Stein 1.4.2 Let $\langle \cdot, \cdot \rangle$ denote the usual inner product in \mathbb{R}^2 . In other words, if $Z = (x_1, y_1)$ and $W = (x_2, y_2)$, then

$$\langle Z, W \rangle = x_1 x_2 + y_1 y_2.$$

Similarly, we may define a Hermitian inner product (\cdot, \cdot) in \mathbb{C} by

$$(z,w) = z\overline{w}.$$

The term Hermitian is used to describe the fact that (\cdot, \cdot) is not symmetric, but rather satisfies the relation

$$(z,w) = \overline{(w,z)}$$
 for all $z, w \in \mathbb{C}$.

Show that

$$\langle z, w \rangle = \frac{1}{2}[(z, w) + (w, z)] = \operatorname{Re}(z, w),$$

where we use the usual identification $z = x + iy \in \mathbb{C}$ with $(x, y) \in \mathbb{R}^2$.

Proof Suppose $z = x_1 + iy_1$ and $w = x_2 + iy_2$. Then

$$(z,w) = z\overline{w} = (x_1 + iy_1)(x_2 - iy_2) = (x_1x_2 + y_1y_2) + i(x_2y_1 - x_1y_2)$$

and

$$\operatorname{Re}(z,w) = x_1 x_2 + y_1 y_2 = \langle z, w \rangle.$$

Stein 1.4.4 Show that it is impossible to define a total ordering on \mathbb{C} . In other words, one cannot find a relation \succ between complex numbers so that:

- (1) For any two complex numbers z, w, one and only one of the following is true: $z \succ w, w \succ z$ or z = w.
- (2) For all $z_1, z_2, z_3 \in \mathbb{C}$ the relation $z_1 \succ z_2$ implies $z_1 + z_3 \succ z_2 + z_3$.

(3) Moreover, for all $z_1, z_2, z_3 \in \mathbb{C}$ with $z_3 \succ 0$, then $z_1 \succ z_2$ implies $z_1 z_3 \succ z_2 z_3$.

Proof Consider the three complex numbers $0, \pm i$. If $i \succ 0 \succ -i$, then by (3) one has $i \cdot i \succ i \cdot (-i)$, that is, $-1 \succ 1$. Then applying (3) again gives $-1 \cdot i \succ 1 \cdot i$. Hence, one has $-i \succ i$ while $i \succ -i$, contradicting (1). The other cases can be similarly shown to be impossible.

Stein 1.4.5 A set Ω is said to be **pathwise connected** if any two points in Ω can be joined by a (piecewise-smooth) curve entirely contained in Ω . The purpose of this exercise is to prove that an *open* set Ω is pathwise connected if and only if Ω is connected.

(1) Suppose first that Ω is open and pathwise connected, and that it can be written as $\Omega = \Omega_1 \cup \Omega_2$ where Ω_1 and Ω_2 are disjoint non-empty open sets. Choose two points $w_1 \in \Omega_1$ and $w_2 \in \Omega_2$ and let γ denote a curve in Ω joining w_1 to w_2 . Consider a parametrization $z : [0, 1] \rightarrow \Omega$ of this curve with $z(0) = w_1$ and $z(1) = w_2$, and let

$$t^* = \sup_{0 \le t \le 1} \{ t : z(s) \in \Omega_1 \text{ for all } 0 \le s < t \}.$$

Arrive at a contradiction by considering the point $z(t^*)$.

(2) Conversely, suppose that Ω is open and connected. Fix a point $w \in \Omega$ and let $\Omega_1 \subset \Omega$ denote the set of all points that can be joined to w by a curve contained in Ω . Also, let $\Omega_2 \subset \Omega$ denote the set of all points that cannot be joined to w by a curve in Ω . Prove that both Ω_1 and Ω_2 are open, disjoint and their union is Ω . Finally, since Ω_1 is non-empty (why?) conclude that $\Omega = \Omega_1$ as desired.

The proof actually shows that the regularity and type of curves we used to define pathwise connectedness can be relaxed without changing the equivalence between the two definitions when Ω is open. For instance, we may take all curves to be continuous, or simply polygonal lines (a polygonal line is a piecewise-smooth curve which consists of finitely many straight line segments).

- **Proof** (1) Since Ω_1 is open, for any t_0 with $z(t_0) \in \Omega_1$, there exists $t_1 > t_0$ such that $z(t_1) \in \Omega_1$. This shows $z(t^*) \notin \Omega_1$. Similarly, $z(t^*) \notin \Omega_2$. Hence, $z(t^*) \notin \Omega_1 \cup \Omega_2 = \Omega$, a contradiction.
- (2) For any $p \in \Omega_1$, choose an open ball $\mathbb{B}(p, r) \subset \Omega$. Since any point in $\mathbb{B}(p, r)$ can be joined to p by a line segment in $\mathbb{B}(p, r)$, it follows that $\mathbb{B}(p, r) \subset \Omega_1$. Hence, Ω_1 is open. Similarly, Ω_2 is open. Obviously Ω_1 and Ω_2 are disjoint and their union is Ω . Since we can choose a ball around w that is contained in Ω (which is pathwise connected), it follows that Ω_1 is non-empty. Therefore, by the connectedness of Ω , we conclude that $\Omega = \Omega_1$, i.e., Ω is pathwise connected. \Box

Stein 1.4.6 Let Ω be an open set in \mathbb{C} and $z \in \Omega$. The **connected component** (or simply the **component**) of Ω containing z is the set C_z of all points w in Ω that can be joined to z by a curve entirely contained in Ω .

- (1) Check first that C_z is open and connected. Then, show that w ∈ C_z defines an equivalence relation, that is: (i) z ∈ C_z, (ii) w ∈ C_z implies z ∈ C_w, and (iii) if w ∈ C_z and z ∈ C_ζ, then w ∈ C_ζ. Thus Ω is the union of all its connected components, and two components are either disjoint or coincide.
- (2) Show that Ω can have only countably many distinct connected components.
- (3) Prove that if Ω is the complement of a compact set, then Ω has only one unbounded component.
- **Proof** (1) The same proof as in Exercise 1.4.5 (2) shows that C_z is open. Then by Exercise 1.4.5 (1), the pathwise connectedness of C_z implies that C_z is connected. The three properties are obvious from the definition of pathwise connectedness.
 - (2) If Ω has uncountably many connected components, then by (1) we obtain uncountably many disjoint open balls in Ω . This contradicts the countability of rational points in \mathbb{C} .
 - (3) Choose a closed disc containing the compact set Ω^c, so that the complement of this disc is open and connected, and hence is contained in a component of Ω. This component is obviously the unique unbounded component of Ω.

Stein 1.4.7 The family of mappings introduced here plays an important role in complex analysis. These mappings, sometimes called **Blaschke factors**, will reappear in various applications in later chapters.

$$\left|\frac{w-z}{1-\overline{w}z}\right| < 1$$
 if $|z| < 1$ and $|w| < 1$,

and also that

$$\frac{w-z}{1-\overline{w}z}\Big|=1 \quad \text{if } |z|=1 \text{ or } |w|=1$$

(2) Prove that for a fixed w in the unit disc \mathbb{D} , the mapping

$$F\colon z\mapsto \frac{w-z}{1-\overline{w}z}$$

satisfies the following conditions:

- ① *F* maps the unit disc to itself (that is, $F \colon \mathbb{D} \to \mathbb{D}$), and is holomorphic.
- ② *F* interchanges 0 and *w*, namely F(0) = w and F(w) = 0.
- |F(z)| = 1 if |z| = 1.
- ④ $F: \mathbb{D} \to \mathbb{D}$ is bijective.

Proof (1) We have

$$\begin{aligned} |z| < 1 \text{ and } |w| < 1 \implies (1 - |z|^2) (1 - |w|^2) > 0 \iff |w|^2 + |z|^2 < 1 + |w|^2 |z|^2 \\ \iff |w|^2 + |z|^2 - w\bar{z} - \bar{w}\bar{z} < 1 - w\bar{z} - \bar{w}z + |w|^2 |z|^2 \iff (w - z)(\bar{w} - \bar{z}) < (1 - \bar{w}z)(1 - w\bar{z}) \\ \iff |w - z|^2 < |1 - \bar{w}z|^2 \stackrel{z\bar{w} \neq 1}{\longleftrightarrow} \left| \frac{w - z}{1 - \bar{w}z} \right| < 1 \end{aligned}$$

and

$$\begin{aligned} |z| &= 1 \text{ or } |w| = 1 \iff (1 - |z|^2)(1 - |w|^2) = 0 \iff |w|^2 + |z|^2 = 1 + |w|^2|z|^2 \\ \iff |w|^2 + |z|^2 - w\bar{z} - \overline{w}\bar{z} = 1 - w\bar{z} - \overline{w}z + |w|^2|z|^2 \iff (w - z)(\overline{w} - \bar{z}) = (1 - \overline{w}z)(1 - w\bar{z}) \\ \iff |w - z|^2 = |1 - \overline{w}z|^2 \stackrel{zw \neq 1}{\longleftrightarrow} \left| \frac{w - z}{1 - \overline{w}z} \right| = 1. \end{aligned}$$

- (2) ① The implications in the proof of (1) show that F maps D to D, and F is holomorphic since it is a rational function whose denominator is never zero in D.
 - ② Direct computation gives $F(0) = \frac{w-0}{1-0} = w$ and $F(w) = \frac{w-w}{1-|w|^2} = 0.$
 - 3 This is shown in the proof of (1).
 - B It is direct to check that $F^2 = \mathrm{Id}_{\mathbb{D}}$, so *F* is bijective.

Stein 1.4.9 Show that in polar coordinates, the Cauchy–Riemann equations take the form

$$\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta}$$
 and $\frac{1}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial v}{\partial r}$.

Use these equations to show that the logarithm function defined by

$$\log z = \log r + i\theta$$
 where $z = re^{i\theta}$ with $-\pi < \theta < \pi$

is holomorphic in the region r > 0 and $-\pi < \theta < \pi$.

Proof If we let
$$\begin{cases} x = r \cos \theta, \\ y = r \sin \theta, \end{cases}$$
 then
$$\begin{pmatrix} \frac{\partial u}{\partial r} \\ \frac{\partial u}{\partial \theta} \end{pmatrix} = \begin{pmatrix} \cos \theta & \sin \theta \\ -r \sin \theta & r \cos \theta \end{pmatrix} \begin{pmatrix} \frac{\partial u}{\partial x} \\ \frac{\partial u}{\partial y} \end{pmatrix}$$
 and hence
$$\begin{pmatrix} \frac{\partial u}{\partial x} \\ \frac{\partial u}{\partial y} \end{pmatrix} = \begin{pmatrix} \cos \theta & -\frac{1}{r} \sin \theta \\ \sin \theta & \frac{1}{r} \cos \theta \end{pmatrix} \begin{pmatrix} \frac{\partial u}{\partial r} \\ \frac{\partial u}{\partial \theta} \end{pmatrix} = \begin{pmatrix} \cos \theta \frac{\partial u}{\partial r} - \frac{1}{r} \sin \theta \frac{\partial u}{\partial \theta} \\ \sin \theta \frac{\partial u}{\partial r} + \frac{1}{r} \cos \theta \frac{\partial u}{\partial \theta} \end{pmatrix}.$$

Similarly, we have

$$\begin{pmatrix} \frac{\partial v}{\partial x} \\ \frac{\partial v}{\partial y} \end{pmatrix} = \begin{pmatrix} \cos\theta \frac{\partial v}{\partial r} - \frac{1}{r} \sin\theta \frac{\partial v}{\partial \theta} \\ \sin\theta \frac{\partial v}{\partial r} + \frac{1}{r} \cos\theta \frac{\partial v}{\partial \theta} \end{pmatrix}.$$

The Cauchy-Riemann in Cartesian coordinates is then equivalent to

$$\begin{cases} \cos\theta \frac{\partial u}{\partial r} - \frac{1}{r} \sin\theta \frac{\partial u}{\partial \theta} = \sin\theta \frac{\partial v}{\partial r} + \frac{1}{r} \cos\theta \frac{\partial v}{\partial \theta}, \\ \sin\theta \frac{\partial u}{\partial r} + \frac{1}{r} \cos\theta \frac{\partial u}{\partial \theta} = -\cos\theta \frac{\partial v}{\partial r} + \frac{1}{r} \sin\theta \frac{\partial v}{\partial \theta} \end{cases}$$

Rewrite these equations as

$$\begin{pmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \frac{\partial u}{\partial r} - \frac{1}{r} \frac{\partial v}{\partial \theta}\\ \frac{\partial v}{\partial r} + \frac{1}{r} \frac{\partial u}{\partial \theta} \end{pmatrix} = \begin{pmatrix} 0\\ 0 \end{pmatrix},$$

where the desired result follows.

For the logarithm function, consider the functions $u = \log r$ and $v = \theta$. Then

$$\frac{\partial u}{\partial r} = \frac{1}{r} = \frac{1}{r} \frac{\partial v}{\partial \theta} \quad \text{and} \quad \frac{\partial v}{\partial r} = 0 = -\frac{1}{r} \frac{\partial u}{\partial \theta}.$$

Therefore, the logarithm function is holomorphic in the region r > 0 and $-\pi < \theta < \pi$.

Stein 1.4.15 Abel's theorem. Suppose $\sum_{n=1}^{\infty} a_n$ converges. Prove that

$$\lim_{r \to 1, r < 1} \sum_{n=1}^{\infty} r^n a_n = \sum_{n=1}^{\infty} a_n.$$

In other words, if a series converges, then it is Abel summable with the same limit.

Proof Let $A_k = \sum_{n=1}^k a_n$ and $A = \lim_{k \to \infty} A_k$. Then by Exercise 1.4.14 we have

$$\sum_{n=1}^{N} r^{n} a_{n} = r^{N} A_{N} - \sum_{n=1}^{N-1} (r^{n+1} - r^{n}) A_{n} = r^{N} A_{N} + (1-r) \sum_{n=1}^{N-1} r^{n} A_{n}.$$

After subtracting a constant from a_1 , we may assume that A = 0. Letting $N \to \infty$ gives

$$\sum_{n=1}^{\infty} r^n a_n = (1-r) \sum_{n=1}^{\infty} r^n A_n$$

Given $\varepsilon > 0$, pick M large enough so that $|A_n| < \varepsilon$ for all $n \ge M$ and note that

$$\left| (1-r)\sum_{n=M}^{\infty} r^n A_n \right| \leqslant \varepsilon |1-r|\sum_{n=M}^{\infty} |r|^n = \varepsilon |1-r|\frac{r^M}{1-|r|}.$$

Therefore, we have

$$\limsup_{r \to 1, r < 1} \left| \sum_{n=1}^{\infty} r^n a_n \right| \leq \limsup_{r \to 1, r < 1} |1 - r| \left| \sum_{n=1}^{M-1} r^n A_n \right| + \varepsilon \limsup_{r \to 1, r < 1} \frac{|1 - r| r^M}{1 - |r|} = \varepsilon.$$

Since $\varepsilon > 0$ is arbitrary, the result follows.

Stein 1.4.16 Determine the radius of convergence of the series $\sum_{n=1}^{\infty} a_n z^n$ when:

- (1) $a_n = (\log n)^2$.
- (2) $a_n = n!$.
- (3) $a_n = \frac{n^2}{4^n + 3n}$.
- (4) $a_n = \frac{(n!)^3}{(3n)!}.$
- (5) Find the radius of convergence of the hypergeometric series

$$F(\alpha,\beta,\gamma;z) = 1 + \sum_{n=1}^{\infty} \frac{\alpha(\alpha+1)\cdots(\alpha+n-1)\beta(\beta+1)\cdots(\beta+n-1)}{n!\gamma(\gamma+1)\cdots(\gamma+n-1)} z^n.$$

Here $\alpha, \beta \in \mathbb{C}$ and $\gamma \neq 0, -1, -2, \cdots$.

(6) Find the radius of convergence of the Bessel function of order *r*:

$$J_r(z) = \left(\frac{z}{2}\right)^r \sum_{n=0}^{\infty} \frac{(-1)^n}{n!(n+r)!} \left(\frac{z}{2}\right)^{2n},$$

where r is a positive integer.

Solution Denote the radius of convergence by *R*.

(1) Since
$$\limsup_{n \to \infty} (\log n)^{\frac{2}{n}} = \exp\left(\limsup_{n \to \infty} \frac{2\log n}{n}\right) = 1$$
, we have $R = 1$.

(2) By Stirling's formula we get $\limsup_{n \to \infty} (n!)^{\frac{1}{n}} = \limsup_{n \to \infty} (2n\pi)^{\frac{1}{2n}} \frac{n}{e} = +\infty.$ Hence R = 0.

(3) Since
$$\limsup_{n \to \infty} \left(\frac{n^2}{4^n + 3n} \right)^{\frac{1}{n}} = \limsup_{n \to \infty} \frac{n^{\frac{2}{n}}}{4} = \frac{1}{4}$$
, we have $R = 4$.

(4) By Stirling's formula we get

$$\limsup_{n \to \infty} \left[\frac{(n!)^3}{(3n)!} \right]^{\frac{1}{n}} = \limsup_{n \to \infty} \left[\frac{(2n\pi)^{\frac{3}{2}} \left(\frac{n}{e}\right)^{3n}}{\sqrt{6n\pi} \left(\frac{3n}{e}\right)^{3n}} \right]^{\frac{1}{n}} = \limsup_{n \to \infty} \left[\frac{(2n\pi)^{\frac{3}{2}}}{\sqrt{6n\pi} 3^{3n}} \right]^{\frac{1}{n}} = \frac{1}{27}$$

Hence R = 27.

(5) The series terminates if either α or β is a nonpositive integer, in which case the function reduces to a polynomial and $R = +\infty$. Otherwise, we use the following useful limit for asymptotic approximations as $x \to \infty$:

$$\Gamma(x+\alpha)\sim\Gamma(x)x^{\alpha},\quad\alpha\in\mathbb{C},$$

which yields

$$\frac{\alpha(\alpha+1)\cdots(\alpha+n-1)\beta(\beta+1)\cdots(\beta+n-1)}{n!\gamma(\gamma+1)\cdots(\gamma+n-1)} \sim \frac{\frac{\Gamma(\alpha+n)}{\Gamma(\alpha)}\frac{\Gamma(\beta+n)}{\Gamma(\beta)}}{n!\frac{\Gamma(\gamma+n)}{\Gamma(\gamma)}} \sim \frac{\Gamma(\gamma)}{\Gamma(\alpha)\Gamma(\beta)}n^{\alpha+\beta-\gamma}.$$

Since

$$\limsup_{n \to \infty} \left(\frac{\Gamma(\gamma)}{\Gamma(\alpha)\Gamma(\beta)} n^{\alpha+\beta-\gamma} \right)^{\frac{1}{n}} = 1,$$

we have R = 1.

(6) By Stirling's formula we get

$$\limsup_{n \to \infty} \left| \frac{(-1)^n}{n!(n+r)! 2^{2n+r}} \right|^{\frac{1}{2n+r}} = \limsup_{n \to \infty} \left(\frac{1}{2\pi n \left(\frac{2n}{e}\right)^{2n+r}} \right)^{\frac{1}{2n+r}} = 0.$$

Hence $R = +\infty$.