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Stein 1.4.2 Let 〈·, ·〉 denote the usual inner product in R2. In other words, if Z = (x1, y1) and W =

(x2, y2), then
〈Z,W 〉 = x1x2 + y1y2.

Similarly, we may define a Hermitian inner product (·, ·) in C by

(z, w) = zw.

The termHermitian is used to describe the fact that (·, ·) is not symmetric, but rather satisfies the relation

(z, w) = (w, z) for all z, w ∈ C.

Show that
〈z, w〉 = 1

2
[(z, w) + (w, z)] = Re(z, w),

where we use the usual identification z = x+ iy ∈ C with (x, y) ∈ R2.

Proof Suppose z = x1 + iy1 and w = x2 + iy2. Then

(z, w) = zw = (x1 + iy1)(x2 − iy2) = (x1x2 + y1y2) + i(x2y1 − x1y2)

and
Re(z, w) = x1x2 + y1y2 = 〈z, w〉.

Stein 1.4.4 Show that it is impossible to define a total ordering on C. In other words, one cannot find
a relation � between complex numbers so that:

(1) For any two complex numbers z, w, one and only one of the following is true: z � w, w � z or
z = w.

(2) For all z1, z2, z3 ∈ C the relation z1 � z2 implies z1 + z3 � z2 + z3.

(3) Moreover, for all z1, z2, z3 ∈ C with z3 � 0, then z1 � z2 implies z1z3 � z2z3.

Proof Consider the three complex numbers 0,±i. If i � 0 � −i, then by (3) one has i · i � i · (−i), that
is,−1 � 1. Then applying (3) again gives−1 · i � 1 · i. Hence, one has−i � i while i � −i, contradicting
(1). The other cases can be similarly shown to be impossible.

Stein 1.4.5 A set Ω is said to be pathwise connected if any two points in Ω can be joined by a
(piecewise-smooth) curve entirely contained in Ω. The purpose of this exercise is to prove that an open
set Ω is pathwise connected if and only if Ω is connected.

(1) Suppose first that Ω is open and pathwise connected, and that it can be written as Ω = Ω1 ∪ Ω2

where Ω1 and Ω2 are disjoint non-empty open sets. Choose two points w1 ∈ Ω1 and w2 ∈ Ω2 and
let γ denote a curve in Ω joining w1 to w2. Consider a parametrization z : [0, 1] → Ω of this curve
with z(0) = w1 and z(1) = w2, and let

t∗ = sup
0⩽t⩽1

{t : z(s) ∈ Ω1 for all 0 ⩽ s < t}.
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Arrive at a contradiction by considering the point z(t∗).

(2) Conversely, suppose that Ω is open and connected. Fix a point w ∈ Ω and let Ω1 ⊂ Ω denote the
set of all points that can be joined tow by a curve contained inΩ. Also, letΩ2 ⊂ Ω denote the set of
all points that cannot be joined to w by a curve in Ω. Prove that both Ω1 and Ω2 are open, disjoint
and their union is Ω. Finally, since Ω1 is non-empty (why?) conclude that Ω = Ω1 as desired.

The proof actually shows that the regularity and type of curves we used to define pathwise connect-
edness can be relaxed without changing the equivalence between the two definitions when Ω is open.
For instance, we may take all curves to be continuous, or simply polygonal lines (a polygonal line is a
piecewise-smooth curve which consists of finitely many straight line segments).

Proof (1) Since Ω1 is open, for any t0 with z(t0) ∈ Ω1, there exists t1 > t0 such that z(t1) ∈ Ω1. This
shows z(t∗) /∈ Ω1. Similarly, z(t∗) /∈ Ω2. Hence, z(t∗) /∈ Ω1 ∪ Ω2 = Ω, a contradiction.

(2) For any p ∈ Ω1, choose an open ball B(p, r) ⊂ Ω. Since any point in B(p, r) can be joined to p by
a line segment in B(p, r), it follows that B(p, r) ⊂ Ω1. Hence, Ω1 is open. Similarly, Ω2 is open.
Obviously Ω1 and Ω2 are disjoint and their union is Ω. Since we can choose a ball around w that is
contained in Ω (which is pathwise connected), it follows that Ω1 is non-empty. Therefore, by the
connectedness of Ω, we conclude that Ω = Ω1, i.e., Ω is pathwise connected.

Stein 1.4.6 LetΩ be an open set inC and z ∈ Ω. The connected component (or simply the component)
of Ω containing z is the set Cz of all points w in Ω that can be joined to z by a curve entirely contained in
Ω.

(1) Check first that Cz is open and connected. Then, show that w ∈ Cz defines an equivalence relation,
that is: (i) z ∈ Cz , (ii) w ∈ Cz implies z ∈ Cw, and (iii) if w ∈ Cz and z ∈ Cζ , then w ∈ Cζ .

Thus Ω is the union of all its connected components, and two components are either disjoint or
coincide.

(2) Show that Ω can have only countably many distinct connected components.

(3) Prove that if Ω is the complement of a compact set, then Ω has only one unbounded component.

Proof (1) The same proof as in Exercise 1.4.5 (2) shows that Cz is open. Then by Exercise 1.4.5 (1),
the pathwise connectedness of Cz implies that Cz is connected. The three properties are obvious
from the definition of pathwise connectedness.

(2) If Ω has uncountably many connected components, then by (1) we obtain uncountably many dis-
joint open balls in Ω. This contradicts the countability of rational points in C.

(3) Choose a closed disc containing the compact setΩc, so that the complement of this disc is open and
connected, and hence is contained in a component of Ω. This component is obviously the unique
unbounded component of Ω.

Stein 1.4.7 The family ofmappings introducedhere plays an important role in complex analysis. These
mappings, sometimes called Blaschke factors, will reappear in various applications in later chapters.
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(1) Let z, w be two complex numbers such that z̄w 6= 1. Prove that∣∣∣∣ w − z

1− wz

∣∣∣∣ < 1 if |z| < 1 and |w| < 1,

and also that ∣∣∣∣ w − z

1− wz

∣∣∣∣ = 1 if |z| = 1 or |w| = 1.

(2) Prove that for a fixed w in the unit disc D, the mapping

F : z 7→ w − z

1− wz

satisfies the following conditions:

¬ F maps the unit disc to itself (that is, F : D → D), and is holomorphic.

 F interchanges 0 and w, namely F (0) = w and F (w) = 0.

® |F (z)| = 1 if |z| = 1.

¯ F : D → D is bijective.

Proof (1) We have

|z| < 1 and |w| < 1 =⇒
(
1− |z|2

)(
1− |w|2

)
> 0 ⇐⇒ |w|2 + |z|2 < 1 + |w|2|z|2

⇐⇒ |w|2 + |z|2 − wz̄ − wz̄ < 1− wz̄ − wz + |w|2|z|2 ⇐⇒ (w − z)(w − z̄) < (1− wz)(1− wz̄)

⇐⇒ |w − z|2 < |1− wz|2 z̄w ̸=1⇐===⇒
∣∣∣∣ w − z

1− wz

∣∣∣∣ < 1

and

|z| = 1 or |w| = 1 ⇐⇒
(
1− |z|2

)(
1− |w|2

)
= 0 ⇐⇒ |w|2 + |z|2 = 1 + |w|2|z|2

⇐⇒ |w|2 + |z|2 − wz̄ − wz̄ = 1− wz̄ − wz + |w|2|z|2 ⇐⇒ (w − z)(w − z̄) = (1− wz)(1− wz̄)

⇐⇒ |w − z|2 = |1− wz|2 z̄w ̸=1⇐===⇒
∣∣∣∣ w − z

1− wz

∣∣∣∣ = 1.

(2) ¬ The implications in the proof of (1) show that F maps D to D, and F is holomorphic since it
is a rational function whose denominator is never zero in D.

 Direct computation gives F (0) =
w − 0

1− 0
= w and F (w) =

w − w

1− |w|2
= 0.

® This is shown in the proof of (1).

¯ It is direct to check that F 2 = IdD, so F is bijective.

Stein 1.4.9 Show that in polar coordinates, the Cauchy–Riemann equations take the form

∂u

∂r
=

1

r

∂v

∂θ
and 1

r

∂u

∂θ
= −∂v

∂r
.
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Use these equations to show that the logarithm function defined by

log z = log r + iθ where z = reiθ with − π < θ < π

is holomorphic in the region r > 0 and −π < θ < π.

Proof If we let

x = r cos θ,
y = r sin θ,

then


∂u

∂r

∂u

∂θ

 =

(
cos θ sin θ

−r sin θ r cos θ

)
∂u

∂x

∂u

∂y

 and hence


∂u

∂x

∂u

∂y

 =

cos θ −1

r
sin θ

sin θ
1

r
cos θ



∂u

∂r

∂u

∂θ

 =

cos θ∂u
∂r

− 1

r
sin θ

∂u

∂θ

sin θ
∂u

∂r
+

1

r
cos θ∂u

∂θ

.

Similarly, we have 
∂v

∂x

∂v

∂y

 =

cos θ∂v
∂r

− 1

r
sin θ

∂v

∂θ

sin θ
∂v

∂r
+

1

r
cos θ∂v

∂θ

.

The Cauchy–Riemann in Cartesian coordinates is then equivalent to
cos θ∂u

∂r
− 1

r
sin θ

∂u

∂θ
= sin θ

∂v

∂r
+

1

r
cos θ∂v

∂θ
,

sin θ
∂u

∂r
+

1

r
cos θ∂u

∂θ
= − cos θ∂v

∂r
+

1

r
sin θ

∂v

∂θ
.

Rewrite these equations as (
cos θ − sin θ

sin θ cos θ

)
∂u

∂r
− 1

r

∂v

∂θ

∂v

∂r
+

1

r

∂u

∂θ

 =

(
0

0

)
,

where the desired result follows.

For the logarithm function, consider the functions u = log r and v = θ. Then

∂u

∂r
=

1

r
=

1

r

∂v

∂θ
and ∂v

∂r
= 0 = −1

r

∂u

∂θ
.

Therefore, the logarithm function is holomorphic in the region r > 0 and −π < θ < π.

Stein 1.4.15 Abel’s theorem. Suppose
∞∑

n=1

an converges. Prove that

lim
r→1, r<1

∞∑
n=1

rnan =

∞∑
n=1

an.

In other words, if a series converges, then it is Abel summable with the same limit.
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Proof Let Ak =

k∑
n=1

an and A = lim
k→∞

Ak. Then by Exercise 1.4.14 we have

N∑
n=1

rnan = rNAN −
N−1∑
n=1

(
rn+1 − rn

)
An = rNAN + (1− r)

N−1∑
n=1

rnAn.

After subtracting a constant from a1, we may assume that A = 0. Letting N → ∞ gives

∞∑
n=1

rnan = (1− r)

∞∑
n=1

rnAn.

Given ε > 0, pick M large enough so that |An| < ε for all n ⩾ M and note that∣∣∣∣∣(1− r)

∞∑
n=M

rnAn

∣∣∣∣∣ ⩽ ε|1− r|
∞∑

n=M

|r|n = ε|1− r| rM

1− |r|
.

Therefore, we have

lim sup
r→1, r<1

∣∣∣∣∣
∞∑

n=1

rnan

∣∣∣∣∣ ⩽ lim sup
r→1, r<1

|1− r|

∣∣∣∣∣
M−1∑
n=1

rnAn

∣∣∣∣∣+ ε lim sup
r→1, r<1

|1− r|rM

1− |r|
= ε.

Since ε > 0 is arbitrary, the result follows.

Stein 1.4.16 Determine the radius of convergence of the series
∞∑

n=1

anz
n when:

(1) an = (logn)2.

(2) an = n!.

(3) an =
n2

4n + 3n
.

(4) an =
(n!)3

(3n)!
.

(5) Find the radius of convergence of the hypergeometric series

F (α, β, γ; z) = 1 +

∞∑
n=1

α(α+ 1) · · · (α+ n− 1)β(β + 1) · · · (β + n− 1)

n!γ(γ + 1) · · · (γ + n− 1)
zn.

Here α, β ∈ C and γ 6= 0,−1,−2, · · · .

(6) Find the radius of convergence of the Bessel function of order r:

Jr(z) =
(z
2

)r ∞∑
n=0

(−1)n

n!(n+ r)!

(z
2

)2n
,

where r is a positive integer.

Solution Denote the radius of convergence by R.
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(1) Since lim sup
n→∞

(logn) 2
n = exp

(
lim sup
n→∞

2 logn
n

)
= 1, we have R = 1.

(2) By Stirling’s formula we get lim sup
n→∞

(n!)
1
n = lim sup

n→∞
(2nπ)

1
2n

n

e
= +∞. Hence R = 0.

(3) Since lim sup
n→∞

(
n2

4n + 3n

) 1
n

= lim sup
n→∞

n
2
n

4
=

1

4
, we have R = 4.

(4) By Stirling’s formula we get

lim sup
n→∞

[
(n!)3

(3n)!

] 1
n

= lim sup
n→∞

[
(2nπ)

3
2

(
n
e

)3n
√
6nπ

(
3n
e

)3n
] 1

n

= lim sup
n→∞

[
(2nπ)

3
2

√
6nπ33n

] 1
n

=
1

27

Hence R = 27.

(5) The series terminates if either α or β is a nonpositive integer, in which case the function reduces to
a polynomial and R = +∞. Otherwise, we use the following useful limit for asymptotic approxi-
mations as x → ∞:

Γ(x+ α) ∼ Γ(x)xα, α ∈ C,

which yields

α(α+ 1) · · · (α+ n− 1)β(β + 1) · · · (β + n− 1)

n!γ(γ + 1) · · · (γ + n− 1)
∼

Γ(α+n)
Γ(α)

Γ(β+n)
Γ(β)

n!Γ(γ+n)
Γ(γ)

∼ Γ(γ)

Γ(α)Γ(β)
nα+β−γ .

Since

lim sup
n→∞

(
Γ(γ)

Γ(α)Γ(β)
nα+β−γ

) 1
n

= 1,

we have R = 1.

(6) By Stirling’s formula we get

lim sup
n→∞

∣∣∣∣ (−1)n

n!(n+ r)!22n+r

∣∣∣∣ 1
2n+r

= lim sup
n→∞

(
1

2πn
(
2n
e

)2n+r

) 1
2n+r

= 0.

Hence R = +∞.
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