Stein 6.3.1 Prove that
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whenever s # 0, -1, -2, - -

Proof By Theorem 1.7 of Chapter 6, we have
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Using the definition of Euler’s constant y one can write
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Stein 6.3.3 Show that Wallis’s product formula can be written as
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As a result, prove the following identity:
L(s)I'(s+ 3) = V2! 72T (2s).
Proof By Wallis’s product formula we have
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which implies the desired result. Now use the formula proved in Exercise 6.3.1 to get
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Remark The identity I'(s)['(s + 3) = +/72'7**T'(2s) can be derived in another way using Exercise
T(s)D(s+3)

6.3.13. Let f(s) = T'(29) . Then
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Hence log f(s) = As + B for some constant A, B, and f(s) = e***5. Substituting s = 1 and s = 1 one
gets A = —2log?2and B = log2 + log /7, so f(s) = /72! 7%,

Stein 6.3.5 Use the fact that T'(s)['(1 — s) =

- to prove that
sinms

IT(3+it)| = \/E, whenever ¢ € R.

Proof By the definition of I'(s) we have I'(5) = ['(s), so substituting s = % + it we get
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Then the desired result follows from
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Stein 6.3.7 The Beta function is defined for Re(a) > 0 and Re(3) > 0 by

1
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(1) Prove that B(a, 8) = m.
(2) Show that B(a, ) = /0 h afﬁdu.

Proof (1) A change of variables gives
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(2) Substituting t = 1 in the integral we get
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Stein 6.3.12 This exercise gives two simple observations about 1/T".

1
1) Show that ——— isnot O ecl*l) f :
(1) Show tha 0] isno O(e ) orany c >0

(2) Show that there is no entire function F'(s) with F(s) = O(ec|5|) that has simple zeros at s =



0,-1,-2,---,—n,---,and that vanishes nowhere else.
Proof (1) Using sI'(s) =I'(s + 1), for k € N, we have
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If (5] is O(ec“q') for some ¢ > 0, then there exists C' > 0 such that

K< Cech2) forallk € N,

which is impossible since lim kle=(F3) = 4o,
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(2) Suppose that F'(s) is such a function with growth order < 1, then by Hadamard’s factorization

theorem we have -
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Comparing this with the Weierstrass product for I'(s) in Theorem 1.7 of Chapter 6 we get
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but this contradicts (1) by our assumptions on F'(s).



