Stein 7.3.5 Consider the following function

s 11 = (-t
Qﬁ4—§+§—“—§;ns-

(1) Prove that the series defining ¢(s) converges for Re(s) > 0 and defines a holomorphic function in
that half-plane.

(2) Show that for s > 1 one has {(s) = (1 — 2'7%)((s).

(3) Conclude, since ( is given as an alternating series, that ¢ has no zeros on the segment 0 < s < 1.
Extend this last assertion to s = 0 by using the functional equation.

N
Proof (1) Since the partial sums Z(—l)” are bounded, Exercise 7.3.1 applies.

n=1

(2) When s > 1, since ¢(s) and () are absolutely convergent (as infinite series), we have

o) =8 =3 e - | = X i =2

(3) Note that at s = 1, the simple pole of {(s) cancels with the zero of 1 — 2!, so both sides of the
identity in (2) are holomorphic functions on Re(s) > 0 that agree on Re(s) > 1. Thus this identity
holds on the whole half-plane Re(s) > 0. Focusing on 0 < s < 1, we have

1 _ 1
(2n—1)s (2n)

- >0 foralln € N.

Hence, the alternating series ((s) is strictly positive when 0 < s < 1, and ((s) # 0 on the segment
0 < s < 1 by the identity in (2). Finally, the functional equation {(s) = £(1 — s), or equivalently,

1—s

wféF(g)C(s) =7 2

L(432)¢(1 = 9),

in Theorem 2.3 of Chapter 6, shows that ¢(0) # 0 since the simple pole of {(1 — s) at s = 0 cancels
with the simple zero of 1/T'(%). This concludes that ((s) # 0 on the segment 0 < s < 1. O

Remark We have shown that ((0) = —3 in Homework 11.

Stein 7.3.6 Show that for every ¢ > 0

) 1, ifa>1,
1 c+iN dS
lim —/ a®*— =41 ifqg=1,
N—oo 2mi J._in s 2
0, if0<a<l.

This integral is taken over the vertical segment from ¢ —iN to ¢ +ilV.

Proof Let f(s) = 2 e the integrand.
s


https://xiaoshuo-lin.github.io/MATH3702E/Sol-11.pdf

(1) For 0 < a < 1, choose the rectangular contour v = 1 U 72 U y3 U 74 as illustrated below.
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Since f(s) is holomorphic on C \ {0}, we have / f(s)ds = 0. For the integral along 7, one has
v

f(s)ds é\/ﬁ-%mo.
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By the same argument we have

For the integral along ~y3, we have

ac+' N N—o0

<2N - ——+ 2= 0.
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f(s)ds

3

Therefore, letting N — oo gives

1 c+iN d
lim —/ as—S:O when 0 <a < 1.
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(2) For a > 1, choose the rectangular contour v = y; U 2 U3 U 74 as illustrated below.
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The residue of f(s) at s = 0is 1, hence by the residue formula we have
/ f(s)ds = 2rmiRes(f,0) = 27i.
~

For the integral along 2, one has

[ rerasi< vy

a® N—oo

By the same argument we have

For the integral along ~y3, we have

3

Therefore, letting N — oo gives

1 c+iN d
lim —/ as—szl when a > 1.
c—iN S

(3) For a =1, we compute directly

1 tNas o1 _ _ T 1
A}gnoc - /CiiN > =5 I}Enml[arg(c—o— iN) —arg(c —iN)] = =3
Here we choose the principal branch of the logarithm in the slit plane C \ (—o0, 0]. O

Remark Fora € (0,1) U (1, 00), we can also use Lemma 2.4 in Chapter 7 to write
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0, f0<a<l,
1-1/a, ifa>1,

whence the result follows.
Stein 7.4.2 One of the “explicit formulas” in the theory of primes is as follows: if 1; is the integrated
Tchebychev function considered in Section 2, then
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where the sum is taken over all zeros p of the zeta function in the critical strip. The error term is given

b
y s xl—Qk
E(zx) =cx+co+ Z W2k 1)’
k=1
where ¢'(0) ¢(-1)
T M T T

Proof By Proposition 2.3 in Chapter 7 we have

1 c+ico l‘erl C/(S)
=— - ds forall 1.
00 = 5 [ (-G )@ forste>
. . . STt ¢'(s)
Now fix ¢ = 2 and consider the integral of f(s) = - along the rectangular contour
s(s+1) ¢(s)
v =1 U~ U~z Uy as illustrated below.
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It is necessary to choose R with a little care, so that the horizontal sides of the rectangle shall avoid, as
far as possible, the zeros of ((s) in the critical strip (see the discussion following @ on page 6). Similarly,
here T' is chosen to be a large odd integer, so that the left vertical side passes halfway between two of the
trivial zeros of ((s).

We begin by calculating the residues of f at 1, 0, —1, and all the zeros of (:
22

22
Res(f,1) = -5 Ord(¢,1) = -5

s+1 ! l
Res(f,0) = ilgf(l) s 1 ( i((j))) = —ciz wherec; = CC((?)),
s+1 / 1
Res(f,—1) = Slir{ll : . < i((j))) = —cg where ¢y = i((—ll))’
r—2k+1 pl-2k
Res(‘f’ _Qk) = _mord(C?_zk) = _m for k = 1,2,3,”- ,
Res(f,p) = — p(f)prl) Ord(¢,p) for any nontrivial zero p of ¢.

Here we used “Ord” to denote the order of the zero at the given point. Note that in the formula we are



going to prove the nontrivial zeros of ¢ are to be counted with multiplicities, i.e., each p appears in the
summation as many times as its order, since we actually don’t know whether they are simple or not.

In Exercise 7.3.8 we have shown that (s — 1)((s) is an entire function of growth order 1, thus by

1
Theorem 2.1 in Chapter 5 we have Z Tpe < oo for every € > 0. Hence
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Also, it is obvious that E(x) = O(x) as  — oco. So we are allowed to apply the residue formula and let
R and T tend to infinity to write
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It remains to show that the integral of f(s) along v2 U 73 U 4 vanishes as R and T tend to infinity. To
achieve this, we need an estimate for |¢'/¢|. We will show that

O(log |2s]), if Re(s) < —1 and all disks of radius 3 around the trivial zeros are excluded,
O(log2 R), if —1 < Re(s) <2and Im(s) = R.

With this established, it is clear that the integral of f(s) along 2 U 3 U 4 vanishes as R and T tend to
infinity (note that |¢’ /(| is symmetric about the real axis), thereby completing the proof.

Now let us prove these estimates.

‘ Estimate I: Re(s) < —1 with open disks excluded ‘ First recall two functional relations satisfied by I'(s):

o T(s)[(1—s) = #m)

o T'(s)['(s+ 1) = v/72'7**I'(2s), which has been proved in Exercise 6.3.3.

Combined, one has

~ 215 cos TEI(s)”

thus giving

L'(3) —191- s
=~ =7 227 "cos —1I'(s).
r(*z*) 2

If this is used in the functional equation of ((s), we get

((I—s)=

C-s) 7 75 T'(s) . C(s)
Tios T 2™ T T T

—log 2.



Since we are interested in the left-hand side under Re(1 — s) < —1, the right-hand side can be
considered only for Re(s) > 2. The first term is bounded if s is not close to any odd integer, or
more specifically, |s — (2m + 1)| > 1 for all m € N. Note that this is equivalent to

[(1—35)—(—-2m)| >

)

DO =

which is precisely satisfied by our assumption that all disks of radius § around the trivial zeros
are excluded. The third term is bounded since

¢'(s) i A(n)
o) |~ |&

A (2
< =— hen R > 2. 7.4.2-1
nzz:l 2 2 when Re(s) ( )
Finally, the digamma function I"(s)/T'(s) is O(log|s|), and hence O(log 2|1 — s|). Replacing 1 — s
by s in the above, we obtain Estimate I. The asymptotic estimate for the digamma function can be
deduced from Exercise 6.3.13, where we have shown that

(e d 1 > /1 1
) = logT) = -1 3 (1o ).

n=1

Apply the Euler-Maclaurin summation formula to (z + s) !,

N
nz::(]n_li_s:log(N+s)—logs+21S+2(Sl+m+O(|s|2).
Then
ZN: ! zlog(N—l—s)—logs—i+¥+0(|s|_2).
“n+s 2s  2(s+N)
Hence I(s) 1 ) B
T(s) — ogs—g+0(|s| ). (7.4.2-2)

Estimate II: —1 < Re(s) < 2and Im(s) = R ‘ We refer to two results which we shall prove later:

@ For large R (not coinciding with the ordinate of a zero) and —1 < Re(s) < 2,

= > 8%+0(1og3). (7.4.2-3)
|Im(p)—R|<1

@ For any large R, the number of zeros p of { with [Im(p) — R| < 1is O(log R).

As a consequence of @, among the ordinates of these zeros there must be a gap of length at least
C(log R)™! for some constant C' > 0 independent of R. Hence by varying R by a bounded amount

we can ensure that

for all zeros p of (. Now we apply @ with the present choice of R to get

C/

—pl > _ >
89l > lImip) = Rl > o p.



and the number of summation terms is also O(log R). So on the new horizontal lines of integration

we obtain Estimate II: .
¢'(s) = O(log2 R) for —1 < Re(s) < 2.

¢(s)

Now we prove the two results @ and @ mentioned above. Define

£(s) = 55(s — DE(s) = (s — D)m 3T(5)¢(s) = (s — D 5T (5 +1)¢(s),

(7.4.2-4)

2
then by the deduction in Exercise 7.3.8 we see £(s) is an entire function of order 1. Hadamard’s

=
p?

factorization theorem shows that
~ s

£(s) = eATEs (1 )6
(-7

p

where the product is taken over all nontrivial zeros of {. Logarithmic differentiation of this gives

£(s) ;
Since by our definition
€)1 1 iy )
£s) s—1 3108 +2F(S+1) +<(s)’
we get
¢(s) _ 1 1 Gy (1 1) _
_ B 2logw+2r<%+1) Z,; ) (7.4.2-5)

¢(s)
By the asymptotic behavior (7.4.2-2) of the digamma function we see that the I" term above is less

than Alogtift > 2and 1 < o < 2 for s = o + it. Hence, in this region,
)

C’(S)) ( 1
—Re < Alogt — Re + -
< ¢(s) 8 Ep: s—p p
In this inequality we take s = 2 + iR, and since |¢’ /(| is bounded for such s as shown in (7.4.2-1),
we obtain ) )
ZRe( +> < AlogR.
s—p p
P
Note that Re ( %) > 0 for each p, and
1 2 — Re(p) 1
R =R = > ,
(+55) ~Relamin=s) e oG R * T T
1
= O(log R).

we get
; L+ [R—Tm(p)]2



As a consequence, we see that

1 1 1
g#e:lIm(p) = R <1} < Im(p)ZR.<1 TF[E-Im(p)P < Z TRt 18R

which implies @. Also note as a byproduct that

1 1 1 1
5 2 TS 2 <) = O(log R)
2 2 — 2 s
2 han( s Tm(p) = R S, L+ [R—Im(p)]” 47 1+ [R—TIm(p)]

hence we find )
—— = =0O(log R). (7.4.2-6)
|Im(p)2—:R21 |Im(p) - R|2

By formula (7.4.2-5), applied at s = ¢ + iR (here —1 < ¢ < 2) and 2 + iR and subtracted,

((s)  C@+iR) s—1 T+iR 2T(2+B) " 2T(s+1)

1 1
:O(logR)—f—Z(S S TiRC ),
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('(s)  ¢(2+1iR) 1 1 177 (2+ &) 1F’(§+1)+Z< 1 1 )
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where we have used (7.4.2-1) and (7.4.2-2) to estimate the { and I' terms. Now we focus on the
sum. For the terms with |[Im(p) — R| > 1, we have

11 ‘ 2-0 _ 3
s—p 2+iR—p| [s—pl2+iR—p| = [Im(p) - R[*’

and their contribution to the sum is O(log R) by (7.4.2-6). As for the terms with [Im(p) — R| < 1,
we have |2+ iR — p| > [(2+iR) — (1 +iR)| = 1, and the number of terms is O(log R) by @ above.
Therefore we have proved @. O



