 and consider the integral of f(s) =
xs+1

s(s+ 1)

(
−ζ

′(s)

ζ(s)

)
along the rectangular contour

γ = γ1 ∪ γ2 ∪ γ3 ∪ γ4 as illustrated below.

Re

Im

γ1

γ2

γ3

γ4

21−1

2 + iR

2− iR

−T

−T + iR

−T − iR

It is necessary to choose R with a little care, so that the horizontal sides of the rectangle shall avoid, as
far as possible, the zeros of ζ(s) in the critical strip (see the discussion following  on page 6). Similarly,
here T is chosen to be a large odd integer, so that the left vertical side passes halfway between two of the
trivial zeros of ζ(s).

We begin by calculating the residues of f at 1, 0, −1, and all the zeros of ζ:

Res(f, 1) = −x
2

2
Ord(ζ, 1) = x2

2
,

Res(f, 0) = lim
s→0

xs+1

s+ 1

(
−ζ

′(s)

ζ(s)

)
= −c1x where c1 =

ζ ′(0)

ζ(0)
,

Res(f,−1) = lim
s→−1

xs+1

s

(
−ζ

′(s)

ζ(s)

)
= −c0 where c0 = −ζ

′(−1)

ζ(−1)
,

Res(f,−2k) = − x−2k+1

−2k(−2k + 1)
Ord(ζ,−2k) = − x1−2k

2k(2k − 1)
for k = 1, 2, 3, · · · ,

Res(f, ρ) = − xρ+1

ρ(ρ+ 1)
Ord(ζ, ρ) for any nontrivial zero ρ of ζ.

Here we used “Ord” to denote the order of the zero at the given point. Note that in the formula we are
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going to prove the nontrivial zeros of ζ are to be counted with multiplicities, i.e., each ρ appears in the
summation as many times as its order, since we actually don’t know whether they are simple or not.

In Exercise 7.3.8 we have shown that (s − 1)ζ(s) is an entire function of growth order 1, thus by
Theorem 2.1 in Chapter 5 we have

∑
ρ

1

|ρ|1+ε
<∞ for every ε > 0. Hence

∑
ρ

∣∣∣∣ xρ+1

ρ(ρ+ 1)

∣∣∣∣ ⩽ ∑
ρ

x2

|ρ|2
<∞.

Also, it is obvious that E(x) = O(x) as x → ∞. So we are allowed to apply the residue formula and let
R and T tend to infinity to write

ψ1(x) +
1

2πi lim
R,T→∞

∫
γ2∪γ3∪γ4

f(s)ds = x2

2
−

∑
ρ

xρ+1

ρ(ρ+ 1)
− E(x).

It remains to show that the integral of f(s) along γ2 ∪ γ3 ∪ γ4 vanishes as R and T tend to infinity. To
achieve this, we need an estimate for |ζ ′/ζ|. We will show that

∣∣∣∣ζ ′(s)ζ(s)

∣∣∣∣ =
O(log |2s|), if Re(s) ⩽ −1 and all disks of radius 1

2 around the trivial zeros are excluded,
O
(
log2R

)
, if − 1 < Re(s) ⩽ 2 and Im(s) = R.

With this established, it is clear that the integral of f(s) along γ2 ∪ γ3 ∪ γ4 vanishes as R and T tend to
infinity (note that |ζ ′/ζ| is symmetric about the real axis), thereby completing the proof.

Now let us prove these estimates.

Estimate I: Re(s) ⩽ −1 with open disks excluded First recall two functional relations satisfied byΓ(s):

⋄ Γ(s)Γ(1− s) =
π

sin(πs) .

⋄ Γ(s)Γ
(
s+ 1

2

)
=

√
π21−2sΓ(2s), which has been proved in Exercise 6.3.3.

Combined, one has

Γ
(
1−s
2

)
= Γ

(
1− 1+s

2

)
=

π

sin
(
π 1+s

2

)
Γ
(
1+s
2

) =
π

cos πs
2 Γ

(
1+s
2

) =
π

cos πs
2

·
Γ
(
s
2

)
21−s

√
πΓ(s)

=

√
πΓ

(
s
2

)
21−s cos πs

2 Γ(s)
,

thus giving
Γ
(
s
2

)
Γ
(
1−s
2

) = π− 1
2 21−s cos πs

2
Γ(s).

If this is used in the functional equation of ζ(s), we get

ζ(1− s) =
π− s

2Γ
(
s
2

)
ζ(s)

π− 1−s
2 Γ

(
1−s
2

) = 21−sπ−s cos πs
2
Γ(s)ζ(s).

Taking the logarithmic derivative of both sides gives

−ζ
′(1− s)

ζ(1− s)
= −π

2
tan πs

2
+

Γ′(s)

Γ(s)
+
ζ ′(s)

ζ(s)
− log 2π.
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Since we are interested in the left-hand side under Re(1 − s) ⩽ −1, the right-hand side can be
considered only for Re(s) ⩾ 2. The first term is bounded if s is not close to any odd integer, or
more specifically, |s− (2m+ 1)| ⩾ 1

2 for allm ∈ N. Note that this is equivalent to

|(1− s)− (−2m)| ⩾ 1

2
,

which is precisely satisfied by our assumption that all disks of radius 1
2 around the trivial zeros

are excluded. The third term is bounded since∣∣∣∣ζ ′(s)ζ(s)

∣∣∣∣ =
∣∣∣∣∣
∞∑

n=1

Λ(n)

ns

∣∣∣∣∣ ⩽
∞∑

n=1

Λ(n)

n2
= −ζ

′(2)

ζ(2)
when Re(s) ⩾ 2. (7.4.2–1)

Finally, the digamma function Γ′(s)/Γ(s) is O(log |s|), and hence O(log 2|1 − s|). Replacing 1 − s

by s in the above, we obtain Estimate I. The asymptotic estimate for the digamma function can be
deduced from Exercise 6.3.13, where we have shown that

Γ′(s)

Γ(s)
=

d
ds logΓ(s) = −γ − 1

s
+

∞∑
n=1

(
1

n
− 1

n+ s

)
.

Apply the Euler–Maclaurin summation formula to (x+ s)−1,

N∑
n=0

1

n+ s
= log(N + s)− log s+ 1

2s
+

1

2(s+N)
+O

(
|s|−2

)
.

Then
N∑

n=1

1

n+ s
= log(N + s)− log s− 1

2s
+

1

2(s+N)
+O

(
|s|−2

)
.

Hence
Γ′(s)

Γ(s)
= log s− 1

2s
+O

(
|s|−2

)
. (7.4.2–2)

Estimate II: −1 < Re(s) ⩽ 2 and Im(s) = R We refer to two results which we shall prove later:

¬ For large R (not coinciding with the ordinate of a zero) and −1 ⩽ Re(s) ⩽ 2,

ζ ′(s)

ζ(s)
=

∑
|Im(ρ)−R|<1

1

s− ρ
+O(logR). (7.4.2–3)

 For any large R, the number of zeros ρ of ζ with |Im(ρ)−R| < 1 is O(logR).

As a consequence of , among the ordinates of these zeros there must be a gap of length at least
C(logR)−1 for some constantC > 0 independent ofR. Hence by varyingR by a bounded amount
we can ensure that

|Im(ρ)−R| ⩾ C ′

logR

for all zeros ρ of ζ. Now we apply ¬ with the present choice of R to get

|s− ρ| ⩾ |Im(ρ)−R| ⩾ C ′

logR,
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and the number of summation terms is alsoO(logR). So on the new horizontal lines of integration
we obtain Estimate II:

ζ ′(s)

ζ(s)
= O

(
log2R

)
for −1 ⩽ Re(s) ⩽ 2.

Now we prove the two results ¬ and  mentioned above. Define

ξ̃(s) =
1

2
s(s− 1)ξ(s) =

s

2
(s− 1)π− s

2Γ
(
s
2

)
ζ(s) = (s− 1)π− s

2Γ
(
s
2 + 1

)
ζ(s), (7.4.2–4)

then by the deduction in Exercise 7.3.8 we see ξ̃(s) is an entire function of order 1. Hadamard’s
factorization theorem shows that

ξ̃(s) = eA+Bs
∏
ρ

(
1− s

ρ

)
e

s
ρ ,

where the product is taken over all nontrivial zeros of ζ. Logarithmic differentiation of this gives

ξ̃′(s)

ξ̃(s)
= B +

∑
ρ

(
1

s− ρ
+

1

ρ

)
.

Since by our definition

ξ̃′(s)

ξ̃(s)
=

1

s− 1
− 1

2
logπ +

1

2

Γ′( s
2 + 1

)
Γ
(
s
2 + 1

) +
ζ ′(s)

ζ(s)
,

we get

−ζ
′(s)

ζ(s)
=

1

s− 1
−B − 1

2
logπ +

1

2

Γ′( s
2 + 1

)
Γ
(
s
2 + 1

) −
∑
ρ

(
1

s− ρ
+

1

ρ

)
. (7.4.2–5)

By the asymptotic behavior (7.4.2–2) of the digamma function we see that the Γ term above is less
than A log t if t ⩾ 2 and 1 ⩽ σ ⩽ 2 for s = σ + it. Hence, in this region,

−Re
(
ζ ′(s)

ζ(s)

)
< A log t−

∑
ρ

Re
(

1

s− ρ
+

1

ρ

)
.

In this inequality we take s = 2 + iR, and since |ζ ′/ζ| is bounded for such s as shown in (7.4.2–1),
we obtain ∑

ρ

Re
(

1

s− ρ
+

1

ρ

)
< A logR.

Note that Re
(

1
ρ

)
> 0 for each ρ, and

Re
(

1

s− ρ

)
= Re

(
1

2 + iR− ρ

)
=

2− Re(ρ)
[2− Re(ρ)]2 + [R− Im(ρ)]2

⩾ 1

4 + [R− Im(ρ)]2
,

we get ∑
ρ

1

1 + [R− Im(ρ)]2
= O(logR).
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As a consequence, we see that

1

2
#{ρ : |Im(ρ)−R| < 1} ⩽

∑
|Im(ρ)−R|<1

1

1 + [R− Im(ρ)]2
⩽

∑
ρ

1

1 + [R− Im(ρ)]2
= O(logR),

which implies . Also note as a byproduct that

1

2

∑
|Im(ρ)−R|⩾1

1

|Im(ρ)−R|2
⩽

∑
|Im(ρ)−R|⩾1

1

1 + |R− Im(ρ)|2
⩽

∑
ρ

1

1 + [R− Im(ρ)]2
= O(logR),

hence we find ∑
|Im(ρ)−R|⩾1

1

|Im(ρ)−R|2
= O(logR). (7.4.2–6)

By formula (7.4.2–5), applied at s = σ + iR (here −1 < σ ⩽ 2) and 2 + iR and subtracted,

ζ ′(s)

ζ(s)
=
ζ ′(2 + iR)
ζ(2 + iR) − 1

s− 1
+

1

1 + iR +
1

2

Γ′(2 + iR
2

)
Γ
(
2 + iR

2

) − 1

2

Γ′( s
2 + 1

)
Γ
(
s
2 + 1

) +
∑
ρ

(
1

s− ρ
− 1

2 + iR− ρ

)
= O(logR) +

∑
ρ

(
1

s− ρ
− 1

2 + iR− ρ

)
,

where we have used (7.4.2–1) and (7.4.2–2) to estimate the ζ and Γ terms. Now we focus on the
sum. For the terms with |Im(ρ)−R| ⩾ 1, we have∣∣∣∣ 1

s− ρ
− 1

2 + iR− ρ

∣∣∣∣ = 2− σ

|s− ρ||2 + iR− ρ|
⩽ 3

|Im(ρ)−R|2
,

and their contribution to the sum is O(logR) by (7.4.2–6). As for the terms with |Im(ρ)−R| < 1,
we have |2 + iR− ρ| ⩾ |(2 + iR)− (1 + iR)| = 1, and the number of terms is O(logR) by  above.
Therefore we have proved ¬.
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