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Stein 7.3.5 Consider the following function

ζ̃(s) = 1− 1

2s
+

1

3s
− · · · =

∞∑
n=1

(−1)n+1

ns
.

(1) Prove that the series defining ζ̃(s) converges for Re(s) > 0 and defines a holomorphic function in
that half-plane.

(2) Show that for s > 1 one has ζ̃(s) =
(
1− 21−s

)
ζ(s).

(3) Conclude, since ζ̃ is given as an alternating series, that ζ has no zeros on the segment 0 < s < 1.
Extend this last assertion to s = 0 by using the functional equation.

Proof (1) Since the partial sums
N∑

n=1

(−1)n are bounded, Exercise 7.3.1 applies.

(2) When s > 1, since ζ(s) and ζ̃(s) are absolutely convergent (as infinite series), we have

ζ(s)− ζ̃(s) =

∞∑
n=1

[
1

ns
− (−1)n+1

ns

]
=

∞∑
n=1

2

(2n)s
= 21−sζ(s).

(3) Note that at s = 1, the simple pole of ζ(s) cancels with the zero of 1 − 21−s, so both sides of the
identity in (2) are holomorphic functions on Re(s) > 0 that agree on Re(s) > 1. Thus this identity
holds on the whole half-plane Re(s) > 0. Focusing on 0 < s < 1, we have

1

(2n− 1)s
− 1

(2n)s
> 0 for all n ∈ N.

Hence, the alternating series ζ̃(s) is strictly positive when 0 < s < 1, and ζ(s) ̸= 0 on the segment
0 < s < 1 by the identity in (2). Finally, the functional equation ξ(s) = ξ(1− s), or equivalently,

π− s
2Γ

(
s
2

)
ζ(s) = π− 1−s

2 Γ
(
1−s
2

)
ζ(1− s),

in Theorem 2.3 of Chapter 6, shows that ζ(0) ̸= 0 since the simple pole of ζ(1− s) at s = 0 cancels
with the simple zero of 1/Γ

(
s
2

)
. This concludes that ζ(s) ̸= 0 on the segment 0 < s < 1.

Remark We have shown that ζ(0) = − 1
2 in Homework 11.

Stein 7.3.6 Show that for every c > 0

lim
N→∞

1

2πi

∫ c+iN

c−iN
as

ds
s

=


1, if a > 1,

1
2 , if a = 1,

0, if 0 ⩽ a < 1.

This integral is taken over the vertical segment from c− iN to c+ iN .

Proof Let f(s) = as

s
be the integrand.
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(1) For 0 ⩽ a < 1, choose the rectangular contour γ = γ1 ∪ γ2 ∪ γ3 ∪ γ4 as illustrated below.

Re

Im

γ1

γ2

γ3

γ4

c+ iN

c− iN

c+
√
N + iN

c+
√
N − iN

c

Since f(s) is holomorphic on C \ {0}, we have
∫
γ

f(s)ds = 0. For the integral along γ2, one has

∣∣∣∣∫
γ2

f(s)ds
∣∣∣∣ ⩽ √

N · a
c

N

N→∞
0.

By the same argument we have ∣∣∣∣∫
γ4

f(s)ds
∣∣∣∣ ⩽ √

N · a
c

N

N→∞
0.

For the integral along γ3, we have

∣∣∣∣∫
γ3

f(s)ds
∣∣∣∣ ⩽ 2N · a

c+
√
N

c+
√
N

0⩽a<1

N→∞
0.

Therefore, letting N → ∞ gives

lim
N→∞

1

2πi

∫ c+iN

c−iN
as

ds
s

= 0 when 0 ⩽ a < 1.

(2) For a > 1, choose the rectangular contour γ = γ1 ∪ γ2 ∪ γ3 ∪ γ4 as illustrated below.

Re

Im

γ1

γ2

γ3

γ4

c+ iN

c− iN

c−
√
N + iN

c−
√
N − iN

c0
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The residue of f(s) at s = 0 is 1, hence by the residue formula we have∫
γ

f(s)ds = 2πi Res(f, 0) = 2πi.

For the integral along γ2, one has∣∣∣∣∫
γ2

f(s)ds
∣∣∣∣ ⩽ √

N · a
c

N

N→∞
0.

By the same argument we have ∣∣∣∣∫
γ4

f(s)ds
∣∣∣∣ ⩽ √

N · a
c

N

N→∞
0.

For the integral along γ3, we have

∣∣∣∣∫
γ3

f(s)ds
∣∣∣∣ ⩽ 2N · a

c−
√
N

√
N − c

a>1

N→∞
0.

Therefore, letting N → ∞ gives

lim
N→∞

1

2πi

∫ c+iN

c−iN
as

ds
s

= 1 when a > 1.

(3) For a = 1, we compute directly

lim
N→∞

1

2πi

∫ c+iN

c−iN

ds
s

=
1

2πi lim
N→∞

i[arg(c+ iN)− arg(c− iN)] =
π

2π
=

1

2
.

Here we choose the principal branch of the logarithm in the slit plane C \ (−∞, 0].

Remark For a ∈ (0, 1) ∪ (1,∞), we can also use Lemma 2.4 in Chapter 7 to write

1− 1/a

2πi

∫ c+i∞

c−i∞
as

ds
s

=
1

2πi

∫ c+i∞

c−i∞
as

ds
s

− 1

2πi

∫ c+i∞

c−i∞
as−1ds

s

=
1

2πi

∫ c+i∞

c−i∞
as

ds
s

− 1

2πi

∫ c+i∞

c−i∞
as

ds
s+ 1

=
1

2πi

∫ c+i∞

c−i∞
as

ds
s(s+ 1)

=

0, if 0 < a < 1,

1− 1/a, if a > 1,

whence the result follows.

Stein 7.4.2 One of the “explicit formulas” in the theory of primes is as follows: if ψ1 is the integrated
Tchebychev function considered in Section 2, then

ψ1(x) =
x2

2
−

∑
ρ

xρ+1

ρ(ρ+ 1)
− E(x)
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where the sum is taken over all zeros ρ of the zeta function in the critical strip. The error term is given
by

E(x) = c1x+ c0 +

∞∑
k=1

x1−2k

2k(2k − 1)
,

where
c1 =

ζ ′(0)

ζ(0)
and c0 = −ζ

′(−1)

ζ(−1)
.

Proof By Proposition 2.3 in Chapter 7 we have

ψ1(x) =
1

2πi

∫ c+i∞

c−i∞

xs+1

s(s+ 1)

(
−ζ

′(s)

ζ(s)

)
ds for all c > 1.

Now fix c = 2 and consider the integral of f(s) =
xs+1

s(s+ 1)

(
−ζ

′(s)

ζ(s)

)
along the rectangular contour

γ = γ1 ∪ γ2 ∪ γ3 ∪ γ4 as illustrated below.

Re

Im

γ1

γ2

γ3

γ4

21−1

2 + iR

2− iR

−T

−T + iR

−T − iR

It is necessary to choose R with a little care, so that the horizontal sides of the rectangle shall avoid, as
far as possible, the zeros of ζ(s) in the critical strip (see the discussion following ­ on page 6). Similarly,
here T is chosen to be a large odd integer, so that the left vertical side passes halfway between two of the
trivial zeros of ζ(s).

We begin by calculating the residues of f at 1, 0, −1, and all the zeros of ζ:

Res(f, 1) = −x
2

2
Ord(ζ, 1) = x2

2
,

Res(f, 0) = lim
s→0

xs+1

s+ 1

(
−ζ

′(s)

ζ(s)

)
= −c1x where c1 =

ζ ′(0)

ζ(0)
,

Res(f,−1) = lim
s→−1

xs+1

s

(
−ζ

′(s)

ζ(s)

)
= −c0 where c0 = −ζ

′(−1)

ζ(−1)
,

Res(f,−2k) = − x−2k+1

−2k(−2k + 1)
Ord(ζ,−2k) = − x1−2k

2k(2k − 1)
for k = 1, 2, 3, · · · ,

Res(f, ρ) = − xρ+1

ρ(ρ+ 1)
Ord(ζ, ρ) for any nontrivial zero ρ of ζ.

Here we used “Ord” to denote the order of the zero at the given point. Note that in the formula we are
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going to prove the nontrivial zeros of ζ are to be counted with multiplicities, i.e., each ρ appears in the
summation as many times as its order, since we actually don’t know whether they are simple or not.

In Exercise 7.3.8 we have shown that (s − 1)ζ(s) is an entire function of growth order 1, thus by
Theorem 2.1 in Chapter 5 we have

∑
ρ

1

|ρ|1+ε
<∞ for every ε > 0. Hence

∑
ρ

∣∣∣∣ xρ+1

ρ(ρ+ 1)

∣∣∣∣ ⩽ ∑
ρ

x2

|ρ|2
<∞.

Also, it is obvious that E(x) = O(x) as x → ∞. So we are allowed to apply the residue formula and let
R and T tend to infinity to write

ψ1(x) +
1

2πi lim
R,T→∞

∫
γ2∪γ3∪γ4

f(s)ds = x2

2
−

∑
ρ

xρ+1

ρ(ρ+ 1)
− E(x).

It remains to show that the integral of f(s) along γ2 ∪ γ3 ∪ γ4 vanishes as R and T tend to infinity. To
achieve this, we need an estimate for |ζ ′/ζ|. We will show that

∣∣∣∣ζ ′(s)ζ(s)

∣∣∣∣ =
O(log |2s|), if Re(s) ⩽ −1 and all disks of radius 1

2 around the trivial zeros are excluded,
O
(
log2R

)
, if − 1 < Re(s) ⩽ 2 and Im(s) = R.

With this established, it is clear that the integral of f(s) along γ2 ∪ γ3 ∪ γ4 vanishes as R and T tend to
infinity (note that |ζ ′/ζ| is symmetric about the real axis), thereby completing the proof.

Now let us prove these estimates.

Estimate I: Re(s) ⩽ −1 with open disks excluded First recall two functional relations satisfied byΓ(s):

⋄ Γ(s)Γ(1− s) =
π

sin(πs) .

⋄ Γ(s)Γ
(
s+ 1

2

)
=

√
π21−2sΓ(2s), which has been proved in Exercise 6.3.3.

Combined, one has

Γ
(
1−s
2

)
= Γ

(
1− 1+s

2

)
=

π

sin
(
π 1+s

2

)
Γ
(
1+s
2

) =
π

cos πs
2 Γ

(
1+s
2

) =
π

cos πs
2

·
Γ
(
s
2

)
21−s

√
πΓ(s)

=

√
πΓ

(
s
2

)
21−s cos πs

2 Γ(s)
,

thus giving
Γ
(
s
2

)
Γ
(
1−s
2

) = π− 1
2 21−s cos πs

2
Γ(s).

If this is used in the functional equation of ζ(s), we get

ζ(1− s) =
π− s

2Γ
(
s
2

)
ζ(s)

π− 1−s
2 Γ

(
1−s
2

) = 21−sπ−s cos πs
2
Γ(s)ζ(s).

Taking the logarithmic derivative of both sides gives

−ζ
′(1− s)

ζ(1− s)
= −π

2
tan πs

2
+

Γ′(s)

Γ(s)
+
ζ ′(s)

ζ(s)
− log 2π.
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Since we are interested in the left-hand side under Re(1 − s) ⩽ −1, the right-hand side can be
considered only for Re(s) ⩾ 2. The first term is bounded if s is not close to any odd integer, or
more specifically, |s− (2m+ 1)| ⩾ 1

2 for allm ∈ N. Note that this is equivalent to

|(1− s)− (−2m)| ⩾ 1

2
,

which is precisely satisfied by our assumption that all disks of radius 1
2 around the trivial zeros

are excluded. The third term is bounded since∣∣∣∣ζ ′(s)ζ(s)

∣∣∣∣ =
∣∣∣∣∣
∞∑

n=1

Λ(n)

ns

∣∣∣∣∣ ⩽
∞∑

n=1

Λ(n)

n2
= −ζ

′(2)

ζ(2)
when Re(s) ⩾ 2. (7.4.2–1)

Finally, the digamma function Γ′(s)/Γ(s) is O(log |s|), and hence O(log 2|1 − s|). Replacing 1 − s

by s in the above, we obtain Estimate I. The asymptotic estimate for the digamma function can be
deduced from Exercise 6.3.13, where we have shown that

Γ′(s)

Γ(s)
=

d
ds logΓ(s) = −γ − 1

s
+

∞∑
n=1

(
1

n
− 1

n+ s

)
.

Apply the Euler–Maclaurin summation formula to (x+ s)−1,

N∑
n=0

1

n+ s
= log(N + s)− log s+ 1

2s
+

1

2(s+N)
+O

(
|s|−2

)
.

Then
N∑

n=1

1

n+ s
= log(N + s)− log s− 1

2s
+

1

2(s+N)
+O

(
|s|−2

)
.

Hence
Γ′(s)

Γ(s)
= log s− 1

2s
+O

(
|s|−2

)
. (7.4.2–2)

Estimate II: −1 < Re(s) ⩽ 2 and Im(s) = R We refer to two results which we shall prove later:

¬ For large R (not coinciding with the ordinate of a zero) and −1 ⩽ Re(s) ⩽ 2,

ζ ′(s)

ζ(s)
=

∑
|Im(ρ)−R|<1

1

s− ρ
+O(logR). (7.4.2–3)

­ For any large R, the number of zeros ρ of ζ with |Im(ρ)−R| < 1 is O(logR).

As a consequence of ­, among the ordinates of these zeros there must be a gap of length at least
C(logR)−1 for some constantC > 0 independent ofR. Hence by varyingR by a bounded amount
we can ensure that

|Im(ρ)−R| ⩾ C ′

logR

for all zeros ρ of ζ. Now we apply ¬ with the present choice of R to get

|s− ρ| ⩾ |Im(ρ)−R| ⩾ C ′

logR,
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and the number of summation terms is alsoO(logR). So on the new horizontal lines of integration
we obtain Estimate II:

ζ ′(s)

ζ(s)
= O

(
log2R

)
for −1 ⩽ Re(s) ⩽ 2.

Now we prove the two results ¬ and ­ mentioned above. Define

ξ̃(s) =
1

2
s(s− 1)ξ(s) =

s

2
(s− 1)π− s

2Γ
(
s
2

)
ζ(s) = (s− 1)π− s

2Γ
(
s
2 + 1

)
ζ(s), (7.4.2–4)

then by the deduction in Exercise 7.3.8 we see ξ̃(s) is an entire function of order 1. Hadamard’s
factorization theorem shows that

ξ̃(s) = eA+Bs
∏
ρ

(
1− s

ρ

)
e

s
ρ ,

where the product is taken over all nontrivial zeros of ζ. Logarithmic differentiation of this gives

ξ̃′(s)

ξ̃(s)
= B +

∑
ρ

(
1

s− ρ
+

1

ρ

)
.

Since by our definition

ξ̃′(s)

ξ̃(s)
=

1

s− 1
− 1

2
logπ +

1

2

Γ′( s
2 + 1

)
Γ
(
s
2 + 1

) +
ζ ′(s)

ζ(s)
,

we get

−ζ
′(s)

ζ(s)
=

1

s− 1
−B − 1

2
logπ +

1

2

Γ′( s
2 + 1

)
Γ
(
s
2 + 1

) −
∑
ρ

(
1

s− ρ
+

1

ρ

)
. (7.4.2–5)

By the asymptotic behavior (7.4.2–2) of the digamma function we see that the Γ term above is less
than A log t if t ⩾ 2 and 1 ⩽ σ ⩽ 2 for s = σ + it. Hence, in this region,

−Re
(
ζ ′(s)

ζ(s)

)
< A log t−

∑
ρ

Re
(

1

s− ρ
+

1

ρ

)
.

In this inequality we take s = 2 + iR, and since |ζ ′/ζ| is bounded for such s as shown in (7.4.2–1),
we obtain ∑

ρ

Re
(

1

s− ρ
+

1

ρ

)
< A logR.

Note that Re
(

1
ρ

)
> 0 for each ρ, and

Re
(

1

s− ρ

)
= Re

(
1

2 + iR− ρ

)
=

2− Re(ρ)
[2− Re(ρ)]2 + [R− Im(ρ)]2

⩾ 1

4 + [R− Im(ρ)]2
,

we get ∑
ρ

1

1 + [R− Im(ρ)]2
= O(logR).
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As a consequence, we see that

1

2
#{ρ : |Im(ρ)−R| < 1} ⩽

∑
|Im(ρ)−R|<1

1

1 + [R− Im(ρ)]2
⩽

∑
ρ

1

1 + [R− Im(ρ)]2
= O(logR),

which implies ­. Also note as a byproduct that

1

2

∑
|Im(ρ)−R|⩾1

1

|Im(ρ)−R|2
⩽

∑
|Im(ρ)−R|⩾1

1

1 + |R− Im(ρ)|2
⩽

∑
ρ

1

1 + [R− Im(ρ)]2
= O(logR),

hence we find ∑
|Im(ρ)−R|⩾1

1

|Im(ρ)−R|2
= O(logR). (7.4.2–6)

By formula (7.4.2–5), applied at s = σ + iR (here −1 < σ ⩽ 2) and 2 + iR and subtracted,

ζ ′(s)

ζ(s)
=
ζ ′(2 + iR)
ζ(2 + iR) − 1

s− 1
+

1

1 + iR +
1

2

Γ′(2 + iR
2

)
Γ
(
2 + iR

2

) − 1

2

Γ′( s
2 + 1

)
Γ
(
s
2 + 1

) +
∑
ρ

(
1

s− ρ
− 1

2 + iR− ρ

)
= O(logR) +

∑
ρ

(
1

s− ρ
− 1

2 + iR− ρ

)
,

where we have used (7.4.2–1) and (7.4.2–2) to estimate the ζ and Γ terms. Now we focus on the
sum. For the terms with |Im(ρ)−R| ⩾ 1, we have∣∣∣∣ 1

s− ρ
− 1

2 + iR− ρ

∣∣∣∣ = 2− σ

|s− ρ||2 + iR− ρ|
⩽ 3

|Im(ρ)−R|2
,

and their contribution to the sum is O(logR) by (7.4.2–6). As for the terms with |Im(ρ)−R| < 1,
we have |2 + iR− ρ| ⩾ |(2 + iR)− (1 + iR)| = 1, and the number of terms is O(logR) by ­ above.
Therefore we have proved ¬.
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