Stein 1.4.2 Let (-, -) denote the usual inner product in R2. In other words, if Z = (x1,11) and W =
(w2,y2), then
(Z,W) = 2172 + Y192

Similarly, we may define a Hermitian inner product (-, -) in C by
(z,w) = zw.

The term Hermitian is used to describe the fact that (-, -) is not symmetric, but rather satisfies the relation

(z,w) = (w,z) forall z,w € C.

Show that )
(z,w) = 5[('2»10) + (w, 2)] = Re(z, w),
where we use the usual identification z = z + iy € C with (z,y) € R?.

Proof Suppose z = z; +iy; and w = 3 + iys. Then
(z,w) = 20 = (21 +iy1) (22 — iy2) = (122 + Y1y2) + (2291 — T1Y2)

and
Re(z,w) = z122 + y1y2 = (2, w). O

Stein 1.4.4 Show that it is impossible to define a total ordering on C. In other words, one cannot find
a relation >~ between complex numbers so that:

(1) For any two complex numbers z,w, one and only one of the following is true: z > w, w >~ z or

zZ=w.
(2) For all 21, 22, z3 € C the relation 21 > 2y implies 21 + 23 > 22 + 3.

(3) Moreover, for all 21, z2, 23 € C with z3 > 0, then z; > z; implies z123 > 2223.

Proof Consider the three complex numbers 0, +i. Ifi > 0 > —i, then by (3) one hasi-i > i- (—i), that
is, —1 > 1. Then applying (3) again gives —1-i > 1-i. Hence, one has —i > i whilei > —i, contradicting
(1). The other cases can be similarly shown to be impossible. O

Stein 1.4.5 A set 2 is said to be pathwise connected if any two points in © can be joined by a
(piecewise-smooth) curve entirely contained in €. The purpose of this exercise is to prove that an open

set (2 is pathwise connected if and only if €2 is connected.

(1) Suppose first that €2 is open and pathwise connected, and that it can be written as 2 = €, U Q5
where ; and ), are disjoint non-empty open sets. Choose two points w; € €; and w; € 2 and
let v denote a curve in Q joining w; to w,. Consider a parametrization z: [0, 1] — € of this curve
with z(0) = w; and z(1) = wy, and let

t* = sup {t:2(s) € Q forall 0 < s < t}.
0<t<1



Arrive at a contradiction by considering the point z(¢*).

(2) Conversely, suppose that 2 is open and connected. Fix a point w € €2 and let ; C €2 denote the
set of all points that can be joined to w by a curve contained in €2. Also, let 2, C €2 denote the set of
all points that cannot be joined to w by a curve in 2. Prove that both ; and 2, are open, disjoint
and their union is €. Finally, since €, is non-empty (why?) conclude that Q = Q, as desired.

The proof actually shows that the regularity and type of curves we used to define pathwise connect-
edness can be relaxed without changing the equivalence between the two definitions when (2 is open.
For instance, we may take all curves to be continuous, or simply polygonal lines (a polygonal line is a
piecewise-smooth curve which consists of finitely many straight line segments).

Proof (1) Since €, is open, for any ¢, with z(t) € €3, there exists t; > t, such that z(¢1) € ;. This
shows z(t*) ¢ Q4. Similarly, z(t*) ¢ Q2. Hence, z(t*) ¢ €1 U Qs = , a contradiction.

(2) For any p € 4, choose an open ball B(p,r) C Q. Since any point in B(p, r) can be joined to p by
a line segment in B(p, r), it follows that B(p,r) C ;. Hence, Q; is open. Similarly, Q5 is open.
Obviously €2; and (2, are disjoint and their union is 2. Since we can choose a ball around w that is
contained in © (which is pathwise connected), it follows that §2; is non-empty. Therefore, by the
connectedness of €2, we conclude that Q2 = 2, i.e,, {2 is pathwise connected. O

Stein 1.4.6 LetQbeanopensetin Cand z € Q2. The connected component (or simply the component)
of ) containing z is the set C, of all points w in € that can be joined to z by a curve entirely contained in
Q.

(1) Check first that C, is open and connected. Then, show that w € C, defines an equivalence relation,
thatis: (i) z € C,, (ii) w € C, implies z € C,, and (iii) if w € C, and z € C¢, then w € C¢.
Thus (2 is the union of all its connected components, and two components are either disjoint or
coincide.

(2) Show that €2 can have only countably many distinct connected components.

(3) Prove that if 2 is the complement of a compact set, then €2 has only one unbounded component.

Proof (1) The same proof as in Exercise 1.4.5 (2) shows that C, is open. Then by Exercise 1.4.5 (1),
the pathwise connectedness of C, implies that C, is connected. The three properties are obvious

from the definition of pathwise connectedness.

(2) If  has uncountably many connected components, then by (1) we obtain uncountably many dis-

joint open balls in 2. This contradicts the countability of rational points in C.

(3) Choose a closed disc containing the compact set 2%, so that the complement of this disc is open and
connected, and hence is contained in a component of 2. This component is obviously the unique
unbounded component of €. O

Stein 1.4.7 The family of mappings introduced here plays an important role in complex analysis. These

mappings, sometimes called Blaschke factors, will reappear in various applications in later chapters.



(1) Let z, w be two complex numbers such that zZw # 1. Prove that

‘w_z <1 if|z| < land |uw| <1,
1—wz
and also that
‘wz —1 if|z]=1or|uw| =1
1—wz

(2) Prove that for a fixed w in the unit disc D, the mapping

w—z
F:z—

1 —-wz
satisfies the following conditions:
@ F maps the unit disc to itself (thatis, F': D — D), and is holomorphic.
@ F interchanges 0 and w, namely F'(0) = w and F(w) = 0.
® |F(z)| =11if |z| = 1.
@ F: D — Dis bijective.

Proof (1) We have

2l <land |w| <1 = (1-[z[*)(1—|w]*) >0 <> |w[>+|2]* <1+ |w|*|z|?

= |w+ 2wz -z <1 —wz—wz+ |w?|z]? = (w—2)(W-2) < (1—-w2)(1 —wz)

= |lw—z? < |l - <1

__ 2 Zw#l w—z
Wzt = —
1—wz

and
lzl=Tlor|w| =1 < (1-[]z2°)(1—|w’) =0 < |w|* + 2> = 1 + |[w|?|z|?
= WP+ |2 —wE-wE=1—wz—wz+ |w?|z]* = (w—2)(W-2) =(1—w2)(l —wz)

— jw—z*=]1 =1.

__ 12 Zw#l w—z
—wz|f = o
— Wz

(2) © The implications in the proof of (1) show that F' maps D to D, and F is holomorphic since it
is a rational function whose denominator is never zero in ID.
w—0 w— w

@ Direct computation gives F'(0) = 0=V and F(w) = TP

® This is shown in the proof of (1).

@ Tt is direct to check that F? = Idp, so F is bijective. O

Stein 1.4.9 Show that in polar coordinates, the Cauchy—Riemann equations take the form

6u_1@

Ou 1 1@_ ov
or rob

and  Cor = o



Use these equations to show that the logarithm function defined by
logz =logr+if where z =re with —7 <0 <7

is holomorphic in the region r > 0 and —7 < 0 < 7.

ou ou
= 0, or 0 in 6 Oz
Proof If we let Lmreos then or = €08 st Oz and hence
y = rsiné, Ou —rsinf rcosf) | Ou
00 Jy
Ou 1 ou oau 1 . g Ou
or | [cost —;sme ar | cosvm. — o sinloy
ou| |« ou | ou 1 ou
== sinf - cos® U inf— 1+ = cosf—
y r 0 S %5
Similarly, we have
@ 0059@ - lsinﬁ@
or | _ or r 00
ov | ov 1 ov
87/ sin 95 " — COS H%

The Cauchy-Riemann in Cartesian coordinates is then equivalent to

ou 1 ou 1 ov
COSQE—Tst%—SHwE—i— cosé‘aa
o Ou 1 ou ov 1 ov
sm6‘a + - cos 9% — Cos HE + - smeﬁ
Rewrite these equations as
ou 10v
cosf —sinf\| aor roo| (O
sinf cos# @+1@ ~\o)’
or r o

where the desired result follows.

For the logarithm function, consider the functions u = logr and v = . Then

%71 181} nd @707 1 0u
or r roo0 M o TV Tron

Therefore, the logarithm function is holomorphic in the region r > 0 and —7 < 6 < 7.

Stein 1.4.15 Abel’s theorem. Suppose Z a, converges. Prove that

n=1

lim E r an—g Q-
r—1,r<l1

In other words, if a series converges, then it is Abel summable with the same limit.



k
Proof Let A, = E a, and A = klim Ay. Then by Exercise 1.4.14 we have
— 00

n=1

N N-1 N-1
Zr"an =rNVAy — Z (r"tt — M)A, =N AN+ (1—7) Z A,
n=1 n=1 n=1

After subtracting a constant from a;, we may assume that A = 0. Letting N — oo gives

oo o0
Z r"a, = (1—r) Z " A,.
n=1 n=1

Given € > 0, pick M large enough so that |A,,| < € for all n > M and note that

1—r r"A,| <ell—r r"=¢ll—-7r .
(1) 3wl et —rl 3 ol = el = el
n=M n=M
Therefore, we have
00 M-1 |1 _ 7,|,r,1\4
lim sup Zr"a” < limsup |1 — 7| Z r"A,| +elimsup ——— =¢
r—1,r<1|,—1 r—1,r<1 n—1 r—1,r<1 1- |’I“|
Since ¢ > 0 is arbitrary, the result follows.
o0
Stein 1.4.16 Determine the radius of convergence of the series Z a,z" when:
n=1

(1) a, = (logn)?.

(2) an =nl

) an = g
(n))?

4) a, = Gl

(5) Find the radius of convergence of the hypergeometric series

L s ala+ 1) (a+n—-1)pBLB+1)---(B+n-1) ,
F(a’ﬂ’%z)_H; nly(y+1)---(y+n-1) o

Here o, € Cand v #0,—1,-2,---.
(6) Find the radius of convergence of the Bessel function of order :

6= (3) S am(3)

n=0

where r is a positive integer.

Solution Denote the radius of convergence by R.



(1) Since limsup(log n)% = exp (lim sup 2 logn> =1, wehave R = 1.
n—o0 n

(2) By Stirling’s formula we get lim sup(n!)% = lim sup(2mr)ﬁ = 4o00. Hence R = 0.

n—oo n—oo

o3

. . n? " n n 1
(3) Since llgljotip <4n n 3n> = h?_i:ip = we have R = 4.
(4) By Stirling’s formula we get

1

. (n')3 % T (2’]7/]'(' %(n) L (27177)% " _ 1
L e b ) B v B

3=

Hence R = 27.

(5) The series terminates if either « or 5 is a nonpositive integer, in which case the function reduces to
a polynomial and R = +o0. Otherwise, we use the following useful limit for asymptotic approxi-
mations as x — 0o:

Iz +a) ~T(x)z®, a€C,

which yields

I'(a-+n) T(B+n)
ala+l)---(a+n-1)FE+1)---(B+n-1) T T ,,_T0)  arpy

ny(y+1)---(y+n—-1) n!% L(a)I(8)

Since

3=

. PO arsr)" _
hmsup(r(a)F(B)n +A ) =1,

n—00

we have R = 1.

(6) By Stirling’s formula we get

(="

limsuP n!(n+r)!22n+r

n—oo

T i 1 Zntr .
= 11mmsu —_—s = Vu.
n%oop 2n, (?n)Qn—i-r

Hence R = +oc. O



