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Stein 6.3.14 This exercise gives an asymptotic formula for logn!. A more refined asymptotic formula
for Γ(s) as s → ∞ (Stirling’s formula) is given in Appendix A.

(1) Show that
d
dx

∫ x+1

x

logΓ(t)dt = logx, for x > 0,

and as a result ∫ x+1

x

logΓ(t)dt = x logx− x+ c.

(2) Show as a consequence that logΓ(n) ∼ n logn as n → ∞. In fact, prove that logΓ(n) ∼ n logn +

O(n) as n → ∞.

Proof (1) For x > 0 we have

d
dx

∫ x+1

x

logΓ(t)dt = logΓ(x+ 1)− logΓ(x) = log Γ(x+ 1)

Γ(x)
= logx,

and by integrating both sides we get the second formula.

(2) Since logΓ(t) is monotonically increasing when t ⩾ 1, we have

logΓ(n) ⩽
∫ n+1

n

logΓ(t)dt ⩽ logΓ(n+ 1) = logn+ logΓ(n).

This implies that
(n− 1) logn− n+ c ⩽ logΓ(n) ⩽ n logn− n+ c,

which gives the desired result.

Stein 6.3.15 Prove that for Re(s) > 1,

ζ(s) =
1

Γ(s)

∫ ∞

0

xs−1

ex − 1
dx.

Proof For x > 0 we have
1

ex − 1
=

∞∑
n=1

e−nx.

Substituting this into the integral and applying Fubini’s theorem, we get

∫ ∞

0

xs−1

ex − 1
dx =

∞∑
n=1

∫ ∞

0

xs−1e−nx dx t=nx
∞∑

n=1

1

ns

∫ ∞

0

ts−1e−t dt = ζ(s)Γ(s).

Stein 6.3.16 Use Exercise 6.3.15 to give another proof that ζ(s) is continuable in the complex plane
with only singularity as a simple pole at s = 1.

Proof Use Exercise 6.3.15 to write

ζ(s) =
1

Γ(s)

∫ 1

0

xs−1

ex − 1
dx+

1

Γ(s)

∫ ∞

1

xs−1

ex − 1
dx.
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The second integral defines an entire function because of exponential decay near infinity, while

∫ 1

0

xs−1

ex − 1
dx =

∫ 1

0

xs−2
∞∑

m=0

Bm

m!
xm dx =

∞∑
m=0

Bm

m!

∫ 1

0

xs+m−2 dx =

∞∑
m=0

Bm

m!(s+m− 1)
,

where Bm denotes the m-th Bernoulli number defined by

x

ex − 1
=

∞∑
m=0

Bm

m!
xm.

Since z

ez − 1
is holomorphic for |z| < 2π, and the right-hand side above has the same radius of con-

vergence as
∞∑

m=0

Bm

m!(s+m− 1)
zm when s ̸= 1, we conclude that

∞∑
m=0

Bm

m!(s+m− 1)
converges for all

s ∈ C \ {1}. And from B0 = 1 we see that s = 1 becomes a simple pole of ζ(s).

Stein 6.4.2 Prove that for Re(s) > 0

ζ(s) =
s

s− 1
− s

∫ ∞

1

{x}
xs+1

dx

where {x} is the fractional part of x.

Proof We have

RHS =
s

s− 1
− s

∞∑
n=1

∫ n+1

n

x− n

xs+1
dx

=
s

s− 1
− s

∫ ∞

1

dx
xs

+ s

∞∑
n=1

∫ n+1

n

n

xs+1
dx

=
s

s− 1
− s

s− 1
+

∞∑
n=1

n

[
1

ns
− 1

(n+ 1)s

]

=

∞∑
n=1

1

ns−1
−

∞∑
n=1

n

(n+ 1)s

=

∞∑
n=1

1

ns−1
−

∞∑
n=2

n− 1

ns

= 1 +

∞∑
n=2

1

ns
= LHS.

Stein 6.4.3 If Q(x) = {x} − 1
2 , then we can write the expression in Problem 6.4.2 as

ζ(s) =
s

s− 1
− 1

2
− s

∫ ∞

1

Q(x)

xs+1
dx.

Let us construct Qk(x) recursively so that∫ 1

0

Qk(x)dx = 0,
dQk+1

dx = Qk(x), Q0(x) = Q(x) and Qk(x+ 1) = Qk(x).
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Then we can write
ζ(s) =

s

s− 1
− 1

2
− s

∫ ∞

1

(
dk

dxk
Qk(x)

)
x−s−1 dx,

and a k-fold integration by parts gives the analytic continuation for ζ(s) when Re(s) > −k.

Proof The two identities are clear from what we have proved in Problem 6.4.2 and the recursive defi-
nition of Qk(x). Assume first Re(s) > 0, integration by parts gives∫ ∞

1

(
dk

dxk
Qk(x)

)
x−s−1 dx

=

∞∑
n=1

∫ n+1

n

(
dk

dxk
Qk(x)

)
x−s−1 dx

=

∞∑
n=1

{(
dk−1

dxk−1
Qk(x)

)
x−s−1

∣∣∣n+1

n
+ (s+ 1)

∫ n+1

n

(
dk−1

dxk−1
Qk(x)

)
x−s−2 dx

}

=

∞∑
n=1

Q1(x)x
−s−1

∣∣n+1

n
+ (s+ 1)

∫ ∞

1

(
dk−1

dxk−1
Qk(x)

)
x−s−2 dx

=−Q1(0) + (s+ 1)

∫ ∞

1

(
dk−1

dxk−1
Qk(x)

)
x−s−2 dx

=−Q1(0) + (s+ 1)

{
−Q2(0) + (s+ 2)

∫ ∞

1

(
dk−2

dxk−2
Qk(x)

)
x−s−3 dx

}
= · · ·

=−Q1(0)−
k∑

m=2

Qm(0)(s+ 1) · · · (s+m− 1) + (s+ 1)(s+ 2) · · · (s+ k)

∫ ∞

1

Qk(x)x
−s−k−1 dx.

Substituting this into the formula of ζ(s) we get

ζ(s) =
s

s− 1
− 1

2
+ s

k∑
m=1

Qm(0)s(s+ 1) · · · (s+m− 1)− s(s+ 1) · · · (s+ k)

∫ ∞

1

Qk(x)x
−s−k−1 dx.

Since Qk(x) is bounded on R by its periodicity, the integral converges for Re(s) > −k, which gives the
analytic continuation for ζ(s) when Re(s) > −k.

Stein 7.3.1 Suppose that {an}∞n=1 is a sequence of real numbers such that the partial sums

An = a1 + · · ·+ an

are bounded. Prove that the Dirichlet series
∞∑

n=1

an
ns

converges for Re(s) > 0 and defines a holomorphic function in this half-plane.

Proof Summation by parts gives

N∑
n=1

an
ns

=

N∑
n=1

An −An−1

ns
=

AN

Ns
−

N−1∑
n=1

An

[
1

(n+ 1)s
− 1

ns

]
.
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Assume |An| ⩽ M for all n ∈ N. Then ∣∣∣∣AN

Ns

∣∣∣∣ ⩽ M

NRe(s)
N→∞

0

uniformly on every compact subset of the half-plane Re(s) > 0. Applying the mean value theorem to
z−s, one gets ∣∣∣∣ 1ns

− 1

(n+ 1)s

∣∣∣∣ ⩽ |s|
nRe(s)+1

.

Therefore, on every compact subset K of the half-plane Re(s) > 0, we have

∞∑
n=1

∣∣∣∣An

[
1

(n+ 1)s
− 1

ns

]∣∣∣∣ ⩽ ∞∑
n=1

M |s|
nRe(s)+1

⩽ MS

∞∑
n=1

1

nδ+1
,

where
S = max

s∈K
|s| < +∞ and δ = min

s∈K
Re(s) > 0.

These two estimates gives the uniform convergence of the series on every compact subset of the half-
plane Re(s) > 0, which implies the holomorphicity of the function defined by this series.

Stein 7.3.2 The following links the multiplication of Dirichlet series with the divisibility properties of
their coefficients.

(1) Show that if {am} and {bk} are two bounded sequences of complex numbers, then( ∞∑
m=1

am
ms

)( ∞∑
k=1

bk
ks

)
=

∞∑
n=1

cn
ns

where cn =
∑

mk=n

ambk.

The above series converge absolutely when Re(s) > 1.

(2) Prove as a consequence that one has

[ζ(s)]2 =

∞∑
n=1

d(n)

ns
and ζ(s)ζ(s− a) =

∞∑
n=1

σa(n)

ns

for Re(s) > 1 and Re(s − a) > 1, respectively. Here d(n) equals the number of divisors of n, and
σa(n) is the sum of the a-th powers of the divisors of n. In particular, one has σ0(n) = d(n).

Proof (1) The convolution identity is obtained by noticing thatm−sk−s = n−s if and only ifmk = n.
Assume that {am} and {bk} are bounded by M . Then |cn| ⩽ Md(n). A classical result of the
arithmetic functions d(n) states that

lim sup
n→∞

log d(n) log logn
logn = log 2.

Hence d(n) ⩽ C logn for some constant C > 0, and

∞∑
n=1

∣∣∣ cn
ns

∣∣∣ ⩽ MC

∞∑
n=1

logn
nRe(s) < +∞ when Re(s) > 1.
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(2) Taking am = bk ≡ 1 gives the first identity. For the second identity, note that

ζ(s− a) =

∞∑
k=1

1

ks−a
=

∞∑
k=1

ka

ks
.

It then follows by (1) that

ζ(s)ζ(s− a) =

∞∑
n=1

cn
ns

, where cn =
∑
k|n

ka = σa(n).

Remark In (1), one can also use the fact that the Cauchy product of two absolutely convergent series
is absolutely convergent.

Stein 7.3.3 In line with Exercise 7.3.2, we consider the Dirichlet series for 1/ζ.

(1) Prove that for Re(s) > 1

1

ζ(s)
=

∞∑
n=1

µ(n)

ns
,

where µ(n) is the Möbius function defined by

µ(n) =


1, if n = 1,
(−1)k, if n = p1, · · · pk, and the pj are distinct primes,
0, otherwise.

Note that µ(nm) = µ(n)µ(m) whenever n and m are relatively prime.

(2) Show that ∑
k|n

µ(k) =

1, if n = 1,
0, otherwise.

Proof The proof of (1) is based on the formula in (2).

(1) By the Dirichlet convolution formula in Exercise 7.3.2 (1), we have

ζ(s)

∞∑
n=1

µ(n)

ns
=

( ∞∑
m=1

1

ms

)( ∞∑
k=1

µ(k)

ks

)
=

∞∑
n=1

cn
ns

,

where

cn =
∑
k|n

µ(k) =

1, if n = 1,

0, if n > 1.

Hence
ζ(s)

∞∑
n=1

µ(n)

ns
= 1 for Re(s) > 1.

(2) The case n = 1 is clear. Now assume n > 1 and write n = pr11 · · · prmm where p1, · · · , pm are distinct
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primes and r1, · · · , rm are positive integers. Since µ(n) is a multiplicative function, we have∑
k|n

µ(k) =
∑

0⩽si⩽ri

µ(ps11 · · · psmm ) = µ(1) +
∑

si=0,1

µ(ps11 · · · psmm )

= 1 +

m∑
k=1

(
m

k

)
(−1)k = (1− 1)m = 0.

Remark One can prove (1) directly by using the Euler product formula for ζ(s) to write

1

ζ(s)
=

∏
p prime

(
1− 1

ps

)
,

and the result is clear from the definition of the Möbius function µ(n). Then (2) follows by noting that

1 = ζ(s) · 1

ζ(s)
=

( ∞∑
m=1

1

ms

)( ∞∑
ℓ=1

µ(ℓ)

ℓs

)
=

∞∑
n=1

1

ns

∑
k|n

µ(k)

when Re(s) > 1, and that the result holds trivially for n = 1.

Extra 1 Calculate ζ(0).

Solution By Theorem 2.4 of Chapter 6, the zeta function ζ(s) has a simple pole at s = 1, so

lim
s→1

sζ(1− s) = −1.

Let us recall two functional equations satisfied by Γ(s):

⋄ Γ(s)Γ(1− s) =
π

sin(πs) .

⋄ Γ(s)Γ
(
s+ 1

2

)
=

√
π21−2sΓ(2s), which has been proved in Exercise 6.3.3.

Combined, one has

Γ
(
1−s
2

)
= Γ

(
1− 1+s

2

)
=

π

sin
(
π 1+s

2

)
Γ
(
1+s
2

) =
π

cos πs
2 Γ
(
1+s
2

) =
π

cos πs
2

·
Γ
(
s
2

)
21−s

√
πΓ(s)

=

√
πΓ
(
s
2

)
21−s cos πs

2 Γ(s)
,

thus giving
Γ
(
s
2

)
Γ
(
1−s
2

) = π− 1
2 21−s cos πs

2
Γ(s).

If this is used in the functional equation of ζ(s), we get

ζ(1− s) =
π− s

2Γ
(
s
2

)
ζ(s)

π− 1−s
2 Γ
(
1−s
2

) = 21−sπ−s cos πs
2
Γ(s)ζ(s).

Therefore, we have

−1 = lim
s→0

sζ(1− s) = lim
s→0

21−sπ−s cos πs
2
sΓ(s)ζ(s)
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= lim
s→0

21−sπ−s cos πs
2
Γ(s+ 1)ζ(s)

= 2ζ(0),

which gives ζ(0) = − 1
2 .

Remark We can also use Exercise 6.3.16 to write

ζ(s) =
1

Γ(s)

∞∑
m=0

Bm

m!(s+m− 1)
+

1

Γ(s)

∫ ∞

1

xs−1

ex − 1
dx

=
B1

sΓ(s)
+

1

Γ(s)

∑
m⩾0,m ̸=1

Bm

m!(s+m− 1)
+

1

Γ(s)

∫ ∞

1

xs−1

ex − 1
dx

=
B1

Γ(s+ 1)
+

1

Γ(s)

∑
m⩾0,m ̸=1

Bm

m!(s+m− 1)
+

1

Γ(s)

∫ ∞

1

xs−1

ex − 1
dx,

whence ζ(0) = B1 = − 1
2 by taking the limit s → 0 and noting that 1/Γ(s) vanishes at s = 0.
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