Stein 7.3.5 Consider the following function

$$\tilde{\zeta}(s) = 1 - \frac{1}{2^s} + \frac{1}{3^s} - \dots = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^s}.$$

- (1) Prove that the series defining $\tilde{\zeta}(s)$ converges for Re(s) > 0 and defines a holomorphic function in that half-plane.
- (2) Show that for s > 1 one has $\tilde{\zeta}(s) = (1 2^{1-s})\zeta(s)$.
- (3) Conclude, since ζ is given as an alternating series, that ζ has no zeros on the segment 0 < s < 1. Extend this last assertion to s = 0 by using the functional equation.

Proof (1) Since the partial sums $\sum_{n=1}^{N} (-1)^n$ are bounded, Exercise 7.3.1 applies.

(2) When s > 1, since $\zeta(s)$ and $\tilde{\zeta}(s)$ are absolutely convergent (as infinite series), we have

$$\zeta(s) - \tilde{\zeta}(s) = \sum_{n=1}^{\infty} \left[\frac{1}{n^s} - \frac{(-1)^{n+1}}{n^s} \right] = \sum_{n=1}^{\infty} \frac{2}{(2n)^s} = 2^{1-s} \zeta(s).$$

(3) Note that at s = 1, the simple pole of $\zeta(s)$ cancels with the zero of $1 - 2^{1-s}$, so both sides of the identity in (2) are holomorphic functions on Re(s) > 0 that agree on Re(s) > 1. Thus this identity holds on the whole half-plane Re(s) > 0. Focusing on 0 < s < 1, we have

$$\frac{1}{(2n-1)^s} - \frac{1}{(2n)^s} > 0 \quad \text{for all } n \in \mathbb{N}.$$

Hence, the alternating series $\tilde{\zeta}(s)$ is strictly positive when 0 < s < 1, and $\zeta(s) \neq 0$ on the segment 0 < s < 1 by the identity in (2). Finally, the functional equation $\xi(s) = \xi(1 - s)$, or equivalently,

$$\pi^{-\frac{s}{2}}\Gamma\left(\frac{s}{2}\right)\zeta(s) = \pi^{-\frac{1-s}{2}}\Gamma\left(\frac{1-s}{2}\right)\zeta(1-s),$$

in Theorem 2.3 of Chapter 6, shows that $\zeta(0) \neq 0$ since the simple pole of $\zeta(1-s)$ at s = 0 cancels with the simple zero of $1/\Gamma(\frac{s}{2})$. This concludes that $\zeta(s) \neq 0$ on the segment 0 < s < 1.

Remark We have shown that $\zeta(0) = -\frac{1}{2}$ in Homework 11.

Stein 7.3.6 Show that for every c > 0

$$\lim_{N \to \infty} \frac{1}{2\pi i} \int_{c-iN}^{c+iN} a^s \frac{\mathrm{d}s}{s} = \begin{cases} 1, & \text{if } a > 1, \\ \frac{1}{2}, & \text{if } a = 1, \\ 0, & \text{if } 0 \leqslant a < 1. \end{cases}$$

This integral is taken over the vertical segment from c - iN to c + iN.

Proof Let $f(s) = \frac{a^s}{s}$ be the integrand.

(1) For $0 \leq a < 1$, choose the rectangular contour $\gamma = \gamma_1 \cup \gamma_2 \cup \gamma_3 \cup \gamma_4$ as illustrated below.

Since f(s) is holomorphic on $\mathbb{C} \setminus \{0\}$, we have $\int_{\gamma} f(s) ds = 0$. For the integral along γ_2 , one has

$$\left| \int_{\gamma_2} f(s) \, \mathrm{d}s \right| \leqslant \sqrt{N} \cdot \frac{a^c}{N} \xrightarrow{N \to \infty} 0.$$

By the same argument we have

$$\left| \int_{\gamma_4} f(s) \, \mathrm{d}s \right| \leqslant \sqrt{N} \cdot \frac{a^c}{N} \xrightarrow{N \to \infty} 0.$$

For the integral along γ_3 , we have

$$\left| \int_{\gamma_3} f(s) \, \mathrm{d}s \right| \leqslant 2N \cdot \frac{a^{c+\sqrt{N}}}{c+\sqrt{N}} \xrightarrow[0\leqslant a<1]{} 0.$$

Therefore, letting $N \to \infty$ gives

$$\lim_{N \to \infty} \frac{1}{2\pi \mathbf{i}} \int_{c-\mathbf{i}N}^{c+\mathbf{i}N} a^s \frac{\mathrm{d}s}{s} = 0 \quad \text{when } 0 \leqslant a < 1.$$

(2) For a > 1, choose the rectangular contour $\gamma = \gamma_1 \cup \gamma_2 \cup \gamma_3 \cup \gamma_4$ as illustrated below.

林晓烁 2025-06-04

The residue of f(s) at s = 0 is 1, hence by the residue formula we have

$$\int_{\gamma} f(s) \, \mathrm{d}s = 2\pi \mathrm{i} \operatorname{Res}(f, 0) = 2\pi \mathrm{i}.$$

For the integral along γ_2 , one has

$$\left| \int_{\gamma_2} f(s) \, \mathrm{d}s \right| \leqslant \sqrt{N} \cdot \frac{a^c}{N} \xrightarrow{N \to \infty} 0.$$

By the same argument we have

$$\left|\int_{\gamma_4} f(s) \, \mathrm{d}s\right| \leqslant \sqrt{N} \cdot \frac{a^c}{N} \xrightarrow{N \to \infty} 0.$$

For the integral along γ_3 , we have

$$\left| \int_{\gamma_3} f(s) \, \mathrm{d}s \right| \leqslant 2N \cdot \frac{a^{c - \sqrt{N}}}{\sqrt{N} - c} \xrightarrow[a > 1]{} 0.$$

Therefore, letting $N \to \infty$ gives

$$\lim_{N \to \infty} \frac{1}{2\pi \mathbf{i}} \int_{c-\mathbf{i}N}^{c+\mathbf{i}N} a^s \frac{\mathrm{d}s}{s} = 1 \quad \text{when } a > 1.$$

(3) For a = 1, we compute directly

$$\lim_{N\to\infty}\frac{1}{2\pi\mathrm{i}}\int_{c-\mathrm{i}N}^{c+\mathrm{i}N}\frac{\mathrm{d}s}{s} = \frac{1}{2\pi\mathrm{i}}\lim_{N\to\infty}\mathrm{i}[\mathrm{arg}(c+\mathrm{i}N) - \mathrm{arg}(c-\mathrm{i}N)] = \frac{\pi}{2\pi} = \frac{1}{2}.$$

Here we choose the principal branch of the logarithm in the slit plane $\mathbb{C}\setminus(-\infty,0].$

Remark For $a \in (0,1) \cup (1,\infty)$, we can also use Lemma 2.4 in Chapter 7 to write

$$\begin{split} \frac{1 - 1/a}{2\pi \mathrm{i}} \int_{c-\mathrm{i}\infty}^{c+\mathrm{i}\infty} a^s \frac{\mathrm{d}s}{s} &= \frac{1}{2\pi \mathrm{i}} \int_{c-\mathrm{i}\infty}^{c+\mathrm{i}\infty} a^s \frac{\mathrm{d}s}{s} - \frac{1}{2\pi \mathrm{i}} \int_{c-\mathrm{i}\infty}^{c+\mathrm{i}\infty} a^{s-1} \frac{\mathrm{d}s}{s} \\ &= \frac{1}{2\pi \mathrm{i}} \int_{c-\mathrm{i}\infty}^{c+\mathrm{i}\infty} a^s \frac{\mathrm{d}s}{s} - \frac{1}{2\pi \mathrm{i}} \int_{c-\mathrm{i}\infty}^{c+\mathrm{i}\infty} a^s \frac{\mathrm{d}s}{s+1} \\ &= \frac{1}{2\pi \mathrm{i}} \int_{c-\mathrm{i}\infty}^{c+\mathrm{i}\infty} a^s \frac{\mathrm{d}s}{s(s+1)} \\ &= \begin{cases} 0, & \text{if } 0 < a < 1, \\ 1 - 1/a, & \text{if } a > 1, \end{cases} \end{split}$$

whence the result follows.

Stein 7.4.2 One of the "explicit formulas" in the theory of primes is as follows: if ψ_1 is the integrated Tchebychev function considered in Section 2, then

$$\psi_1(x) = \frac{x^2}{2} - \sum_{\rho} \frac{x^{\rho+1}}{\rho(\rho+1)} - E(x)$$

where the sum is taken over all zeros ρ of the zeta function in the critical strip. The error term is given by

$$E(x) = c_1 x + c_0 + \sum_{k=1}^{\infty} \frac{x^{1-2k}}{2k(2k-1)}$$

where

$$c_1 = \frac{\zeta'(0)}{\zeta(0)}$$
 and $c_0 = -\frac{\zeta'(-1)}{\zeta(-1)}$

Proof By Proposition 2.3 in Chapter 7 we have

$$\psi_1(x) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \frac{x^{s+1}}{s(s+1)} \left(-\frac{\zeta'(s)}{\zeta(s)}\right) ds \quad \text{for all } c > 1.$$

Now fix c = 2 and consider the integral of $f(s) = \frac{x^{s+1}}{s(s+1)} \left(-\frac{\zeta'(s)}{\zeta(s)}\right)$ along the rectangular contour $\gamma = \gamma_1 \cup \gamma_2 \cup \gamma_3 \cup \gamma_4$ as illustrated below.

It is necessary to choose R with a little care, so that the horizontal sides of the rectangle shall avoid, as far as possible, the zeros of $\zeta(s)$ in the critical strip (see the discussion following 2 on page 6). Similarly, here T is chosen to be a large odd integer, so that the left vertical side passes halfway between two of the trivial zeros of $\zeta(s)$.

We begin by calculating the residues of *f* at 1, 0, -1, and all the zeros of ζ :

$$\begin{split} \operatorname{Res}(f,1) &= -\frac{x^2}{2}\operatorname{Ord}(\zeta,1) = \frac{x^2}{2},\\ \operatorname{Res}(f,0) &= \lim_{s \to 0} \frac{x^{s+1}}{s+1} \left(-\frac{\zeta'(s)}{\zeta(s)} \right) = -c_1 x \quad \text{where } c_1 = \frac{\zeta'(0)}{\zeta(0)},\\ \operatorname{Res}(f,-1) &= \lim_{s \to -1} \frac{x^{s+1}}{s} \left(-\frac{\zeta'(s)}{\zeta(s)} \right) = -c_0 \quad \text{where } c_0 = -\frac{\zeta'(-1)}{\zeta(-1)},\\ \operatorname{Res}(f,-2k) &= -\frac{x^{-2k+1}}{-2k(-2k+1)}\operatorname{Ord}(\zeta,-2k) = -\frac{x^{1-2k}}{2k(2k-1)} \quad \text{for } k = 1,2,3,\cdots,\\ \operatorname{Res}(f,\rho) &= -\frac{x^{\rho+1}}{\rho(\rho+1)}\operatorname{Ord}(\zeta,\rho) \quad \text{for any nontrivial zero } \rho \text{ of } \zeta. \end{split}$$

Here we used "Ord" to denote the order of the zero at the given point. Note that in the formula we are

going to prove the nontrivial zeros of ζ are to be counted with multiplicities, i.e., each ρ appears in the summation as many times as its order, since we actually don't know whether they are simple or not.

In Exercise 7.3.8 we have shown that $(s-1)\zeta(s)$ is an entire function of growth order 1, thus by Theorem 2.1 in Chapter 5 we have $\sum_{\rho} \frac{1}{|\rho|^{1+\varepsilon}} < \infty$ for every $\varepsilon > 0$. Hence

$$\sum_{\rho} \left| \frac{x^{\rho+1}}{\rho(\rho+1)} \right| \leqslant \sum_{\rho} \frac{x^2}{|\rho|^2} < \infty.$$

Also, it is obvious that E(x) = O(x) as $x \to \infty$. So we are allowed to apply the residue formula and let R and T tend to infinity to write

$$\psi_1(x) + \frac{1}{2\pi i} \lim_{R, T \to \infty} \int_{\gamma_2 \cup \gamma_3 \cup \gamma_4} f(s) \, \mathrm{d}s = \frac{x^2}{2} - \sum_{\rho} \frac{x^{\rho+1}}{\rho(\rho+1)} - E(x).$$

It remains to show that the integral of f(s) along $\gamma_2 \cup \gamma_3 \cup \gamma_4$ vanishes as R and T tend to infinity. To achieve this, we need an estimate for $|\zeta'/\zeta|$. We will show that

$$\left|\frac{\zeta'(s)}{\zeta(s)}\right| = \begin{cases} O(\log|2s|), & \text{if } \operatorname{Re}(s) \leqslant -1 \text{ and all disks of radius } \frac{1}{2} \text{ around the trivial zeros are excluded,} \\ O\left(\log^2 R\right), & \text{if } -1 < \operatorname{Re}(s) \leqslant 2 \text{ and } \operatorname{Im}(s) = R. \end{cases}$$

With this established, it is clear that the integral of f(s) along $\gamma_2 \cup \gamma_3 \cup \gamma_4$ vanishes as R and T tend to infinity (note that $|\zeta'/\zeta|$ is symmetric about the real axis), thereby completing the proof.

Now let us prove these estimates.

Estimate I: $\operatorname{Re}(s) \leq -1$ with open disks excluded First recall two functional relations satisfied by $\Gamma(s)$:

Combined, one has

$$\Gamma\left(\frac{1-s}{2}\right) = \Gamma\left(1 - \frac{1+s}{2}\right) = \frac{\pi}{\sin\left(\pi\frac{1+s}{2}\right)\Gamma\left(\frac{1+s}{2}\right)} = \frac{\pi}{\cos\frac{\pi s}{2}\Gamma\left(\frac{1+s}{2}\right)} = \frac{\pi}{\cos\frac{\pi s}{2}} \cdot \frac{\Gamma\left(\frac{s}{2}\right)}{2^{1-s}\sqrt{\pi}\Gamma(s)}$$
$$= \frac{\sqrt{\pi}\Gamma\left(\frac{s}{2}\right)}{2^{1-s}\cos\frac{\pi s}{2}\Gamma(s)},$$

thus giving

$$\frac{\Gamma\left(\frac{s}{2}\right)}{\Gamma\left(\frac{1-s}{2}\right)} = \pi^{-\frac{1}{2}} 2^{1-s} \cos \frac{\pi s}{2} \Gamma(s).$$

If this is used in the functional equation of $\zeta(s)$, we get

$$\zeta(1-s) = \frac{\pi^{-\frac{s}{2}} \Gamma(\frac{s}{2}) \zeta(s)}{\pi^{-\frac{1-s}{2}} \Gamma(\frac{1-s}{2})} = 2^{1-s} \pi^{-s} \cos \frac{\pi s}{2} \Gamma(s) \zeta(s).$$

Taking the logarithmic derivative of both sides gives

$$-\frac{\zeta'(1-s)}{\zeta(1-s)} = -\frac{\pi}{2}\tan\frac{\pi s}{2} + \frac{\Gamma'(s)}{\Gamma(s)} + \frac{\zeta'(s)}{\zeta(s)} - \log 2\pi$$

林晓烁 2025-06-04

6

Since we are interested in the left-hand side under $\operatorname{Re}(1-s) \leq -1$, the right-hand side can be considered only for $\operatorname{Re}(s) \geq 2$. The first term is bounded if *s* is not close to any odd integer, or more specifically, $|s - (2m + 1)| \geq \frac{1}{2}$ for all $m \in \mathbb{N}$. Note that this is equivalent to

$$|(1-s) - (-2m)| \ge \frac{1}{2}$$

which is precisely satisfied by our assumption that all disks of radius $\frac{1}{2}$ around the trivial zeros are excluded. The third term is bounded since

$$\left|\frac{\zeta'(s)}{\zeta(s)}\right| = \left|\sum_{n=1}^{\infty} \frac{\Lambda(n)}{n^s}\right| \leqslant \sum_{n=1}^{\infty} \frac{\Lambda(n)}{n^2} = -\frac{\zeta'(2)}{\zeta(2)} \quad \text{when } \operatorname{Re}(s) \geqslant 2.$$
(7.4.2-1)

Finally, the digamma function $\Gamma'(s)/\Gamma(s)$ is $O(\log |s|)$, and hence $O(\log 2|1 - s|)$. Replacing 1 - s by s in the above, we obtain **Estimate I**. The asymptotic estimate for the digamma function can be deduced from Exercise 6.3.13, where we have shown that

$$\frac{\Gamma'(s)}{\Gamma(s)} = \frac{\mathrm{d}}{\mathrm{d}s}\log\Gamma(s) = -\gamma - \frac{1}{s} + \sum_{n=1}^{\infty} \left(\frac{1}{n} - \frac{1}{n+s}\right).$$

Apply the Euler–Maclaurin summation formula to $(x + s)^{-1}$,

$$\sum_{n=0}^{N} \frac{1}{n+s} = \log(N+s) - \log s + \frac{1}{2s} + \frac{1}{2(s+N)} + O\left(|s|^{-2}\right)$$

Then

$$\sum_{n=1}^{N} \frac{1}{n+s} = \log(N+s) - \log s - \frac{1}{2s} + \frac{1}{2(s+N)} + O(|s|^{-2}).$$

Hence

$$\frac{\Gamma'(s)}{\Gamma(s)} = \log s - \frac{1}{2s} + O(|s|^{-2}).$$
(7.4.2-2)

Estimate II: $-1 < \text{Re}(s) \le 2$ and Im(s) = R We refer to two results which we shall prove later:

① For large *R* (not coinciding with the ordinate of a zero) and $-1 \leq \text{Re}(s) \leq 2$,

$$\frac{\zeta'(s)}{\zeta(s)} = \sum_{|\text{Im}(\rho) - R| < 1} \frac{1}{s - \rho} + O(\log R).$$
(7.4.2-3)

② For any large *R*, the number of zeros ρ of ζ with $|\text{Im}(\rho) - R| < 1$ is $O(\log R)$.

As a consequence of @, among the ordinates of these zeros there must be a gap of length at least $C(\log R)^{-1}$ for some constant C > 0 independent of R. Hence by varying R by a bounded amount we can ensure that

$$|\mathrm{Im}(\rho) - R| \geqslant \frac{C'}{\log R}$$

for all zeros ρ of ζ . Now we apply ① with the present choice of *R* to get

$$|s-\rho| \ge |\mathrm{Im}(\rho)-R| \ge \frac{C'}{\log R},$$

林晓烁 2025-06-04

and the number of summation terms is also $O(\log R)$. So on the *new* horizontal lines of integration we obtain **Estimate II**:

$$\frac{\zeta'(s)}{\zeta(s)} = O\left(\log^2 R\right) \quad \text{for } -1 \leqslant \operatorname{Re}(s) \leqslant 2.$$

Now we prove the two results ① and ② mentioned above. Define

$$\tilde{\xi}(s) = \frac{1}{2}s(s-1)\xi(s) = \frac{s}{2}(s-1)\pi^{-\frac{s}{2}}\Gamma(\frac{s}{2})\zeta(s) = (s-1)\pi^{-\frac{s}{2}}\Gamma(\frac{s}{2}+1)\zeta(s),$$
(7.4.2-4)

then by the deduction in Exercise 7.3.8 we see $\tilde{\xi}(s)$ is an entire function of order 1. Hadamard's factorization theorem shows that

$$\tilde{\xi}(s) = e^{A+Bs} \prod_{\rho} \left(1 - \frac{s}{\rho}\right) e^{\frac{s}{\rho}},$$

where the product is taken over all nontrivial zeros of ζ . Logarithmic differentiation of this gives

$$\frac{\tilde{\xi}'(s)}{\tilde{\xi}(s)} = B + \sum_{\rho} \left(\frac{1}{s-\rho} + \frac{1}{\rho} \right).$$

Since by our definition

$$\frac{\tilde{\xi}'(s)}{\tilde{\xi}(s)} = \frac{1}{s-1} - \frac{1}{2}\log\pi + \frac{1}{2}\frac{\Gamma'\left(\frac{s}{2}+1\right)}{\Gamma\left(\frac{s}{2}+1\right)} + \frac{\zeta'(s)}{\zeta(s)},$$

we get

$$-\frac{\zeta'(s)}{\zeta(s)} = \frac{1}{s-1} - B - \frac{1}{2}\log\pi + \frac{1}{2}\frac{\Gamma'(\frac{s}{2}+1)}{\Gamma(\frac{s}{2}+1)} - \sum_{\rho} \left(\frac{1}{s-\rho} + \frac{1}{\rho}\right).$$
(7.4.2-5)

By the asymptotic behavior (7.4.2–2) of the digamma function we see that the Γ term above is less than $A \log t$ if $t \ge 2$ and $1 \le \sigma \le 2$ for $s = \sigma + it$. Hence, in this region,

$$-\operatorname{Re}\left(\frac{\zeta'(s)}{\zeta(s)}\right) < A\log t - \sum_{\rho}\operatorname{Re}\left(\frac{1}{s-\rho} + \frac{1}{\rho}\right).$$

In this inequality we take s = 2 + iR, and since $|\zeta'/\zeta|$ is bounded for such s as shown in (7.4.2–1), we obtain

$$\sum_{\rho} \operatorname{Re}\left(\frac{1}{s-\rho} + \frac{1}{\rho}\right) < A \log R.$$

Note that $\operatorname{Re}\left(\frac{1}{\rho}\right) > 0$ for each ρ , and

$$\operatorname{Re}\left(\frac{1}{s-\rho}\right) = \operatorname{Re}\left(\frac{1}{2+iR-\rho}\right) = \frac{2-\operatorname{Re}(\rho)}{[2-\operatorname{Re}(\rho)]^2 + [R-\operatorname{Im}(\rho)]^2} \ge \frac{1}{4+[R-\operatorname{Im}(\rho)]^2},$$

we get

$$\sum_{\rho} \frac{1}{1 + [R - \operatorname{Im}(\rho)]^2} = O(\log R).$$

As a consequence, we see that

$$\frac{1}{2} \# \{ \rho : |\mathrm{Im}(\rho) - R| < 1 \} \leqslant \sum_{|\mathrm{Im}(\rho) - R| < 1} \frac{1}{1 + [R - \mathrm{Im}(\rho)]^2} \leqslant \sum_{\rho} \frac{1}{1 + [R - \mathrm{Im}(\rho)]^2} = O(\log R),$$

which implies ⁽²⁾. Also note as a byproduct that

$$\frac{1}{2}\sum_{|\mathrm{Im}(\rho)-R|\geqslant 1}\frac{1}{\left|\mathrm{Im}(\rho)-R\right|^2}\leqslant \sum_{|\mathrm{Im}(\rho)-R|\geqslant 1}\frac{1}{1+\left|R-\mathrm{Im}(\rho)\right|^2}\leqslant \sum_{\rho}\frac{1}{1+[R-\mathrm{Im}(\rho)]^2}=O(\log R),$$

hence we find

$$\sum_{|\mathrm{Im}(\rho)-R| \ge 1} \frac{1}{|\mathrm{Im}(\rho)-R|^2} = O(\log R).$$
(7.4.2-6)

By formula (7.4.2–5), applied at $s = \sigma + iR$ (here $-1 < \sigma \leq 2$) and 2 + iR and subtracted,

$$\begin{split} \frac{\zeta'(s)}{\zeta(s)} &= \frac{\zeta'(2+\mathrm{i}R)}{\zeta(2+\mathrm{i}R)} - \frac{1}{s-1} + \frac{1}{1+\mathrm{i}R} + \frac{1}{2}\frac{\Gamma'(2+\frac{\mathrm{i}R}{2})}{\Gamma(2+\frac{\mathrm{i}R}{2})} - \frac{1}{2}\frac{\Gamma'(\frac{s}{2}+1)}{\Gamma(\frac{s}{2}+1)} + \sum_{\rho} \left(\frac{1}{s-\rho} - \frac{1}{2+\mathrm{i}R-\rho}\right) \\ &= O(\log R) + \sum_{\rho} \left(\frac{1}{s-\rho} - \frac{1}{2+\mathrm{i}R-\rho}\right), \end{split}$$

where we have used (7.4.2–1) and (7.4.2–2) to estimate the ζ and Γ terms. Now we focus on the sum. For the terms with $|\text{Im}(\rho) - R| \ge 1$, we have

$$\left|\frac{1}{s-\rho} - \frac{1}{2+\mathrm{i}R-\rho}\right| = \frac{2-\sigma}{|s-\rho||2+\mathrm{i}R-\rho|} \leqslant \frac{3}{\left|\mathrm{Im}(\rho)-R\right|^2},$$

and their contribution to the sum is $O(\log R)$ by (7.4.2–6). As for the terms with $|\text{Im}(\rho) - R| < 1$, we have $|2 + iR - \rho| \ge |(2 + iR) - (1 + iR)| = 1$, and the number of terms is $O(\log R)$ by @ above. Therefore we have proved @.